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Applications of Multilevel
Structural Equation Modeling

to Cross-Cultural Research

Mike W.-L. Cheung
The University of Hong Kong

Kevin Au
The Chinese University of Hong Kong

Multilevel structural equation modeling (MSEM) has been proposed as an extension
to structural equation modeling for analyzing data with nested structure. We have be-
gun to see a few applications in cross-cultural research in which MSEM fits well as
the statistical model. However, given that cross-cultural studies can only afford col-
lecting data from a relatively small number of countries, the appropriateness of
MSEM has been questioned. Using the data from the International Social Survey
Program (1997; N = 15,244 from 27 countries), we first showed how Muthén’s
MSEM procedure could be applied to a real data set on cross-cultural research. Given
a small country-level sample size (27 countries) we then demonstrated that results on
the individual level were quite stable even when using small individual-level sample
sizes, whereas the group-level parameter estimates and their standard errors were af-
fected unsystematically by varying individual-level sample sizes. Use of the findings
for cross-cultural research and other areas with limited numbers of groups are
discussed.

Cross-cultural research has initiated many studies on how and why people behave
differently across nations. Culture has been widely used as a variable to explain
many cross-national behavioral and psychological differences. Conceptually
speaking, multilevel structural equation modeling (MSEM) seems to be the imme-
diate choice of statistical model for a variety of research questions in cross-cultural
research. However, MSEM may require large group-level samples of about 100
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(Hox & Maas, 2001). This requirement is next to impossible for cross-cultural re-
search, as there are only 200 countries in the world, many of which are small and
developing, and it is costly and timely to collect cross-national data. This may be
one of the reasons applications of MSEM in cross-cultural research are rare, even
though multilevel models have been introduced into cross-cultural research (e.g.,
Chao, 2000; van de Vijver & Leung, 2000, 2001).

Another possible reason why MSEM in not popular in cross-cultural research is
that the model is often seen as complicated and esoteric to many applied-oriented
researchers. The statistical techniques of MSEM have been available for more than
a decade (e.g., Goldstein & McDonald, 1988; B. O. Muthén, 1989), but its imple-
mentation remained quite daunting to researchers. Recent developments in struc-
tural equation modeling (SEM) packages, such as LISREL (Jöreskog & Sörbom,
1996), EQS (Bentler, 1995), and Mplus (L. K. Muthén & Muthén, 2001), have,
however, eased some of the more complicated aspects of MSEM.

To shed some light on the applicability of MSEM to cross-cultural research,
this study has two objectives. First, MSEM is applied in a typical cross-cultural
data set making use of procedures introduced by B. O. Muthén (1989, 1994) that
can be applied in nearly all SEM software. By showing that MSEM can now be ap-
plied with ease, we hope to demonstrate its usefulness and encourage cross-
cultural researchers to use the model. Second, to provide some hints on the sample
size issue when applying MSEM on cross-cultural research, the performance of
MSEM is investigated by varying different sample sizes of individual-level data.
By showing the effects of different sample sizes, we hope to provide some practi-
cal suggestions for cross-cultural research as well as other areas in which the num-
ber of groups may be limited.

MULTILEVEL STRUCTURAL EQUATION MODELING

Levels Issues in Data Analysis

Human behavior is complicated and multilevel in nature (Klein, Tosi, & Cannella,
1999; Kozlowski & Klein, 2000), prompting considerable debate in many disci-
plines (see Chan, 1998; House, Rousseau, & Thomas-Hunt, 1995; Klein, Dan-
sereau, & Hall, 1994; Klein & Kozlowski, 2000; Rousseau, 1985). As pointed out
by Klein et al. (1999), human behavior is primarily studied within a micro–macro
framework, with neither approach fully recognizing the multilevel nature of the
data.

Generally, there are three approaches to analyzing data with nested structures:
disaggregation, aggregation, and multilevel models (Hofmann, 1997). The first
approach is one in which only individual-level data are used in the analysis. In
cross-cultural literature, disaggregation factor analysis is termed pancultural fac-
tor analysis, factor analysis based on only individual-level data disregarding the
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country grouping (Triandis et al., 1986). Many researchers (e.g., Hofmann, 1997;
Raudenbush & Bryk, 2002) criticized this approach as the random sampling as-
sumption required by most statistical techniques is often violated. The standard er-
rors of parameter estimates are underestimated and the test statistics are inflated;
that is, Type I errors are much higher than the nominal values (Raudenbush &
Bryk, 2002). Thus, conclusions based on analyzing disaggregated data are usually
incorrect.

The second approach is to aggregate data generated from an individual level
into the group level. The aggregated data are used in the analysis only. This type of
analysis is also known as ecological analysis. The most famous example in
cross-cultural research is Hofstede’s (1980) ecological factor analysis on data
from 117,000 samples of 53 nations and regions. Based on the factor analysis on
the country means, Hofstede proposed four cultural dimensions, which are fre-
quently used to explain cross-cultural differences in a variety of disciplines. How-
ever, this approach has several problems. First, the resulting sample size is much
smaller than the original individual-level data. Second, aggregated data may not al-
ways be a fair representation of group-level data (Klein & Kozlowski, 2000).
Third, information provided from the aggregated means may ignore potentially
meaningful individual-level variations (Hofmann, 1997), such as intracultural
variation (Au, 1999; Au & Cheung, 2005) or within-group dispersion (Chan, 1998;
Klein, Conn, Smith, & Sorra, 2001). Fourth, researchers may commit ecological
fallacy, a logical fallacy inherent in making causal inferences from group-level
data to individual-level behaviors (Robinson, 1950). Hence, B. O. Muthén (1994)
concluded that factor analysis based on aggregated data is often misleading, if not
incorrect.

The third approach is multilevel models. These models incorporate individual
and group-level data and differentiate group-level and individual-level effects
(Raudenbush & Bryk, 2002). Similar to the applications of the hierarchical linear
model to regression in the context of the multilevel model, MSEM is a direct gen-
eralization of SEM in the context of the multilevel model (e.g., Bentler & Liang,
2003; Goldstein & McDonald, 1988; Lee, 1990; B. O. Muthén, 1989, 1994;
Raudenbush, 1993).1 Applications of MSEM to cross-cultural research are still
rare (see, e.g., Dyer, Sipe, & Hanges, 1997).

Muthén’s Model

The most general approach to estimating multilevel data is full information maxi-
mum likelihood (FIML) because of its asymptotic optimality, meaning its estima-
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cently, several researchers, such as Bauer (2003), Curran (2003), and Rovine and Molenaar (1998,
2000), among others, have suggested that multilevel models can be integrated within the general frame-
work of SEM.



tors have the smallest possible standard errors among other estimators (Bentler,
2001). However, FIML is computationally demanding to use practically, especially
whenapplied tounbalanceddata (i.e., unequalgroupsize).Themodel specifications
with the conventional SEM software can also be very tedious (Bentler, 2001; B. O.
Muthén,1989).Tooffset this,B.O.Muthén(1989,1994)proposedasimplerestima-
tor called Muthén’s maximum-likelihood-based (MUML) estimator.2

The MUML estimator is probably the most widely used procedure for applied
researchers conducting MSEM (e.g., Duncan, Alpert, & Duncan, 1998; Dyer et al.,
1997; Kaplan, & Elliott, 1997a, 1997b) because it can be easily implemented in
nearly all SEM software packages without modifications. Empirical findings sug-
gest that the MUML estimator gives similar results as FIML estimators with rough
approximations to the correct chi-square test statistics and standard errors of pa-
rameter estimates (Hox, 1993; Hox & Maas, 2001; McDonald, 1994; B. O.
Muthén 1989, 1994). Thus, we use the MUML estimator to illustrate the proce-
dures of MSEM in this study.

In analyzing multilevel data, observed scores at the individual level ygi are de-
composed into a between-group component yg, which equals the aggregated group
mean, and a within-group component yw, which equals the centered score from the
corresponding group mean. That is,

ygi = yg + yw (1)

Because yg and yw are uncorrelated, the total population covariance matrix (ΣT) can
be decomposed into a between-group population covariance matrix (ΣB) and a
pooled within-group population covariance (ΣW),

ΣT = ΣB + ΣW (2)

and their sample estimates are ST, SB and SPW, where PW = pooled within-group:

and
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2LISREL 8.54 (du Toit & du Toit, 2001) and EQS 6 beta version (Bentler, 2001) use an FIML and
an Expectation Maximization algorithm for MSEM, respectively. Mplus 2.14 (L. K. Muthén &
Muthén, 2001) uses the MUML estimator “with robust standard errors and chi-square tests of model fit
specifically derived for unbalanced data” (p. 380).
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where G and N are the total number of group and sample sizes, respectively. B. O.
Muthén (1989) showed that ST and SPW are the consistent and unbiased estimators
for ΣT and ΣW, and SB is a consistent and unbiased estimator of

ΣW + cΣB, (6)

where c is a function of the group sizes,

c is the common group size for balanced data. For unbalanced data, it is close to the
mean of the group sizes when a large number of groups is used.

ST, SB, and SPW can be calculated using standard statistical packages or SEM
software.3 Then SB and SPW can be modeled as a two-group SEM problem with
suitable cross-group constraints. Because SPW is an unbiased estimator of ΣW, we
can propose a within-structure model ΣW (θ) on SPW directly. As SB is a weighted
sum of ΣW and ΣB, a between- and a within-structure model ΣW (θ) and ΣB(θ) are re-
quired at the same time to model SB properly. Because the within-structure model
is the same in SB and SPW, appropriate cross-group constraints are required. B. O.
Muthén (1989) suggested a four-step procedure before analyzing MSEM.

Step 1: Conventional structural equation model of the total sample
covariance matrix. In this analysis, the multilevel nested data structure is ig-
nored and conventional structural equation model is fitted. The purpose of this step
is to detect obvious misspecifications of the proposed model. However, the good-
ness of fit of the model should not be interpreted on its own, especially for data
with large intraclass correlations, large class sizes, or highly correlated variables.

Step 2: Estimation of between-group variation. If the between-group varia-
tions are not present (i.e., ΣB = 0), MSEM can be simplified into conventional SEM.
However, as suggested by B. O. Muthén (1994), an easier way to check if ΣB = 0 is
to estimate the intraclass correlation or ICC(1) for each item, which is defined as
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where σ B
2 and σW

2 are the between- and within-group variances, respectively. If
ICCs(1) for the variables are not large, conventional SEM analyses are generally
reasonable and unbiased (Julian, 2001).

Step 3: Estimation of pooled within-group structure. SPW is used to esti-
mate the pooled within-group structure because it is an unbiased estimator of ΣW.
Then the proposed factor structure at the individual level, ΣW (θ), can be proposed
to fit the SPW.

Step 4: Estimation of between-group structure. As pointed out by Chan
(1998), Klein and Kozlowski (2000), and B. O. Muthén (1994), among others,
the aggregated variables may not have the same meaning as those in the indi-
vidual-level data; hence, the between-structure model may not be the same as
that of the within-structure model. From Equation 6, the MUML estimate of
ΣB is

c–1(S SB PW
2 2
� ). (9)

The MUML estimate of ΣB is frequently not positively definite, which is usually
required by most estimation methods. B. O. Muthén’s (1994) experience sug-
gested that the analysis of SB or the estimate of ΣB based on Equation 9 gives simi-
lar results. Thus, SB can be used as a convenient substitute for the MUML estimate
in most cases.

Analysis of multilevel structural equation model. Based on the results
from the previous steps, MSEM can be proposed and analyzed with a two-group
SEM approach. By analyzing SB and SPW simultaneously, model fit and parameter
estimates can be assessed. If the proposed model does not fit the data, standard
model modification steps can be used to search for a more meaningful and better
fitted model.

Sample Size Issues in MSEM

When applying a sophisticated statistical method, such as MSEM, practical issues
are usually of concern. A fundamental issue is the minimum sample sizes required
at the individual and group levels. Because MSEM is quite new, only a few studies
have investigated its sample size requirements. Hox and Maas (2001) assessed the
robustness of the MUML estimator in unequal groups and small sample sizes at
both individual and group levels with a simulation study. They found that problems
would occur for small, inadequate group-level samples. They suggested that the
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group-level sample size should be at least 100 for good performance of the MUML
estimator.

Illustrated examples using MSEM in the literature vary a lot in the sample sizes
employed. For instance, B. O. Muthén (1994) used a data set with 3,724 students
nested within 197 classes. Duncan et al. (1998) analyzed 1,076 adolescents from
450 households, and Kaplan and Elliott (1997a, 1997b) analyzed 1,165 students
from 356 schools. These studies satisfy the suggestion by Hox and Maas (2001).
However, there are still some studies that do not fulfill the suggestion of
group-level sample size larger than 100. For instance, Heck (2001) used 384 par-
ticipants from 56 groups, whereas Hox (1993) used only 187 children from 37
families.

The issue of small group-level sample size becomes even more critical when
applying MSEM to cross-cultural research because the cultural-level sample size
is always small, whereas the individual-level sample size is comparatively large.
For instance, the exploratory analyses on comparing the country and individual
factor structures conducted by van de Vijver and Poortinga (2002) involved 39 re-
gions and 47,871 respondents, and van Hemert, van ve Vijver, Poortinga, and
Georgas’s (2002) study used a data set with 25,922 respondents from 24 countries.
The MSEM study of Dyer et al. (1997) consisted of 1,817 respondents from 17
countries. It is easy to observe that the typical group-level sample size is around 20
to 40, whereas the individual-level sample size can be as large as 100 to 1,000 per
country in cross-cultural research.

Although the group-level sample size is quite small in cross-cultural research,
it is unclear whether the large individual-level sample size is beneficial to the
overall performance of MSEM, especially the performance at the group level.
Regarding multilevel regression, some researchers suggest a trade-off between
sample sizes at different levels (Cohen, 1998; Mok, 1995; Raudenbush & Liu,
2000; Snijders & Bosker, 1993). That is, increasing individual-level sample size
may reduce the group-level sample size requirement. The idea is that increasing
individual-level sample size may increase the precision on the estimates of the
group means. Thus, SB will be closer to its population value given the same
number of group-level samples. Although most findings suggest that increasing
the group-level sample size is more beneficial than increasing the individual
sample size (e.g., Hox & Maas, 2001; Snijders & Bosker, 1993), it is not clear
whether the large individual-level sample size in cross-cultural research will
help the group-level model fit or parameter estimates in MSEM. Moreover, most
of these suggestions on minimum sample sizes (e.g., Hox & Maas, 2001) were
based on simulation studies with artificial data. The effects of sample sizes on
real data are hardly known. To shed light on this issue, we selected several
subsamples of individuals that are different in size from a real data set and tested
the performance of the MUML estimator.
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ILLUSTRATION WITH REAL DATA

Data and Sample

A data set from the International Social Survey Program (ISSP, 1997) was used to
demonstrate the use of MSEM on cross-cultural research. The complete sample
without missing data included 15,244 full-time employees from 27 countries. The
sample size per country is shown in Table 1. Data collection in most countries used
probability-based samples of adults, and a few countries used quota sampling. The
questionnaires were specially designed to measure work-oriented variables, such as
importance and perception of work attitudes. Thus, it is most suitable for comparing
work-related attitudes across countries. Other researchers have successfully used
data sets from ISSP for a variety of purposes (e.g., Blanchflower & Freeman, 1997;
Cheung&Rensvold,1999), suggesting that thedataareofgoodquality.Thisdata set
is also typical of those generated from other large-scale studies (e.g., Abramson &
Inglehart, 1995; House, Javidan, Hanges, & Dorfman, 2002). If anything, its sample
sizes, at both the individual and group level, tend to be small in comparison to other
studies. Implications derived from this example are likely to be generalizable to
those with similar sample sizes in cross-cultural research.
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FIGURE 1 A multilevel structural equation model on intention to quit with organizational
commitment as the mediator.
Note. F1 to F5 represent job prospects, job nature, citizenship behaviors, organizational com-
mitment, and intention to quit, respectively. The loadings from latent factors (F6–F19) to their
corresponding observed variables (V1–V14) are fixed at the square root of the scaling parameter
( c ) or 23.656 in the between-group model. For simplicity, the measurement errors, distur-
bances, and covariances among exogenous latent variables are not shown in the figure.



As shown in Figure 1, we conceptualized a five-factor model on job attitudes
based on the work attitude literature (e.g., Karasek, 1979). These factors were
measured by 14 items:

Job prospects (F1)—job security (v1), high income (v2), advancement (v3).
Job nature (F2)—interesting job (v4), independent work (v5), flexible working

hours (v6).
Citizenship behaviors (F3)—job helps people (v7), useful to society (v8).
Organizational commitment (F4)—work harder to help the firm (v9), proud

working with the firm (v10), stay with the firm even with higher pay by other firms
(v11).

Intention to quit (F5)—days absent in last 6 months (v12), likely to find another
job (v13), worry of losing job (v14).

Three factors, namely job prospects (F1), job nature (F2), and citizenship be-
haviors (F3), were proposed to influence intention to quit (F5) indirectly through
organizational commitment (F4), with organizational commitment acting as the
mediator. Detailed item descriptions can be found in ISSP (1997). Instead of using
a confirmatory factor analytic model as an illustration, we used a full structural
equation model because a model with structural relations is more useful in
cross-cultural research.

The individual-level structure model was transformed into the country-level
structure model by the direct consensus model, which “uses within-group con-
sensus of the lower level units as the functional relationship to specify how the
construct conceptualized and operationalized at the lower level is functionally
isomorphic to another form of the construct at the higher level” (Chan, 1998, p.
237; see also Klein et al., 2001). In direct consensus models, high internal agree-
ment is required and consistent with the need of high intraclass correlation in
MSEM.

To study the effects of sample sizes on MSEM, we randomly selected sub-
samples without replacement with different sample sizes (50, 100, 200, 300, 400,
and 500) from each country. Then, we fitted the model already proposed. In this
resampling procedure, the number of countries was fixed but the individual-level
sample varied. This is quite similar to the actual data collection in cross-cultural re-
search in which it is much more difficult to collect country-level data than it is to
recruit individual participants within a particular country. Because the sample
sizes are unbalanced (see Table 1), some countries do not have enough data for
large samples (e.g., N = 400). This unbalanced sample size situation is also realis-
tic in cross-cultural research in which the samples collected are usually unbal-
anced across countries.
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Results: Application of MSEM With the Four-Step
Data Preparation Process

Step 1: Conventional structural equation model of the total sample
covariance matrix. First, we fitted the model ignoring the nested structure of
the data with EQS 6 (Bentler, 2001). The proposed model fit the data inadequately,
χ2(70) = 3,474, p < .001, N = 15, 217, the comparative fit index (CFI) = 0.89,
Bentler–Bonett Normed Fit Index (NFI) = 0.89, and root mean squared error of ap-
proximation (RMSEA) = 0.057. By ignoring the nested structure of the data, we
know little from the rejection of the proposed model. It may be due to the nested
structure of the data or because the proposed model does not fit the data ade-
quately, or even both reasons. Moreover, as suggested by B. O. Muthén (1994)
these results should not be interpreted on their own.
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TABLE 1
Samples Sizes in Individual Country or Region

Countries/Regions Sample Sizes

Germany East 196
Israel (Arabs) 227
Bangladesh 305
Poland 325
Spain 344
Bulgaria 389
Italy 415
Philippines 415
Japan 422
Great Britain 460
Slovenia 460
Cyprus 467
Czech Republic 473
France 509
Germany West 517
Canada 535
Russia 542
Israel (Jews) 557
Hungary 580
Sweden 634
Denmark 643
New Zealand 659
United States 708
Portugal 846
Netherlands 1,013
Norway 1,262
Switzerland 1,341
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TABLE 2
Total Sample Covariance Matrix and Intraclass Correlations of the Variables

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14

V1 0.514
V2 0.169 0.681
V3 0.166 0.284 0.887
V4 0.039 0.063 0.180 0.444
V5 0.024 0.061 0.168 0.210 0.773
V6 –0.004 0.133 0.104 0.107 0.244 1.099
V7 0.098 0.065 0.160 0.144 0.191 0.143 0.720
V8 0.111 0.075 0.168 0.113 0.134 0.141 0.464 0.762
V9 0.022 –0.020 0.104 0.054 0.101 –0.023 0.084 0.102 1.091
V10 0.036 –0.021 0.104 0.069 0.073 –0.009 0.138 0.151 0.503 0.893
V11 –0.003 –0.070 –0.049 0.012 0.034 –0.016 0.099 0.105 0.345 0.436 1.497
V12 –0.009 0.020 –0.016 –0.026 –0.046 0.034 0.017 0.004 –0.100 –0.080 –0.074 1.223
V13 –0.023 0.047 0.069 0.017 –0.012 0.055 –0.026 –0.030 –0.167 –0.274 –0.347 0.093 0.990
V14 0.102 0.123 0.058 –0.036 –0.050 0.020 0.028 0.048 –0.062 –0.090 –0.111 0.043 0.195 1.009
Intraclass

correlations
0.067 0.219 0.176 0.067 0.084 0.051 0.058 0.076 0.077 0.068 0.039 0.024 0.046 0.138

Note. N = 15,217. All intraclass correlations are significant at p < .001.



Step 2: Estimation of between-group variation. Table 2 shows the total
covariance matrix and the ICC(1) of the variables. The ICC(1) of the variables
ranged from .02 (days absent in last 6 months, v12) to .22 (high income, v2). These
indicate that the country variation can account for 2% to 22% of the variance of the
variables. After reviewing a number of studies, James (1982) found that ICC(1)
values ranged from .00 to .50 with a median value of .12. Bliese (2000) criticized
James’s approach as overestimating both the range and median of ICC(1) because
eta-squared was equated with ICC(1). Bliese (2000) put the typical values at be-
tween .05 and .20 based on his experience.

On the other hand, B. O. Muthén’s (1994) experience with survey data sug-
gested that common values of ICC(1) ranged from .00 to .50. The differences
among them may be due to the difference of their disciplines. Moreover, the
ICC(1) may underestimate the true intraclass correlation because of the individ-
ual-level measurement error (B. O. Muthén, 1994). Our ICC(1) results (.02–.22)
are quite typical of others’ findings. The results indicate that the data are not inde-
pendent. MSEM is necessary for making valid statistical inferences.

Step 3: Fitting pooled-within structure model. By using EQS 6 (Bentler,
2001) the total covariance matrix was partitioned into pooled within- and be-
tween-sample covariance matrices (see Table 3). The square root of the ad hoc es-
timator constant or the scaling parameter (c in Equation 7) was 23.66. By analyz-
ing SW, the proposed model fitted the data marginally well, χ2(70) = 2,820, p <
.001, N = 15, 217, CFI = 0.91, NFI = 0.90, RMSEA = 0.051. These results are con-
sistent with the general findings that analyzing SW gives better results than analyz-
ing ST.

Step 4: Fitting between structure model. As the sample of group level is
not large (G = 27), analyzing SB alone may not be adequate. Hence, this analysis is
integrated into the MSEM.

Step 5: Fitting multilevel structural equation model. The MSEM fitted
the data reasonably well with χ2(140) = 2,956, p < .001, N = 15, 217, CFI = 0.90,
NFI = 0.90, and especially RMSEA = 0.036. These results show that the proposed
model fits better under a multilevel framework. The parameter estimates and stan-
dard errors of parameter estimates are shown in Table 4.

Several observations are made. When comparing MSEM with SEM ignoring
the nested structure, the reduction of chi-square is large (∆χ2 = 518) when com-
pared to the loss of degrees of freedom (∆df = 70). Although the formal chi-square
difference test is not appropriate in testing their significance, it is not difficult to
see that MSEM fits better than SEM ignoring the nested structure by checking
their chi-squares and other goodness-of-fit indexes.
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TABLE 3
Pooled Within-Sample and Between-Sample Correlation Matrices of the Variables

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14

V1 0.530 0.602 –0.053 –0.052 0.031 0.242 0.431 0.113 0.196 0.189 –0.291 0.030 0.503
V2 0.260 0.448 –0.182 –0.192 0.518 0.379 0.547 –0.110 –0.072 0.101 0.125 0.208 0.602
V3 0.208 0.346 0.132 0.212 0.130 0.638 0.639 0.303 0.444 0.108 –0.150 0.232 0.244
V4 0.092 0.157 0.310 0.608 0.274 0.055 –0.315 –0.161 0.147 –0.201 –0.305 0.233 –0.182
V5 0.044 0.128 0.203 0.339 0.171 0.197 –0.128 0.172 0.147 –0.137 –0.276 –0.077 –0.118
V6 –0.007 0.116 0.105 0.146 0.272 0.151 0.101 –0.288 –0.220 –0.078 0.185 0.224 0.271
V7 0.156 0.060 0.156 0.269 0.261 0.161 0.823 0.406 0.687 0.334 0.212 –0.114 0.164
V8 0.159 0.042 0.151 0.232 0.201 0.158 0.613 0.377 0.581 0.409 0.141 –0.006 0.342
V9 0.023 –0.012 0.082 0.095 0.104 –0.003 0.073 0.090 0.601 0.477 0.198 –0.226 –0.206
V10 0.043 –0.022 0.079 0.106 0.084 0.004 0.138 0.153 0.503 0.556 0.017 –0.131 –0.128
V11 –0.014 –0.090 –0.057 0.027 0.042 –0.009 0.084 0.081 0.259 0.369 0.266 –0.051 0.127
V12 0.001 0.015 –0.006 –0.025 –0.037 0.023 0.010 –0.003 –0.101 –0.081 –0.065 –0.208 –0.207
V13 –0.036 0.042 0.059 0.014 –0.010 0.044 –0.026 –0.037 –0.157 –0.302 –0.295 0.095 0.162
V14 0.106 0.057 0.029 –0.040 –0.050 –0.003 0.021 0.023 –0.043 –0.092 –0.109 0.055 0.200
WS 0.693 0.734 0.859 0.645 0.843 1.022 0.825 0.841 1.006 0.914 1.201 1.093 0.97 0.936
BS 4.456 9.164 9.378 4.117 6.086 5.711 4.919 5.747 6.921 5.911 5.813 4.208 5.164 8.886

Note. The lower and upper matrices are the pooled within-sample and between-sample correlation matrices, respectively. WS and BS stand for the pooled
within-sample and between-sample standard deviations, respectively.



Second, the parameter estimates for the pooled within sample and between
sample are not necessarily the same. For instance, v13 (likely to find another job)
and v14 (worry of losing job) are good indicators for the intention to quit at the in-
dividual level, but they are not good indicators at the country level, as they are not
statistically significant. Indeed, the construct of intention to quit is problematic at
the country level as none of its indicators are significant. This provides some indi-
cation to further investigate the applicability of intention to quit at the country
level. The negative relation between organizational commitment and intention to
quit at the individual level suggests that people with higher organizational commit-
ment are less likely to quit their jobs. However, this relation does not hold at the
country level. On the other hand, the relation between job prospects and citizen-
ship behaviors is stronger at the country level than at the individual level. There-
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TABLE 4
Parameter Estimates and Their Standard Errors of MSEM

MSEM (Within) MSEM (Between)

Factor loadings
V1, F1 0.243 (0.007) 0.120 (0.035)
V2, F1 0.385 (0.008) 0.270 (0.071)
V3, F1 0.581 (0.010) 0.316 (0.070)
V4, F2 0.386 (0.007) 0.171 (0.024)
V5, F2 0.485 (0.009) 0.155 (0.046)
V6, F2 0.349 (0.010) 0.063b (0.047)
V7, F3 0.688 (0.009) 0.169 (0.033)
V8, F3 0.619 (0.009) 0.240 (0.034)
V9, F4 1.000a 1.000a

V10, F4 1.286 (0.027) 1.420 (0.379)
V11, F4 0.937 (0.021) 0.780 (0.312)
V12, F5 1.000a 1.000a

V13, F5 4.220 (0.352) –1.150b (1.413)
V14, F5 1.522 (0.121) –1.933b (2.364)

Structural paths
F4, F1 –0.033 (0.010) –0.118b (0.076)
F4, F2 0.073 (0.013) 0.098 (0.045)
F4, F3 0.090 (0.009) 0.226 (0.096)
F5, F4 –0.142 (0.012) 0.091b (0.158)

Factor correlations
F2, F1 .554 (0.013) –.003b (0.226)
F3, F1 .270 (0.012) .776 (0.114)
F3, F2 .534 (0.011) –.325b (0.180)

Note. N = 15,217.
aThey are fixed as 1.00 for identification purpose. bThey are not statistically significant at p < .05;

all other parameter estimates are significant at p < .05.



fore, SEM ignoring nested nature may give incorrect substantive interpretations
concerning the relations among these constructs.

Results: Effects of Sample Size

The goodness-of-fit indexes of the models with different sample sizes are shown in
Table 5. First, as expected, the χ2 test statistics are directly related to sample size.
The differences between small individual-level sample size (N = 50 per country)
and large individual-level sample size (N = 500 per country) in terms of good-
ness-of-fit indexes are not large. What is interesting is that the sample size per
country can be as small as 50, yet the results are still comparable with other large
sample size conditions.

Second, the patterns of the goodness-of-fit indexes across group sizes suggest
that MSEM is better suited when the individual-level sample size increases. One
speculation is that the model fit depends on the between and within models. When
the individual-level sample size increases, the within model becomes more stable
and fits better. Thus, the overall model fit also increases.

Third, by comparing the goodness-of-fit indexes across different sample sizes
per country, they suggest that CFI and RMSEA are insensitive to the sample sizes
used, whereas NFI is relatively insensitive to the sample size. However, before
concluding that CFI, RMSEA, and NFI can be routinely used in MSEM with small
group sizes, more empirical studies are required. Moreover, there are one or two
inadmissible estimates (negative variance of the error terms) in the be-
tween-structure model, whereas there is no inadmissible estimate in the
within-structure model in all sample sizes. The inadmissible estimates in the be-
tween-structure model are likely due to the small group sizes (Hox & Maas, 2001).
It seems that increasing individual-level sample size may not help much in pre-
venting inadmissible estimates at the group level.
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TABLE 5
Goodness-of-Fit Indexes of the Resampling Results

Sample Size
per Country

Total
Sample Size χ2 CFI NFI RMSEA

50 1,350 393 0.91 0.87 0.037
100 2,700 679 0.90 0.89 0.038
200 5,396 1,078 0.91 0.90 0.036
300 7,827 1,546 0.91 0.90 0.036
400 10,186 1,932 0.91 0.91 0.035
500 11,898 2,206 0.91 0.91 0.035

Note. The degrees of freedom of the models are 140 and all the χ2 are significant at p < .001. CFI =
Comparative Fit Index; NFI = Normed Fit Index; RMSEA = Root Mean Squared Error of Approxima-
tion.
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TABLE 6
Parameter Estimates (and Their Standard Errors) of the Pooled-Within Model

Sample Size Per Group 50 100 200 300 400 500

Factor loadings
V1, F1 0.220

(0.024)
0.247

(0.017)
0.220

(0.012)
0.251

(0.010)
0.240

(0.009)
0.239

(0.008)
V2, F1 0.321

(0.025)
0.366

(0.018)
0.360

(0.013)
0.372

(0.011)
0.366

(0.010)
0.369

(0.009)
V3, F1 0.627

(0.038)
0.580

(0.024)
0.582

(0.018)
0.580

(0.014)
0.583

(0.013)
0.591

(0.012)
V4, F2 0.410

(0.022)
0.398

(0.016)
0.422

(0.011)
0.410

(0.009)
0.409

(0.008)
0.398

(0.007)
V5, F2 0.528

(0.029)
0.500

(0.021)
0.514

(0.014)
0.505

(0.012)
0.501(
0.010)

0.496
(0.010)

V6, F2 0.366
(0.034)

0.393
(0.024)

0.375
(0.017)

0.383
(0.014)

0.363
(0.012)

0.365
(0.011)

V7, F3 0.716
(0.028)

0.658
(0.020)

0.722
(0.015)

0.689
(0.012)

0.685
(0.010)

0.684
(0.010)

V8, F3 0.607
(0.027)

0.597
(0.020)

0.603
(0.014)

0.594
(0.011)

0.602
(0.010)

0.617
(0.009)

V9, F4 1.000a 1.000a 1.000a 1.000a 1.000a 1.000a

V10, F4 1.376
(0.103)

1.204
(0.058)

1.317
(0.048)

1.307
(0.038)

1.287
(0.032)

1.278
(0.030)

V11, F4 0.769
(0.066)

0.796
(0.044)

0.905
(0.035)

0.896
(0.028)

0.884
(0.024)

0.892
(0.023)

V12, F5 1.000a 1.000a 1.000a 1.000a 1.000a 1.000a

V13, F5 7.705
(3.181)

3.637
(0.603)

4.482
(0.675)

4.187
(0.512)

4.237
(0.447)

4.279
(0.424)

V14, F5 2.445
(0.919)

1.863
(0.293)

1.570
(0.210)

1.571
(0.182)

1.642
(0.164)

1.687
(0.159)

Structural paths
F4, F1 –0.035b

(0.034)
0.008b

(0.028)
–0.065
(0.019)

–0.049
(0.015)

–0.047
(0.014)

–0.038
(0.012)

F4, F2 0.029b

(0.040)
0.003b

(0.034)
0.125

(0.023)
0.077

(0.019)
0.081

(0.017)
0.071

(0.016)
F4, F3 0.133

(0.029)
0.120

(0.024)
0.074

(0.015)
0.104

(0.013)
0.101

(0.012)
0.105

(0.011)
F5, F4 –0.073

(0.030)
–0.142
(0.024)

–0.121
(0.018)

–0.130
(0.016)

–0.128
(0.014)

–0.128
(0.013)

Factor correlations
F2, F1 0.577

(0.043)
0.584

(0.031)
0.601

(0.022)
0.584

(0.018)
0.597

(0.016)
0.577

(0.015)
F3, F1 0.339

(0.038)
0.345

(0.028)
0.294

(0.020)
0.311

(0.016)
0.305

(0.014)
0.300

(0.013)
F3, F2 0.538

(0.035)
0.561

(0.026)
0.543

(0.018)
0.567

(0.015)
0.566

(0.013)
0.559

(0.012)

aThey are fixed as 1.00 for identification purposes. bThey are not statistically significant at p < .05;
all other parameter estimates are significant.
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TABLE 7
Parameter Estimates (and Their Standard Errors) of the Between Model

Sample Size per Group 50 100 200 300 400 500

Factor loadings
V1, F1 0.037

(0.014)
0.054

(0.016)
0.075

(0.022)
0.096

(0.026)
0.101

(0.028)
0.104

(0.029)
V2, F1 0.045b

(0.026)
0.092

(0.033)
0.110

(0.046)
0.128

(0.055)
0.132

(0.061)
0.146

(0.065)
V3, F1 0.126

(0.025)
0.142

(0.033)
0.229

(0.041)
0.287

(0.050)
0.336

(0.056)
0.362

(0.051)
V4, F2 0.049

(0.009)
0.078

(0.012)
0.111

(0.026)
0.139

(0.020)
0.155

(0.022)
0.125

(0.041)
V5, F2 0.028b

(0.015)
0.067

(0.019)
0.092

(0.034)
0.115

(0.035)
0.136

(0.041)
0.181

(0.060)
V6, F2 0.015

(0.021)
0.025b

(0.023)
0.050b

(0.037)
0.059

(0.038)
0.059

(0.043)
0.072

(0.051)
V7, F3 0.043

(0.011)
0.073

(0.016)
0.102

(0.022)
0.108

(0.025)
0.132

(0.029)
0.172

(0.029)
V8, F3 0.075

(0.013)
0.113

(0.017)
0.151

(0.022)
0.171

(0.025)
0.197

(0.030)
0.183

(0.036)
V9, F4 1.000a 1.000a 1.000a 1.000a 1.000a 1.000a

V10, F4 0.898
(0.352)

1.010
(0.372)

0.944
(0.269)

0.717
(0.215)

1.227
(0.322)

1.040
(0.280)

V11, F4 1.085
(0.414)

0.802
(0.345)

0.818
(0.273)

0.662
(0.229)

0.661
(0.287)

0.674
(0.245)

V12, F5 1.000a 1.000a 1.000a 1.000a 1.000a 1.000a

V13, F5 –0.977b

(1.037)
–0.039b

(0.292)
–0.348b

(0.625)
–1.008b

(0.853)
–1.137b

(1.082)
–1.171b

(1.161)
V14, F5 –5.050b

(8.897)
–0.346b

(0.497)
–1.295b

(1.701)
–1.561b

(1.328)
–2.553b

(2.565)
–1.823b

(1.804)
Structural paths

F4, F1 0.009b

(0.031)
–0.034b

(0.031)
–0.031b

(0.052)
–0.034b

(0.064)
–0.027b

(0.048)
–0.021b

(0.050)
F4, F2 0.014b

(0.026)
0.016b

(0.021)
0.040b

(0.039)
0.028b

(0.048)
0.069b

(0.040)
–0.006b

(0.040)
F4, F3 0.030

(0.038)
0.080

(0.037)
0.127

(0.062)
0.144

(0.073)
0.138

(0.065)
0.169

(0.066)
F5, F4 0.038

(0.119)
0.550b

(0.290)
0.220b

(0.211)
0.176b

(0.149)
0.112b

(0.147)
0.123

(0.145)
Factor correlations

F2, F1 0.062b

(0.234)
0.185b

(0.233)
0.152b

(0.216)
0.113b

(0.206)
0.176b

(0.196)
0.350b

(0.207)
F3, F1 0.707

(0.153)
0.614

(0.166)
0.702

(0.127)
0.672

(0.129)
0.657

(0.133)
0.680

(0.120)
F3, F2 –0.454

(0.217)
–0.218b

(0.210)
–0.327b

(0.201)
–0.369
(0.178)

–0.306
(0.186)b

0.213b

(0.234)

aThey are fixed as 1.00 for identification purposes. bThey are not statistically significant at p < .05;
all other parameter estimates are significant.



The parameter estimates and their standard errors for the pooled-within and be-
tween models are shown in Tables 6 and 7. When comparing the parameter esti-
mates and their standard errors for the pooled-within model in Table 6, several re-
sults are observed. First, the parameter estimates of the pooled-within analysis are
quite comparable with each other even when the sample size is small (N = 50 per
country). There are only a few discrepancies across the sample sizes. For instance,
the structural paths from job security (F1) to organizational commitment (F4) and
job nature (F2) to organizational commitment (F4) are nonsignificant at N = 50
and N = 100 per group but are all significant at N ≥ 200. This indicates that large in-
dividual-level sample size is still preferable even though other goodness-of-fit in-
dexes are similar. The standard errors of the parameter estimates are also consis-
tently smaller when the sample sizes get larger.

For the parameter estimates and their standard errors in the between-group
analysis in Table 7, no consistent pattern emerges when increasing the individ-
ual-level sample sizes. Some parameter estimates, for instance, (v1, F1) and (v2,
F1), turn out to be larger when the sample size per group increases, whereas other
parameter estimates, for instance, (v11, F4), become smaller when the sample size
per group increases. The increase of Level 1 sample sizes can have different effects
on the parameter estimates and standard errors on Level 2.

SUMMARY AND DISCUSSION

By using the data from ISSP (1997), we showed how B. O. Muthén’s (1989, 1994)
procedure could be applied in EQS for analyzing multilevel data. We demonstrated
that MSEM can be used to analyze a cross-cultural data set when the group-level
sample size is relatively small. It may also be useful in such a situation for other
kinds of groups, such as school districts and training programs. Further analysis re-
sulted in an observation concerning application. With respect to model fit, parame-
ter estimates, and their standard errors at the individual level, the required sample
sizes for individual level need not be very large. The model fit of sample sizes of
100 or even 50 per country is quite comparable with 500 or even more per country.
Consistent with statistical theory, of course, larger sample sizes still result in
smaller standard errors at the individual level.

One important finding is that using different individual-level sample sizes has a
nonsystematic impact on the parameter estimates and their standard errors at the
group level. In other words, increasing the individual-level sample size does not
necessarily benefit the parameter estimates and their standard errors at the group
level. Hence, researchers should not increase sample sizes at the individual level
and hope that they can help the estimates at the group level. The current findings
indicate that statistical inferences at the individual level for MSEM are quite good
even with a small number of countries. However, it is not clear whether statistical
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inferences at the group level can be drawn properly in cross-cultural research when
a small number of countries are used.

Although it may not be possible to increase the number of countries in
cross-cultural research, one possible resolution might be to increase the
group-level sample size by using regions instead of countries as the sampling unit.
As suggested by Au (1999; Au & Cheung, 2005) and others, people differ consid-
erably within one country and this difference varies from city to city (or region to
region) within the same country. Thus, it may be more theoretically and practically
appealing to define cities (or regions) as the group level unit for cross-cultural
research.

Before concluding, one limitation of this study should be addressed. Because
the data set was based on a large-scale study collaborated on by researchers in dif-
ferent countries, the resultant individual-level sample sizes were varied. As sug-
gested by Hox and Maas (2001), unbalanced sample sizes may also influence the
performance of MSEM. Further studies are required to clarify the unbalanced sam-
ple size issues in cross-cultural research.

All in all, MSEM is a powerful tool for the study of cross-cultural research. It
provides superior estimation to other models that ignore the nested data nature, and
it requires only simple programming in common SEM packages. Even though the
group-level sample size issue needs further investigation, MSEM is still a viable
tool that will hopefully become more popular for testing complex multilevel mod-
els and theories in cross-cultural research.
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