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ABSTRACT 

 

This study addresses the problems of Hong Kong construction industry’s 

labour-intensive nature, examines the possibility of using advanced construction 

technologies to solve this problem and identifies the barriers to the use of these 

technologies. 

 

Hong Kong construction industry is often regarded as a labour-intensive industry and 

it has been underachieving, but no research has been done on proving this statement. 

Therefore, a Cobb-Douglas Production Function is applied to find out the ratio of 

labour input and capital input so as to determine the factor intensity of local 

construction industry. The result affirms the labour-intensive nature of the industry. 

This Production Function is also used to calculate the value added total factor 

productivity (VATFP) growths of the construction industry. It is observed that the 

VATFPs of the industry have sustained positive growth in the period 1985-2002. The 

above two findings imply that even there are technical changes, the construction 

industry still relies on plenty of labour resources to increase productivity. 

 

Contractors refuse to use advanced construction technologies because they think they 

are white elephants. Four advanced construction technologies are studied and the 

economic analyses show that they can offer users tangible benefits like enhancement 

in productivity and reduction in cost, as well as intangible benefits like improvement 

in quality and safer work environment. Contractors are not interested in these 

technologies because they cannot utilize them frequently, which can result in negative 

return. Other obstacles to the use of advanced technologies are identified, they are: 

lack of client’s motivation, financial constraint, project timeframe, labour’s 

incapability and lack of knowledge sharing in the industry. As a result, it is 

recommended that the government should allocate more resources on training and 

R&D to initiate other practitioners to develop and adopt advanced technologies.
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1 INTRODUCTION 

 

In terms of construction spending per capita Hong Kong was ranked 9th in 1998 after 

Japan and Singapore within Asia, with Japan leading at US$4,975 (Bon & 

Crosthwaite 2000). Over the years, the total construction market expanded by about 

half, in real terms, in 1996 when compared with 1990 (AsiaConstruct Team 2003, 

p.19). Unfortunately, the completion of the Hong Kong International Airport and its 

related facilities, and the Asia Financial Crisis in 1997 doomed the construction 

industry in Hong Kong. The total value of construction works has followed a 

downward trend1since then. 

 

Although the construction sector accounted for only 4.4% of the Gross Domestic 

Product (GDP) of Hong Kong in 2002 (Census and Statistics Department 2004c), 

practically other sectors of the economy like tourist industry, manufacturing industry, 

financing and real estate services, community services, etc. all depend on the 

construction sector to accommodate their needs for growth and expansion (Voon & 

Ho 1998). Actually, the construction industry interacts with other industries to form a 

basis for establishing our society. Therefore, the construction industry plays an 

important role in Hong Kong’s economy and its significance cannot be neglected 

despite of its relatively small share in GDP. 

 

However, there are many shortcomings in the industry’s operations and in the quality 

of its products. As identified by CIRC (2001), local construction activities are 

labour-intensive, dangerous and polluting; built products are often defective; high 

construction costs; practitioners are lack of long-term view on business development 

and the industry is lack of adoption of new technologies to cope with new challenges. 

In addition, productivity growth of the construction industry has been declining. As a 

                                                
1 This trend is deduced from Census and Statistics Department (2004c). 
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result, one of the CIRC’s recommendations to the industry is to use more modern 

construction methods and techniques as well as information technology (IT) so as to 

enhance efficiency and productivity.  

 

Then why the industry is short of such new technologies and practices? Are they too 

costly to adopt? Are their advantages overestimated? By understanding more about 

new construction practices and technologies and the actual benefits they bring to the 

users, some insights to the current technology adoption situation in the industry can be 

provided. It is the main theme of this study to investigate the feasibility of adoption of 

modern construction methods and techniques and the reasons for the unpopularity of 

such new methods and techniques in the industry. Before that, two things about local 

construction industry have to find out. 

 

Firstly, it is necessary to show that local construction industry is labour-intensive; 

otherwise, the recommendation of the adoption of new technologies could be 

inappropriate if the industry is actually capital-intensive. 

 

Secondly, the examination of the growth of productivity of the construction industry is 

essential because it is used for the formulation of strategies for, and the evaluation of 

the effectiveness of, productivity improvement policies and programmes (Chau and 

Walker 1988). Enhancing productivity is one of the means to achieve economics 

growth and higher living standard in a society. It can also give some implications on 

the effect of technical changes on the industry. 

 

1.1 Objectives of This Study 

 

1. To use a scientific approach to determine the labour-intensity of Hong Kong 

construction industry. 

2. To calculate the productivity growth in local construction industry. 
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3. To analyse new construction practices and technologies to ascertain their 

economic feasibility and benefits to user. 

4. To investigate and explain the phenomenon of slow spreading of new construction 

practices and technologies in the industry. 

5. To propose methods to accelerate the adoption of new construction practices and 

technologies in the industry. 

 

1.2 Hypotheses of This Study 

 

1. Hong Kong construction industry is labour-intensive. 

2. Labour is difficult to be substituted by capital or other factors in construction 

industry. 

3. Decline in productivity in construction industry is due to the low quality of labour 

(lack of general knowledge) and poor project management. 

4. The benefits brought by most advanced construction technologies or practices to 

users cannot compensate for the cost of using these technologies or practices. 

Thus they are unpopular as they are not worthwhile to adopt. 

 

1.3 Structure of This Study 

 

This research will start by reviewing concepts and theories concerning factor intensity. 

Literature on labour utilization of the construction industry will be covered. Theories 

on productivity and methods of calculating productivity will also be studied. 

Afterwards, literature on advanced construction technologies and practices will be 

reviewed. All these aim at providing a theoretical base for the methodology section. 

The results obtained from the methodology section will then be analysed and 

discussed; recommendations will be made too. Finally, conclusions will be drawn.
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2 FACTORS OF PRODUCTION IN HONG KONG 

CONSTRUCTION INDUSTRY 

 

2.1 Introduction 

 

Every production process is concerned with transforming inputs into outputs using the 

resources at the command of each firm. Economists group the inputs used into three 

main categories: labour, which encompasses all working people, ranging from the 

most unskilled labour to the most highly trained professionals; capital, which includes 

all the manufactured inputs into the production process, such as machinery, partly 

finished goods and factories; and land, which encompasses all the natural resources 

used in production, including non-renewable resources such as fossil fuels, renewable 

resources such as trees, and the land itself (Cooke 1996, p.109). Collectively, these 

three resources are known as factors of production. That is, annual output depends on 

the input quantities of these productive factors in the same year; and the quantity 

produced reflects the productive powers and capacity of these factors (Ive and 

Gruneberg 2000, p.13). 

 

Labour and capital are often the main concerns in literature related to economic 

analyses of the production processes in construction industry (Cooke 1996; Ganesan 

et al. 1996; Chiang et al. 1998; Voon and Ho 1998; Ganesan 2000; Ive and Gruneberg 

2000). As stated by Ive and Gruneberg (2000, p.73), in order to work out the 

production function of the construction industry, it is important to obtain the ratios of 

output to labour as a measure of productivity and capital to labour, which can be used 

to compare the capital intensities of various industries. Therefore, labour and capital 

are focused in this literature research. 
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2.2 Labour 

 

2.2.1 Concept of labour 

 

Labour is any kind of human effort that inputs to a production system. Such effort 

may be manual or mental, skilled or unskilled. The labour force refers to the 

land-based non-institutional population aged 15 and over who satisfies the criteria for 

inclusion in the employed population or the unemployed population (Census and 

Statistics Department 2004b).  

 

In construction industry, the workforce (particularly foreman and craftsman), that 

through their skills and efforts, working individually or in crews directed by foreman 

or project manager, transform the directions depicted in plans and specifications into 

reality. Therefore, labour is an important input in any construction processes. Labour 

market is distinct from other markets where goods (i.e. labour) are only hired; 

ownership of goods is not transferred. Construction labour market is about the hiring 

of services carried out by people on a variety of tasks, undertaken in the course of a 

construction project. 

 

2.2.2 The demand for labour in construction industry 

 

Demand reflects the marginal value the consumer places on a unit of a good or service 

(Lai and Yu 2003, p.53). Thus, demand for labour is derived from the demand of its 

product and its marginal schedule - the lower the price of an input; the larger the 

amount of that input is demanded. Labour is not wanted for its own sake but only in 

response to demand for the products or services it ultimately provides. 

 

Labour demand also depends greatly on amount, quality, type of other jointly used 

inputs and the ability to substitute among factors which is the replacement of one 
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factor of production by another in the process of production. Ive and Gruneberg (2000, 

p.34) suggest that the number of people employed depends on the technology used 

and the rate of pay (including the indirect costs of employment). When more 

technologies are used in a production process the less labour is required in order to 

produce a given output. When wages are relatively high firms tend to adopt more 

technologies to increase the productivity of labour. An increase in work loads can be 

met through the greater use of plant and machinery, rather than by employing more 

people. On the other hand, when wages are low the incentive to substitute labour with 

technologies is reduced and demand for labour is more responsive to changes in the 

work load of firms. 

 

2.2.3 The supply of labour in construction industry 

 

The supply of labour depends on the number of people with a particular type and level 

of skill, experience and training, who are willing and able to offer themselves for hire 

in return for a given contract of employment. The effective supply of labour at a 

certain wage is comprised of those workers who are willing and able to offer firms the 

current average or marginal productivity of existing workers employed at similar 

wages (Ive and Gruneberg 2000, p.33). Bargaining for a specific employment package 

by specific job seekers is a typical method applied by the employers to detect the 

minimum amount of value or cost the labour are prepared to give up for their services 

at a given time for a certain wage (Lai and Yu 2003, p.58). 

 

Labour supply also depends on factors such as population, age and sex distribution, 

but these demographic issues are out of the scope of this study. 

 

2.2.4 Labour wage and employment situation 

 

Labour Cost Index (LCI) complied by the Architectural Services Department (ASD) 
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is a weighted average of the daily wages of different types of construction workers 

such as labourers, carpenters, concretors and scaffolders (Chau 1998). Therefore, the 

LCI reflects the labour wage trend of local construction industry. From Figure 2.1, it 

shows that there was a continuous rise in labour wages starting from 1994, and this 

growth has finally leveled off since 2000. 

 

 Figure 2.1 Labour Cost Index2 
 

Different kinds of construction works were carried out in the territory at early 90s, for 

example, the development of the Hong Kong International Airport in Chek Lap Kok 

and related infrastructure, port expansion, reclamation and many residential building 

projects. Consequently, lots of construction workers and professionals were required. 

Voon and Ho (1998) identify there has been a shortage in construction labour in Hong 

Kong since 1987. They list out three main reasons for this shortage: 

 

1. Uncertainty of employment; 

2. Unattractiveness of working conditions; and 

3. Strong competition from other industries which provide more stable and better 

working conditions. 

                                                
2 Architectural Services Department (2004) 
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Under such circumstances, as the supply of labour were quite inelastic at that time 

while there was increasing demand for construction workers due to a surge in 

construction output, construction labour wages went up.  

 

Following the accomplishment of major infrastructure projects, the shrinkage of local 

real estate market after the financial turmoil and the cessation of production of Home 

Ownership Scheme (HOS) flats, the ratio of construction employment to active labour 

force has been decreased, as shown by the declining trend in Table 2.1. When the 

labour shortage problem was relieved, the wage level stopped rising. 

  

 % 

Industry sector 1998 2002 2003 

Manufacturing 8.5 6.0 5.4 

Construction 10.2 9.1 8.6 

Restaurants & hotels 6.9 6.7 6.3 

Financing, insurance, real estate and business services 13.7 15.1 15.1 

Total employment (‘000) 3127.2 3235.2 3222.6 

Table 2.1   Employment distribution by industry sector3 

 

Despite of this, a large number of people still work in this sector in Hong Kong.  

Hong Kong construction industry employed about 277,000 people in 2003, which was 

8.6% of the total workforce4. This employment distribution was greater than that of 

restaurants and hotels sector (6.3%) and that of manufacturing sector (5.4%) in the 

same year5. In fact, from 1998 to 2003, the employment distribution of construction 

industry was always greater than those of the above mentioned sectors (Table 2.1). 

Moreover, manpower requirement in construction is projected to be 307,600 people in 

2007 (Education and Manpower Bureau 2003), which accounts for 9.5% of the total 

working population at that time. All these figures reflect the rising trend of the number 

of people engaged in construction industry in Hong Kong. 

                                                
3 Census and Statistics Department (2004e) 
4 ibid. 
5 ibid. 
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2.2.5 The significance of labour cost in a construction project 

 

Ganesan et al. (1996, p.49) estimate that the breakdown of total construction 

expenditure is approximately materials 35%, labour and plant 45%, and overheads 

and profit 20%. Total expenditure in this context covers building and civil engineering 

projects, and these percentages may vary significantly from one project to another 

especially in the civil engineering sector. Voon and Ho (1998) say that a typical 

building contract has 40% labour while a typical civil engineering contract has 20% 

labour. CIRC (2001)’s benchmark study on the construction cost of building projects 

in Hong Kong reveals that the average labour component costs in normal building 

projects are 25% of the total construction costs Hong Kong while they are, 20% and 

40% in Singapore and the USA respectively. This shows that the labour cost input of 

a building project is relatively higher in Hong Kong as compared to Singapore but 

lower than that in the USA. 

 

Though the figures provided by the above authors are different as they were 

calculated in different periods, one implication they give is that labour contributes to a 

substantial amount of cost in a construction project, irrespective of the type of work. 

 

2.3 Capital 

 

2.3.1 Concept of capital 

 

Capital refers to all man-made resources used for further production, which includes 

buildings, plant and equipment, and stocks of materials. The quality and quantity of 

capital influence not only the productivity of capital but also that of labour and total 

output (Kulshreshtha and Malhotra 1998). When we talk about productivity in 

construction, capital often refers to the amount of technologies adopted in a 

construction process because other elements such as buildings or stocks of materials 
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owned by contractors do not have a direct impact on construction productivity on site. 

 

Unlike labour, capital will depreciate over time. Depreciation measures the loss in 

value of a capital good as it ages. A capital good will also experience efficiency 

decline, which reflects the loss of productive services that can be drawn from itself 

(Schreyer 2001, p.53). 

 

2.3.2 The demand for capital in construction industry 

 

Similar to labour, the demand for construction plant is derived from the demand for its 

products and services it ultimately provides. In addition, spending on capital goods 

like construction plant often requires large monetary outlays with profits dependent on 

the flow of future revenues and costs. Because of the magnitude of the funds required, 

investment spending tends to be influenced by interest rate (Bumas 1999, p.421) and 

the financial capacity of the investors. 

 

Contractors in Hong Kong are reluctant to purchase sporadically used plant since it is 

difficult to amortise the investments involved. They tend to hire them. On the other 

hand, plant that are frequently specified by contracts such as air compressors and 

concrete pumps have high utilization rates and justify direct purchases by local 

contractors (Ganesan et al. 1996, p.52). The nature and volume of work dictate the 

type and capacity of plant purchased by a firm. 

 

2.3.3 The supply of capital in construction industry 

 

Most construction plant and technologies in Hong Kong are acquired from overseas 

(Chau and Walker 1988; Ganesan et al. 1996; AsiaConstruct Team 2003). These plant 

and technologies are either directly owned by the contractors or on short term hire 

(Ganesan et al. 1996, p.53). In most cases, local contractors own only the most 
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commonly-used plant, such as tower cranes and hoists, in order to increase utilization 

rates and reduce unit costs. 

 

Contractors may also invest in research and development (R&D) activities to look for 

new technologies. However, as reported by both CIRC (2001) and AsiaConstruct 

Team (2003), Hong Kong construction industry’s undertaking in R&D is low, which 

means practitioners seldom invent or improve construction technologies. 

 

2.4 Factor Intensity 

 

After making a brief review of the factors of production: labour and capital, then we 

concern which factor is more commonly used in the construction process. To look for 

the answer, the concept of factor intensity will help. 

 

2.4.1 Concept of factor intensity 

 

Factor intensity is the proportion of a factor used in the production of any one final 

good. In economics, the concept of factor intensity tells us that in order to rank 

commodities, what is important is the proportion in which labour and capital are used, 

not their absolute quantities (Chacholiades 1990, p.67). Therefore, it is necessary to 

find out the labour and capital ratio before drawing any conclusion on factor intensity 

matters, e.g. labour intensity of an industry. 

 

2.4.2 Labour utilization and capital utilization in local construction industry 

 

Many construction activities still depend heavily on skilled and unskilled labour. 

Ganesan et al. (1996, p.42) and Chiang et al. (1998) identify several labour-intensive 

construction activities such as concreting, steel fixing, carpentry, rendering, planting, 

acoustical ceiling work, pipe work, etc. Thus, it is not surprising to find so many 
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people involve in the construction industry as mentioned in Section 2.2.4. In addition, 

various kinds of labour are employed; usually referred to as building trades, e.g. 

concretor, steel bender, plumber, painter, electrical and mechanical (E&M) workers 

and so on. Most of them are construction site workers, the remaining are the 

managerial, administrative and professional workforce, such as project managers and 

surveyors. 

 

Hong Kong’s civil engineering industry is more mechanized than its building 

construction counterpart. Expenditure on plant in the building sector is less since 

labour has been comparatively more plentiful and economical in Hong Kong 

(Ganesan et al. 1996, p.52). Because of the large-scale nature and special 

requirements of civil engineering projects, it favours the use of construction 

machinery. According to Chau and Lai (1994), the use of plant and machinery 

becomes more common and labour productivity has been improved through 

substitution of capital for labour, though the process is slow. 

 

2.4.3 Is Hong Kong’s construction industry really labour-intensive? 

 

Construction industry in Hong Kong is considered labour-intensive by many 

researchers (Rowlinson and Walker 1995; Ganesan et al. 1996; Chiang et al. 1998; 

Voon and Ho 1998; CIRC 2001; AsiaConstruct Team 2003). Although the above 

authors think that construction industry is labour-intensive, they do not provide any 

verification of the industry’s labour intensity. One can thus argue that when more 

construction technologies are adopted nowadays, is the construction industry still 

labour-intensive?  

 

The definition of factor intensity tells us that only labour-capital ratio genuinely 

reflects one factor’s intensity, not its absolute quantity. Therefore, a large number of 

labour involved in construction industry does not necessary mean that the industry is 
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labour-intensive in nature. Chacholiades (1990, p.67) provides a meaning for 

“labour-intensive” when explaining the Heckscher-Ohlin Model in macroeconomics. 

Take labour-capital ratio as an example. The labour-capital ratio is the quantity of 

labour required to produce one commodity divided by the quantity of capital required 

to produce that commodity. Larger labour-capital ratio means more labour-intensive, 

and vice versa; but with a larger number of labour does not mean that an industry is 

more labour-intensive than that one with less labour. 

 

No doubt statistics demonstrate that lots of people work in the construction sector and 

there is a wide range of labour involved, it is risky to conclude that construction is 

labour-intensive in nature merely based on these two findings, without considering 

capital inputs which is crucial for the determination of factor intensity. Although one 

can easily anticipate that the construction industry is labour-intensive with one’s 

experience and observations, it should be more cautious in doing scientific research as 

any subsequent interpretations or recommendations are likely to be faulty if a wrong 

analysis of the construction industry is made at the very beginning. As a result, more 

appropriate methods will be introduced for analyzing the labour intensity of the 

construction industry in next chapter. 

 

2.5 Summary 

 

In construction industry, we usually concern two factors of production - labour and 

capital. They are the major inputs to a production system. It is believed that labour is 

utilized more than capital throughout the construction process. However, it does not 

necessarily mean that construction industry is labour-intensive. Economic theory tells 

us that factor intensity is judged by labour-capital ratio, not by absolute quantities; as 

a result, we have to prove that construction industry is labour-intensive before doing 

any further analyses of the industry. 
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3 PRODUCTIVITY AND PRODUCTION FUNCTION 

 

3.1 Introduction 

 

When we describe how “advance” an industry is, we usually refer to its productivity. 

Productivity plays a crucial role in determining the level and rate of profitability 

(Savidis and Mills 2001). Economists calculate the productivity of an industry with 

the aid of production functions to examine the technological change in that industry. A 

production function can also serve as a mean to reflect the factor intensity of an 

industry. Before we go on to introduce production function, it is necessary to 

understand the concept of productivity first. 

 

3.2 Productivity 

 

3.2.1 Definitions of productivity 

 

The Organization for European Economic Cooperation (OEEC) (1950) issues a 

formal definition for productivity: the quotient obtained by dividing output by one of 

the factors of production. In this way it is possible to speak of the productivity of 

capital, investment, or raw materials, according to whether output is being considered 

in relation to capital, investment or raw materials, etc. Edison (1999) defines 

productivity as an all embracing term which refers to the overall net yield of goods 

and services during a specified period, achieved with a given volume of resources. Ive 

and Gruneberg (2000, p.61) define productivity as the quantity of output per unit of 

labour in a given period of work and the output can be measured in terms of the 

physical units produced. Schwartzkopf (2004, p.5) defines it as the units of work 

accomplished for the units of labour expended and hence the author expresses 

productivity in the following formula:  
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Labour productivity= outputs/labour  [3.1] 

 

Ganesan (1984) and Ganesan et al. (1996, p.5) also adopt the same formula in 

calculating labour productivity. Output for any year may be taken as Gross Domestic 

Fixed Capital Formation; input is labour in man-years.  

 

It seems that there are many versions of the definitions of productivity; however, the 

concept behind is the same, i.e. the ratio of output to critical input, holding other 

inputs constant. Olomolaiye et al. (1998, p.3) suggest that no matter which definition 

is used, it should bring out three distinct concepts; they are:  

 

(i) the capacity to produce,  

(ii) effectiveness of productive effort and  

(iii) the production per unit of effort. 

 

3.2.2 Productivity measures 

 

It is generally perceived that productivity analysis aims at identifying the changes in 

efficiency of a production process. In fact, productivity can tell more. According to 

Schreyer (2001, p.11), technical change, real cost savings and change in living 

standards can be reflected from productivity measures. As a result, understanding the 

movements in productivity and designing the right policies to enhance it is important 

for sustaining economic growth. Edison (1999) also emphasizes the importance of 

productivity analysis, with similar points of view as Schreyer (2001)’s. Chapter One 

of this study mentions the importance of construction industry to Hong Kong’s 

economy, therefore, we must analyse the industry’s productivity so that we can target 

the weak points of the industry and look for solutions accordingly. In order to 

facilitate this process of understanding the movements in productivity it is critical to 

be able to first get a handle on how to measure it. 
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There are many different productivity measures. The choice between them depends on 

the purpose of productivity measurement and the availability of data (Schreyer 2001, 

p.12). Generally, productivity measures can be classified as single factor productivity 

measures or multiple factor productivity (MFP) measures. 

 

3.2.2.1 Single factor productivity 

 

Single factor productivity is a measure of output to a single measure of input 

(Schreyer 2001, p.12). It can be calculated as labour or capital productivity, that is, net 

or gross output per unit of the respective input. For calculating construction labour 

productivity, the output of a firm or the industry is in monetary term because if it is in 

terms of physical units produced, it becomes meaningless where each building or 

project is unique.  

 

Labour productivity relates to the single most important factor of production and is 

relatively easy to measure. It is also a key determinant of living standards, measured 

as per capita income, and from this perspective is of significant policy relevance. 

Labour productivity is thus more commonly adopted in research on construction 

industry; researchers aim at finding out construction industry’s impact on the 

economy by analyzing productivity trends. Stokes (1981) examines the labour 

productivity in construction industry and analyses the sources of productivity decline. 

Chau and Lai (1994) test whether labour productivity growth in the construction 

industry compares favourably with that in the economy. Ganesan et al. (1996) study 

the construction labour productivity trends from 1972-1992 in Hong Kong to find out 

the labour utilization situation. Teicholz (2001) studies the labour productivity trend in 

the US construction industry to call for initiatives to solve the structural problems 

found in the industry. 

 

Although labour productivity is popular and easy to use, its use has been challenged 
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by many scholars. Schreyer (2001, p.12) says that it only partially reflects the 

productivity of labour in terms of the personal capacities of workers or the intensity of 

their efforts. Chau and Walker (1988) assert that different analytical standpoints will 

give rise to different meanings of productivity; therefore, the authors regard the above 

said “labour productivity” as partial factor productivity because it is only a 

comparison of output to one specific input factor. They criticize labour productivity 

because it is a biased measure as the effect of factor substitution and change in 

relative prices are ignored; data collection is also found to be difficult as physical 

measurement of inputs and outputs is not possible. Edison (1999) also points out that 

labour productivity can only reflect part of a firm’s productivity while the effects of 

other factors such as technical improvement and better organization of work are not 

reflected. Owyong (2000) then explains that labour productivity suffers from obvious 

limitations because in most industries or sectors there may be several factors of 

production that are of almost equal importance, in which case it might be difficult to 

choose among them; the relative importance of inputs may also change over time. For 

instance, the relative importance of labour may be low in the initial stages of 

development when unemployment is high, but may become critical as the country 

becomes more developed because of declining birth rates and an aging labour force. 

Labour productivity is challenged even on technical aspect. For example, Rojas and 

Aramvareekul (2003) suspect the validity and reliability of labour productivity values 

calculated from macroeconomic data. 

 

Because of the incomprehensiveness of labour productivity measures, another 

measure – MFP, is proposed. 

 

3.2.2.2 Multifactor productivity 

 

MFP relates a measure of output to a bundle of inputs. It helps disentangle the direct 

growth contributions of labour, capital, intermediate inputs and technology (Schreyer 
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2001, p.20). Total factor productivity (TFP) is a kind of MFP. The distinction between 

the two is that the latter includes the joint productivity of labour, capital and 

intermediate inputs, and the former considers the joint productivity of labour and 

capital only (Mahadevan 2004, p.6). Chau and Walker (1990) suggest that MFP is 

often used interchangeably with TFP. 

 

The concept of TFP was first introduced by Stigler (1947). It was later developed by 

other researchers such as Kendrick (1956), Dacy (1965) and Christensen et al. (1980). 

It is the comparison of output with all identifiable inputs (e.g. labour, material, capital 

and so on) (Chau and Walker 1988). Productivity increases when the growth in output 

is greater than the growth in input, or when the rate of growth of output minus the rate 

of growth of the composite input is positive. Economic growth can be obtained either 

by increasing inputs or by improving productivity factor. Productivity growth occurs 

when a higher output can be attained with a given amount of input, or a certain level 

of output can be attained with smaller amounts of factor input (Singh and Trieu 1996). 

The TFP can also reflect change in real output resulting from changes in intangible 

inputs such as economies of scale, change in qualities of inputs and advance in 

technology. Therefore, TFP has been widely accepted as a much better indicator of 

productive efficiency than labour productivity. 

 

Chau and Walker (1988) estimate the TFP of the Hong Kong construction industry 

using various construction cost and price indices and show that property market boom 

may lead to decrease in productivity of the construction industry. Chau and Walker 

(1990) use the trend of TFP together with that of labour productivity to demonstrate 

the phenomenon of factor substitution in Hong Kong construction industry. If the two 

trends are similar, it is probably the result of low factor substitution. Chau (1993) also 

applies similar methodology to show the substitution possibility between labour and 

other inputs. It is observed that labour in Hong Kong’s building industry was not 

substituted greatly by other inputs, e.g. capital, during the period 1972-1987 and 
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hence Hong Kong’s building industry was labour-intensive at that time. Pedersen 

(1990) applies TFP to point out the structural problems arose in Denmark’s 

construction industry like the poor performance of repair and maintenance sector, but 

no attempt was made to investigate the factor intensity of the industry. The above 

papers show that TFP can tell us more information on an industry apart from its 

productivity, e.g. market situation and factor substitution. TFP can also be applied to 

other industries. Liao et al. (2002) calculate the TFP growth of the manufacturing 

sector in eight East Asia economies and find out the TFPs in these economies are 

driven by efficiency change. Hence, the authors propose a higher priority to booster 

economic growth through the enhancement of productivity-based catching-up 

capability. It is expected that TFP can also be applied to construction industry to 

provide such implications for policy makers. 

 

3.2.3 Measuring total factor productivity 

 

According to Mahadevan (2004, p.5), TFP can be calculated as: 

 

Q/(aL+bK)  [3.2] 

 

where Q is value added output, L is labour input, K is capital input and a and b are 

weights given by input shares. Mahadevan (2004, p.16) categorizes the measurements 

of TFP into frontier approach and non-frontier approach. The frontier approach 

decomposes output growth into input growth and TFP growth and further decomposes 

TFP growth into various efficiency components while the non-frontier approach uses 

the standard growth accounting framework which separates the growth of real output 

into an input component and a productivity component. One feature shared by these 

two approaches is that both of them can be estimated using either the parametric or 

the non-parametric method. 
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Schreyer (2001) focuses on explaining the methodology in measuring productivity at 

the industry level. The non-frontier non-parametric approach is used. However, owing 

to data limitations, it is not applicable to measure TFP in Hong Kong construction 

industry. Consequently, researchers tend to use indirect ways to calculate TFP. 

 

Chau and Walker (1988) measure TFP of Hong Kong construction industry indirectly 

through construction cost, price indices and other statistics, including value share of 

individual inputs, labour cost index, material cost index, public sector tender price 

index, private sector price index and average book profit margin of the construction 

industry, assuming the value share is constant over time. All these data are readily 

available from various government publications. Chau (1993) modifies the approach 

used to estimate TFP in Chau and Walker (1988). The new approach is less restrictive 

and does not rely on the constant value share assumption which has been proved to be 

unrealistic, as the ease of substitution between input pairs is likely to be overestimated. 

Moreover, it can be applied to calculate value added TFP (VATFP) by the same set of 

data used to calculate TFP. According to Chau (1993), the difference between VATFP 

and TFP is that in the former approach, intermediate inputs are subtracted from both 

the input and output side. Chau (1993)’s methodology can be adopted to test the 

extent of substitution of labour by other inputs. It is valid because apart from labour 

input, it also involves the consideration of capital input and other input factors in 

calculations. 

 

In addition, the TFP of Hong Kong construction industry can be estimated by 

non-frontier parametric approach, i.e. the use of production function. This will be 

introduced in next section. 
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3.3 Production Function 

 

3.3.1 Definition of production function 

 

Bumas (1999, p.119) defines the production function as a function relates the 

maximum rate of production, Q, to the employment of the factors of production – 

labour, L, and capital, K – at a given level of technology, T:  

 

Q = f (T; L, K)   [3.3]  

 

A production function indicates what outputs can be obtained from various amounts 

and combinations of factor inputs. In particular it shows the maximum possible 

amount of output that can be produced per unit of time with all combinations of factor 

inputs, given current factor endowments and the state of available technology. One 

factor of production - land is omitted because once a unit of land is worked on by 

labour or capital; it is no longer in its original or natural state and hence land is 

transformed into capital as the produced means of production. In some cases, 

materials purchased from other producers can also be a factor of production in a 

production function: 

 

Q = f (T; L, K, M)  [3.4] 

 

No matter which form of production function is used, a crucial assumption in 

production function analysis is that the rate of production can be varied by altering the 

employment of a single factor, holding all others constant. The production function is 

also assumed to be homogeneous, that is, if labour and capital are increased by some 

proportion h, then Q may increase in the same proportion h, or by some larger or 

smaller proportion (Bairam ed. 1998, p.2).  
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3.3.2 Cobb-Douglas Production Function 

 

The most common production function used in empirical research is the 

Cobb-Douglas Production Function because it is simple to estimate and is consistent 

with the economic theory of production (Lin 2002). It was first developed in Cobb 

and Douglas (1928). The production function is of the basic form: 

 

Q = A Lα Kβ   [3.5] 

 

where Q is the real production and L and K are the amounts of labour and capital 

employed in producing it. The exponents α and β are parameters representing the 

elasticity of output due to labour and the elasticity of output due to capital respectively. 

According to Bairam ed. (1998, p.18), A is a time dependent ‘scale parameter’ which 

denotes a technological progress variable; as described by Link and Siegel (2003, p. 

28), it absorbs like a sponge, all increases in output not accounted for by the growth of 

explicitly recognized inputs.  

 

After acquiring data of Q, L and K, different parameters of the production function 

can be estimated as in linear relationship by using regression analysis. 

 

3.3.3 Applications of Cobb-Douglas Production Function 

 

Cobb and Douglas (1928) set up a first degree homogeneous function of the form as 

[3.5]. This function builds up a yearly production index (P’) for the manufacturing 

sector of the US from 1899 to 1922, making use of the labour and capital indices 

published annually by the US government. The authors then compare P’ with the 

actual indices of the physical volume of manufactures in the US (P) and find that the 

trends of P’ and P are much alike, which shows that the estimates of the function are 

reasonably close to that which actually existed. This function is the basic form of the 
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“Cobb-Douglas Production Function”. This is also an attempt to calculate productivity 

based on a production function; thus form the basis for future application of this form 

of function. In addition, the authors prove that their model follow constant returns to 

scale, i.e. when inputs are increased by h, outputs are also increased by h. This fulfils 

the assumption of homogeneity of a production function. 

 

Solow (1957) justifies the use of the Cobb-Douglas Production Function in theoretical 

and applied research. The author applies the production function, with two factors of 

production: labour and capital, assuming perfect competition and constant returns to 

scale, to investigate the technical change in the US from 1909-1949. He studies 

changes in the scale parameter “A” of the production function (see [3.5]). Although 

there is no data for parameter A, he shows that growth in technology can nonetheless 

be inferred from growth in output, capital and hours worked. The impact of 

technological change on production can be approximated as a residual growth rate, as 

“the percentage change in output per year that is not explained by the annual 

percentage change in capital and labour” (Link and Siegel 2003, p.28). Solow also 

demonstrates most of the growth output per worker is due to technological progress. 

This Solow residual measure of TFP growth has formed the foundation for an 

extensive body of empirical literature. However, despite of its widespread use, this 

measure is criticized by Link and Siegel (2003, p.28) as it cannot distinguish between 

pure technological change and changes in efficiency with which properly measured 

resources, including technology, are used. The authors also list other shortcomings of 

the Solow residual measure, such as the effects of sub-optimal capacity utilization, 

incorrect measurement of inputs and outputs and imperfect competition. 

 

The Cobb-Douglas Production Function has been generalized to form a transcendental 

logarithmic (translog) function for estimating technological change. Christensen et al. 

(1973) have been able to capture more accurately the effect of scale economies and 

input substitution on a measure of technological change with the translog production 
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function. Christensen et al. (1980) compare aggregate growth patterns among 

different countries including the US, Canada, France, Italy, the UK, Japan, etc. 

between 1960 to 1973 and conclude that any analysis that fails to incorporate quality 

changes in input measures will overstate the contribution of TFP growth to the growth 

of real output. However, since quality changes are difficult to quantify, it is hard to 

make adjustments in measuring TFP. Consequently, estimated TFP growth is often 

incorporated with embodied technical changes.  

 

Bende-Nabende et al. (2002) employ the translog production function to examine the 

TFP index in growth accounting as a proxy for productivity growth in different Asian 

economies, including Hong Kong, during the period of 1965-1997. The authors 

observe that TFP’s contribution to Hong Kong’s output growth has been declining. 

They suggest that if Hong Kong is to continue sustaining productivity, Hong Kong 

has to devote more resources to investment in R&D. Contrary, TFP and capital stocks 

are the dominant contributors to output growth in Japan. This reflects that Japan has 

made more efforts on R&D to improve productivity.  

 

Apart from Solow residual measure and translog production function, TFP growth can 

also be measured by using the parameters of the Cobb-Douglas Production Function. 

Bumas (1999, p.147) attempts to measure TFP growth by subtracting a later 

calculation of growths in capital and labour from growth in output. This approach has 

been followed by Mahadevan (2004) to calculate the TFP growth of Hong Kong’s 

manufacturing sector from 1984-1999. 

 

One important implication of a Cobb-Douglas Production Function is its ability to 

reflect factor intensity of a firm or an industry. Mahadevan (2004) estimates the 

capital and labour shares of Hong Kong’s manufacturing industry by means of a 

Cobb-Douglas Production Function. The coefficients (i.e. the exponents α and β in 

[3.5]) of the independent variables can show us which production factor is more 
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intensive. For example, if the coefficient of labour is larger than that of capital, 

according to the definition of factor intensity6, the firm or the industry is labour 

intensive as labour is utilized in a larger proportion than capital. In Mahadevan’s 

study, he finds out the capital input share is higher than labour input share and he 

concludes that the manufacturing activities in Hong Kong are capital intensive. 

 

One interesting point to notice in Mahadevan’s study is the adoption of value added 

measure. Let’s recall the basic form of a Cobb-Douglas Production Function. The 

dependent variable Q represents the real output (see [3.5]), which means the gross 

output of a firm or an industry (an industry in Mahadevan’s case). Since the 

parametric estimation of the Cobb-Douglas Production Function provides an 

implausible negative intermediate consumption share coefficient and there is no 

appropriate deflator for intermediate consumption, Mahadevan uses the value added 

output instead. Therefore, only labour and capital are selected as factors of production 

in the model. Mahadevan shows that TFP growth is the driving force of 

manufacturing output growth and this finding coincides with that of Bende-Nabende 

et al. (2002). 

 

Bacchini et al. (2002) aim at producing a new index of production in construction in 

Italy. To achieve this goal, the authors estimate a production function between input 

indicators (hours worked, raw materials purchased and technical fixed assets) and 

output. The authors compare the factor intensity among various construction activities 

using the coefficients of the independent variables and they discover that the 

“building installation” and the “building completion” are more labour intensive 

compared to “building of complete construction; civil engineering” in Italy. In fact, 

Bacchini et al. apply the same approach to determine factor intensity of an industry as 

Mahadevan does. 

 

                                                
6 Refer to Chapter Two, Section 2.4.1 
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A Cobb-Douglas Production Function can provide other implications. In Lin (2002), 

the Cobb-Douglas model is specified and estimated for Taiwan and Japan’s 

construction industries using firm-level data. Moreover, the author selects two 

different product inputs: asset and labour, for construction firms because of the unique 

characteristics of the construction industry. He creates cost functions for the 

construction industries in Taiwan and Japan with the aid of the coefficients of the 

independent variables obtained from the estimation of Cobb-Douglas Production 

Functions. He concludes that Taiwan's firms have a lower cost than Japan's when 

output is small. However, Japan's firms can have the cost advantage over Taiwan's 

firm when output becomes bigger and bigger. These results could match the real 

situation in construction nowadays because the economy of scale for Japan's firms is 

much larger than Taiwan's. 

 

Ruben and Leyman (2004) base on a representative survey of landed households 

located in Nicaragua, where agriculture is an important component of rural 

livelihoods, to analyze the underlying differences in farm household characteristics, 

assets and wealth, and efficiency of production systems as possible reasons for staying 

in or exiting from the cooperative framework. For detecting the factor productivity of 

different farms, the authors apply the Cobb-Douglas Production Function to test the 

significance of various variables like labour, machinery, animals, etc. They obtain a 

negative and statistically insignificant coefficient for the independent variable labour 

and explain that such result may be due to excessive labour on Nicaraguan farms. This 

overloading problem is common as in rural areas land quality is poor and off-farm 

employment options are limited. 

 

3.4 Summary 

 

TFP can help formulating strategies because it reflects information like efficiency and 

technical change, so it shall be adopted in this study. Labour productivity is not 
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chosen because of its incomprehensiveness. To measure TFP, both Chau and Walker 

(1988)’s methodology and Cobb-Douglas Production Function are applicable. Chau 

and Walker’s methodology requires more data and is more complicated while 

Cobb-Douglas Production Function requires less and is simpler. Therefore, for the 

purposes of this study, which are the determination of labour-intensiveness of Hong 

Kong’s construction industry and the evaluation of the industry’s productivity, the 

Cobb-Douglas Production Function will be good enough. Furthermore, a 

Cobb-Douglas Production Function can give us plenty of implications which allow us 

to get an insight of a firm or an industry. 
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4 ADVANCED CONSTRUCTION TECHNOLOGIES 

 

4.1 Introduction 

 

Construction industry always gives us such impressions: backward, low productivity 

and labour intensive. It seems that construction industry has a poor record on 

innovation, when compared with other manufacturing industries such as automobile 

or electronics. However, some people have doubts on the justification of this charge. 

No matter this charge is right or wrong, innovations of building processes and 

methods are increasingly viewed, industry-wide, as a critical means for achieving 

greater productivity (Ganesan et al. 1996, p.99). One type of innovations of building 

processes is the adoption of advanced construction technologies. 

 

4.2 Common Problems Relating to Labour and Capital 

 

4.2.1 Poor labour quality 

 

Rowlinson (2003, p.241) lists out the unique features of the Hong Kong construction 

industry; one of them is the low levels of skill development and training of workers. 

The skill levels of local construction workers have been declining. CIRC (2001) 

points out the reluctance of workers in construction industry to upgrade their skills 

due to an absence of a clear career path. The industry also faces difficulty in retaining 

quality workers as a result of unstable employment. As a consequence, the 

productivity and workmanship of the workforce are adversely affected. 

 

In fact, poor labour quality also has negative impact on safety performance of 

contractors, and hence lowers their productivity. Rowlinson (2003, p.226) identifies 

this problem and suggests that staff training on safety standards, statutory 

requirements and craft skills will be able to reduce risk. 
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4.2.2 Lack of new technology 

 

Sumanth (1998, p.3) defines technology as “means to accomplish an objective or 

task”. There are four basic types of technologies: product technology, process 

technology, information technology and managerial technology. In this study, product 

technology and process technology are concerned. 

 

Unlike factory-based industries like car manufacturing and food production, 

technological development in construction industry is slow. Paulson (1985) 

emphasizes that fast-changing, field-based, project-oriented industries like 

construction are severely handicapped by their lack of accurate, timely and systematic 

technical, cost, and production data from ongoing operations. Rowlinson and Walker 

(1995, p.18) describe construction industry as a “relatively low technology” industry. 

Although advanced technologies are available in Hong Kong, they are not commonly 

adopted in practice. For example, traditional reinforced concrete with timber 

formwork is still used in many buildings in Hong Kong. 

 

4.3 Call for an Efficient, Innovative and Productive Construction 

Industry 

 

4.3.1 What can advanced technology bring to us? 

 

Due to poor labour quality and low technological level, people involving in the 

construction sector have requested a reform for the industry – to reduce the use of 

labour and to adopt new construction methods and new technologies. 

 

CIRC (2001) identifies ten cost drivers which give rise to high construction cost in 

Hong Kong. Two of them relate to factor intensity of construction industry and labour 

quality. The problems arose in the construction workforce in Hong Kong are: 
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(i)  Prevalent use of labour-intensive, in-situ construction methods, which necessitates 

more supervisory efforts and leads to high material wastage; and 

(ii) low labour productivity and shortage of skilled labour supply during construction 

peaks 

 

CIRC (2001) then suggests eight measures to improve the cost-competitiveness of 

local construction. Among those measures four of them relate to new construction 

methods or advanced technologies: 

 

(a) Wider use of standardisation in component design and processes to eliminate 

waste and inefficiencies; 

(b) a manufacturing approach to construction through wider use of prefabrication; 

(c) wider application of information technology in project implementation; and 

(d) investment in construction-related R&D. 

 

In fact, before CIRC’s report, many researchers have advocated adopting modern 

construction technologies. Paulson (1985) recommends the construction industry to 

give more attention to automation and robotics as promising means to solve, or 

facilitate, some of the major problems emerged in productivity, safety and quality 

aspects of the industry. It is believed that automation will contribute to increased 

productivity and improved quality and safety. Skibniewski and Chao (1992) affirm 

this point and assure that new technology can offer long-term opportunities, business 

competitiveness, or even survival of the company. Navon et al. (1993) think that this 

belief has led both practitioners and especially researchers to develop automated 

systems for well over a decade, yielding results that can eventually be implemented in 

the field. Ganesan et al. (1996, p.6) propose that labour requires replacement, 

especially the unskilled and to a lesser degree the skilled grades of labour, with other 

resources such as construction plant, energy, management personnel, sophisticated 

computer systems and so on. The authors list out many labour intensive activities 
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commonly found in construction industry, such as excavation, piling, concreting, 

rendering, painting, building services works, etc. and urge for further reduction of 

labour use through mechanization, prefabrication and standardization. 

 

Kangari and Halpin (1989) say that the benefits of advanced construction technologies 

are basically due to productivity improvement, quality improvement, and savings in 

skilled labour. These technologies can help to solve the labour-intensive problem and 

succeed in substituting labour in dangerous or unhealthy working environments. 

Examples are given in Paulson (1985), Pau et al. (1993), Warszawski and Rosenfeld 

(1994), Nam and Tatum (1992), IAARC (1998), Coble and Haupt (2000), and Kahane 

and Rosenfeld (2004). However, as mentioned in previous section, the use of these 

technologies is not common in Hong Kong, though they are available in the market. 

 

4.3.2 Reasons for the “backwardness” of construction industry 

 

Plenty of new construction technologies and techniques are available in the market. 

According to Webster (1994), many construction robotics and innovative construction 

methods are present in Japan’s construction industry, including steel-welding 

machines, super concrete column, robotized wall erection system, Obayashi’s 

Automated Building Construction System, Fujita’s Automatic Vertical Transport 

System, etc. The author outlines Japanese firms’ technological capabilities, their R&D 

activities, and various aspects of Japan’s construction industry. His works show that 

Japanese industry’s best R&D efforts are creative and significant, and the radical 

automation systems explored promise potentially huge gains in productivity. Kangari 

and Miyatake (1997) also describe the smart building automation technology 

(SMART) and its application and adoption in Japan’s construction industry. IAARC 

(1998) lists and describes 76 working robots and automated machines in construction 

industry. The list of companies contributing to the catalog includes Japanese 

construction companies and a large contingent from France, Sweden, the UK and 
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USA. This catalog shows that advanced technologies in construction are not rare. 

 

Backward is a relative term and so has to relate to something. The term implies that 

technological advance is a comparable process along which all productive activities 

can be ranked, with building seen as much lower down the scale than other industries 

(Ball 1988, p.31). Hong Kong construction industry is backward because it does not 

use so many construction robotics as Japan or other developed countries do; even 

practitioners in Hong Kong have tried some new construction methods, e.g. 

prefabrication of building structures and slip-form construction, there is still lots of 

room for improvement. According to AsiaConstruct Team (2002), the construction 

industry in Hong Kong has remained prudently conservative when it comes to 

application and research of new technology. Some degree of mechanization could be 

seen with public housing construction where large panel formwork, tower cranes, 

concrete pumps and other mechanical equipment and plants are used. The use of 

standardized and modular building components can also be found in many 

construction projects, particularly in public housing developments by the Hong Kong 

Housing Authority. However local contractor’s technological ability is poor compared 

to international standards. 

 

Although the introduction of mechanization and prefabrication has successfully 

reduced the labour-intensive nature of part of the construction procedures, many 

construction activities still rely heavily on skilled and unskilled site-based labour. 

Both Rowlinson and Walker (1995, p.27) and Ganesan et al. (1996, p.41) recognize 

such labour utilization trend in the construction industry of Hong Kong. 

 

AsiaConstruct Team (2002) reports that the Hong Kong construction industry 

undertakes a negligible amount of R&D activities. There are no major efforts 

coordinated by the Hong Kong Government or the industry to raise the general 

technology level in construction. Expenditures on R&D by local contractors, 
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particularly the indigenous local contractors, are practically nil. In 1998, Hong Kong’s 

expenditure on scientific and technological R&D amounted to only 0.25% of its GDP 

and ranked fortieth among forty seven major countries and regions. Serious 

competitors of Hong Kong, such as Taiwan and Singapore, ranked eleventh and 

fourteenth respectively, while China ranked thirtieth and India, thirty-second. Only 

1.5 persons per one thousand Hong Kong people were engaged in R&D work 

(AsiaConstruct Team 2002). Even there are new construction methods found in Hong 

Kong, Ganesan et al. (1996, p.51) point out that advanced construction techniques 

used locally are acquired when foreign construction firms form joint-ventures with 

large local contractors. Hong Kong construction practitioners have not developed any 

new technologies or techniques for themselves. 

 

Rowlinson and Walker (1995, p.18) provide two reasons for the lack of investment in 

R&D work and modernization in Hong Kong construction industry, they are: 

 

(i) the ease of entry into the industry, which requires minimum capital, resulting 

in the proliferation of small firms; and 

(ii) the unpredictability of the market leading to an uneven workload and lack of 

stability in companies. 

 

Rowlinson and Walker focus on the market or industry levels and their explanations 

do not touch the issues of contractor’s or client’s attitude. On the other hand, 

Skibniewski and Chao (1992) try to analyse the problem from construction 

practitioners’ points of view. They say that the process of introducing new 

technologies to the construction industry has been seriously hindered by conservative 

attitude because the inherent risk of applying a new, unproven device or technique is 

often deemed to be prohibitive for a construction firm. Equally important is the fact 

that the industry is frequently unable to appreciate the strategic significance that 

innovative technologies can bring. Kangari and Halpin (1990) also indicate that the 
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industry traditionally has modified existing and proven practice to achieve 

improvement rather that trying entirely new methods.  

 

Navon et al. (1993) make a summary of the resistance to automation and robotics in 

manufacturing and apply it to construction industry. The authors think that fear of 

employment instability is the most common reason for resistance because 

construction workers may fear that labour-cost savings brought about by automation 

may be at the expense of their job and automation could lead to discontinuous 

employment. The authors also think that workers may doubt their ability to make the 

necessary adjustments required for automation. One interesting point raised by the 

authors is the impact of technology on social and interpersonal relationships. The 

authors recognize that making social work relationships is an important element of job 

satisfaction; hence, it is expected that construction workers fear the loss of these 

relationships due to the introduction of technologies since technologies are expected 

to reduce crew sizes. 

 

While Navon et al. try to analyse the problem from worker’s psychological point of 

view, Mezher et al. (1998) address project constraints and owner-induced constraints 

to the use of advanced technologies. The authors identify that bidding practices, 

construction specifications, financial constraints, site-related conditions and 

government regulations could be potential obstacles to the adoption of advanced 

construction technologies. For bidding practices, a client usually awards projects on 

the basis of the lowest-bid price so technologies that may offer both marginal 

schedule and quality benefits but not to reduce bid prices will most probably be 

deemed infeasible by contractors. The descriptive specification method would also 

severely hinder the application of newer techniques as outdated requirements may be 

specified by clients. Financial constraint is obviously an obstacle because without 

money, the contractors cannot invest in technologies and maintain them afterwards. 

Regarding the technical problems, since different sites have different features, it is 
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difficult to make new construction equipment that can fit for any site conditions. The 

authors regard governmental economic policies such as high taxes on imported goods 

as obstacles to the diffusion of technologies. However, this reason is not applicable to 

Hong Kong because the government imposes no tax on imported construction 

technologies. 

 

From Navon et al. and Mezher et al., we get a comprehensive overview of the barriers 

to the adoption of advanced construction technologies. These barriers contribute 

infeasible the use of technologies and cause the industry to become backward. 

 

4.4 Feasibility Studies of Advanced Construction Technologies 

 

Ganesan (2000, p.6) considers a technology is appropriate for construction if it 

represents that combination of resources, techniques and procedures most likely to 

satisfy the social and economic goals of the sector. Researchers have strived to 

formulate better feasibility analysis techniques which can be applied to construction 

technologies. However, in a business world like Hong Kong, contractors usually 

concern the economic goals that can be achieved by using advanced technologies 

more. Therefore, an advanced technology will only be adopted if it is economically 

feasible. Ball (1988, p.40) pinpoints this issue, he says: “Under capitalism, building is 

for profit, so those products will be constructed which yield the greatest profit, using 

techniques that do the same.” 

 

Kangari and Halpin (1989) present a feasibility analysis of robotization of different 

construction processes by evaluating these processes and assigning feasibility ratings 

to various aspects of these processes, with high ratings indicating a feasibility of 

automation. Kangari and Halpin (1990) then construct a fuzzy set evaluation model 

consists of three parts: linguistic analysis, evaluation and translation, for feasibility 

analysis of construction robotics. Major factors in robotization of construction 
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processes are identified as: need, technology and economics. Skibniewski and Chao 

(1992) think that it is difficult to quantify the intangible benefits of advanced 

construction technologies and the risks involved in implementing such technologies 

with the use of traditional economic analysis techniques. Therefore, they propose 

using the analytical hierarchy process (AHP) to compare the relative influence or 

contribution of each technology alternative, favourable and unfavourable, on the 

decision maker’s goals and concerns. Mezher et al. (1998) apply a heuristic 

rule-based procedure for identifying the barriers in adopting advanced construction 

technologies and the results are used to evaluate the feasibility of an advanced 

technology. 

 

However, the authors do not provide a clear technique for assessing economic 

feasibility. From a client’s point of view, methods like AHP or heuristic rule-based 

procedure are logical and scientific but do not have any particular significance 

because they fail to convey an important message to the client – the actual amount of 

benefits. Warszawski (1999, p.400) emphasizes the importance of this matter: “In the 

risky, volatile and highly conservative construction environment the economic 

benefits of robotization must be clearly visible to management, even when not easily 

quantifiable, to justify the significant long-range commitment to implementation.” 

 

As a consequence, Warszawski (1999, p.408) proposes another method to assess the 

economic feasibility of robotization. The author breaks down the total cost of 

robotization into the direct cost of robotized work and the indirect costs: the capital 

cost of the robotized system, the cost of maintenance of the robot, and the cost of the 

robot’s setup and transfers. This total cost will then be compared with the total cost 

incurred using conventional method. Warszawski (1999, p. 413) also presents a 

simplified economic valuation by equating the amount of benefit with the sum of total 

cost and initial investment, which aims at finding out the maximum feasible 

investment (breakeven value) for robotization. In fact, Warszawski and Rosenfeld 
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(1994) have applied similar method to study the feasibility of a robot for 

interior-finishing works in building before. Such approach is then followed by Kahane 

and Rosenfeld (2004) in examining and comparing the viability of block laying and 

wall painting robotic systems. 

 

4.5 Summary 

 

Low labour quality and low technological level have rendered Hong Kong 

construction industry underachieving. It is generally believed that substituting 

advanced construction technologies for labour is a way to remedy the current situation 

and sustain the competitiveness of firms in the industry because advanced 

construction technologies can help improving productivity, quality and safety. 

Unfortunately, due to contractor’s conservative attitude and their lack of financial 

backup as well as client’s outdated specifications, even there are plenty of applicable 

technologies, the construction industry remains backward. 

 

To persuade practitioners to use advanced technologies, it is necessary to prove these 

technologies’ feasibility. However, many researchers’ methodologies may not be 

useful to clients because they simply underestimate the importance of providing a 

clear figure on the amount of benefits that an advanced technology can bring. 

Warszawski (1999)’s method seems more convincing than the others because it can 

come up with a breakeven value which can actually tell the client the amount of 

money he/she should invest in a technology. 
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5 METHODOLOGY 

 

5.1 Phase I – Testing the Labour Intensity and VATFP of Hong Kong 

Construction Industry 

 

5.1.1 Cobb-Douglas Production Function 

 

Which factor of production is utilized in a larger proportion in Hong Kong 

construction industry? Labour or capital? If we cannot answer this question, then we 

cannot tell whether the industry is labour intensive or not. Fortunately, the 

Cobb-Douglas Production Function provides us a convenient way to get the answer. 

 

Cobb and Douglas (1928) first proposed a production function to measure the changes 

in the amount of labour and capital which have been used to turn out a certain amount 

of construction products and to determine what relationships existed between the three 

factors of labour, capital and product. Consider a production function with two inputs 

- capital (K) and labour (L) which are combined to produce a unique maximum 

quantity of output (Q): 

 

Q = f (K, L)  [5.1] 

 

The function f defines the technical relationship between the two inputs and output. A 

Cobb-Douglas Production Function has the following form: 

 

Q = AKαLβ  [5.2]  where A, α and β are constants. 

 

In Equation [5.2], α and β represent the capital and labour shares respectively. The 

production function is then estimated by ordinary least square (OLS) regression as a 

line of best fit through the sample data. The data are from a sample period. This is a 
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kind of parametric estimation. To make regression easier, Equation [5.2] is 

transformed into Equation [5.3] by taking natural logarithm on both sides of the 

equation which yields: 

 

ln(Q) = A + α ln(K) + β ln(L)   [5.3] 

 

A is a residual which absorbs any increases in output not accounted for by the growth 

of explicitly recognized inputs. The estimates of α and β are interpreted as output 

elasticities with respect to inputs and usual assumption is that constant returns to scale 

prevail, i.e. α + β = 1. 

 

5.1.2 Value added measure 

 

In construction industry, apart from capital and labour, there are many other inputs 

including materials, energy, overheads, etc. They are collectively known as 

intermediate inputs. Therefore, intermediate inputs should be included on the right 

hand side of Equation [5.2] as independent variables to make it become the true 

production function for construction industry. However, intermediate inputs comprise 

of many different kinds of things, there is no appropriate deflator for intermediate 

consumption in Hong Kong and perhaps the choice of a general price deflator like 

GDP deflator could result in an implausible coefficient for intermediate inputs or even 

distort the validity of the production function. Because of the undesirable effects 

created by intermediate inputs to the model, Mahadevan (2004, p.84) applies the value 

added method to eliminate the use of intermediate inputs in estimating a 

Cobb-Douglas Production Function for Hong Kong’s manufacturing sector from 

1983-1999. Hence, this value added measure is adopted in this study for similar 

reasons. This is valid because the aim of this analysis is to investigate the influences 

of labour and capital on output only. 
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According to Census and Statistics Department (2004f), Hong Kong construction 

industry’s value added equals to: 

 

gross output - value of sub-contract work rendered by fee sub-contractors - 

consumption of materials and supplies; fuels, electricity and water; and maintenance 

services - rent, rates and government rent for land and buildings - rentals for hiring 

machinery and equipment - other operating expenses (excluding interest payments) 

 

In other words, value added is the difference between gross output and intermediate 

inputs. If value added is used to substitute the quantity of output (Q), then only capital 

and labour will be needed to count as inputs in the production function. As a result, 

intermediate inputs can be ignored and the production function for construction 

industry remains the same form as Equation [5.2] (and so for Equation [5.3]), while Q 

becomes the value added construction output. In this case, any change in value added 

will be due to changes in labour and/or capital proportionately. 

 

5.1.3 Dependent variable and independent variables 

 

Then how can we prepare suitable data for the Cobb-Douglas Production Function so 

as to achieve the objective of this study? 

 

The dependent variable in the value added production function is the value added 

construction output (Q). Its meaning is defined in previous section. It is deflated by an 

output price index (OPI) constructed based on the methodology proposed by Chau 

and Walker (1988). The methodology is outlined below: 

 

The OPI is obtained by adjustment of a combined tender price index which is a 

weighted average of the public sector ASD tender price index (TPI) and private sector 

tender price indices, where the weights are calculated as relative proportions of total 
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expenditure in all building works in private and public sectors. The TPI for private 

sector is calculated as a geometric mean of tender price indices constructed by two 

quantity surveying firms in Hong Kong - Levett & Bailey Chartered Quantity 

Surveyors Ltd and Davis Langdon & Seah Hong Kong. 

 

Capital (K) is one of the independent variables of the production function. Since the 

book values of plant and machinery owned by construction firms in Hong Kong are 

not published by the Census and Statistics Department or any other bodies, it seems 

that gross additions to fixed assets is by far the most suitable data to represent capital 

stock owned by construction firms because fixed assets include construction plant and 

machinery. According to Census and Statistics Department (2004f), gross additions to 

fixed assets equal to acquisitions of fixed assets minus proceeds from disposal of 

fixed assets, i.e. the net amount of capital stock owned by a construction firm in a 

particular year. Chau and Walker (1998) say nearly all plant used in the construction 

industry is imported and hence unit value index (UVI) of imported capital goods is 

used to deflate capital prices. 

 

Another independent variable is labour (L) which represents the number of people 

directly engaged in the construction industry in a particular year. According to Census 

and Statistics Department (2004f), number of persons directly engaged = number of 

working proprietors, active partners and unpaid family workers + number of direct 

employees, comprising operatives and other employees. 

 

All prices are to be deflated to constant prices as at the year 2000 to strip out the 

effect of inflation. 

 

5.1.4 Determination of factor intensities 

 

The production function (Equation [5.3]) will be set into the statistical package 
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(EView 3.0) and all data will be inputted accordingly. 

 

It is expected that both capital (K) and labour (L) will have positive coefficients in the 

OLS estimation because they are both inputs to the production system. More inputs 

will generate more outputs. After obtaining the estimates of α and β, the factor 

intensity of labour input can be known. As β is the index for labour input, if it is larger 

than that of capital input, i.e. α, it means labour has a greater influence on 

construction output. This result implies that the industry is labour-intensive as the 

trend is to use more labour than capital. Otherwise, the industry is capital-intensive. 

 

5.1.5 Test statistics 

 

Three test statistics, which are t-statistics, the coefficient of determination (R2) and 

F-statistics will be employed in the model. These three tests are used to investigate the 

significance of the coefficient of each independent variable, which indicate the effect 

of the independent variables on the dependent variable and the proportion of the 

variation of the dependent variable explained by the independent variables. The 

theoretical framework behind these three tests is described below: 

 

5.1.5.1 Coefficient of determination – R2 and adjusted R2 

 

R2 ranges from 0 to 1 and it indicates the proportion of variation in the independent 

variable explained by the variation in the independent variables. It is often used as a 

measure of goodness of fit. However, R2 increases as more independent variables are 

added to the model irrespective of whether these variables are significant, so adjusted 

R2 gives more plausible result. 

 

Adjusted R2 is a measure of the proportion of variance of the dependent variable 

explained by the variance of independent variables. The higher the value of adjusted 
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R2, the more explainable the model is. For example, if R2 = 0.98, that means 98% of 

the variation in the dependent variable is due to the independent variables. The 

remaining 2% variation of the dependent variable cannot be explained by the 

independent variables in the model. 

 

5.1.5.2 F-statistic 

 

The F-statistic is used to test the significance of the R2 statistics. The null hypothesis 

is none of the independent variables helps to explain the variations of the dependent 

variable about its mean. If this null hypothesis is rejected, it means at least one 

independent variable helps to explain the variation. 

 

Like t-test, whether the null hypothesis is rejected or not depends on the critical value 

with respect to a given degree of freedom and level of significant (5% in this study). If 

the calculated F-value is greater than the critical one, the null hypothesis is rejected. It 

is the additional evidence to show the significance of the results. 

 

5.1.5.3 t-test and p-value 

 

It tests the statistical significance of the effect of the independent variable Xi on the 

dependent variable Q. The value of t depends on bi and Sbi and ti = |bi/Sbi| where bi is 

the beta coefficient and Sbi is standard error of coefficient. Hence, the larger the 

t-value, the more likely that the hypothesis of zero coefficient is rejected; and thus the 

estimate is more accurate. Before doing the test, an accepted confidence interval has 

to be established first. A 95% confidence level (CL) is used in this study. The 

calculated t-value is then compared with a critical t-value for a given degree of 

freedom and a given confidence level. If the calculated t-value is higher than the 

critical t-value for a 5% significance level, then the coefficient bi is said to be 

significant at the 95% CL.  
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Probability value (p-value) is also used to find out the significant level of the 

coefficients. It shows the chance that the estimated coefficient is equal to zero. The 

smaller the p-value, the more significant the estimated coefficient is. Given a p-value, 

the estimated coefficient is significant at the x(x>p) level.  

 

It should be emphasized that the statistical significance shown by t-values or p-values 

is conceptually different from the magnitude of the effect of Xi on Q because the 

coefficient of Xi can be significant but its effects on Q can be small. 

 

5.1.6 Diagnosis tests 

 

After estimating the coefficients of the production function, the validity of the results 

has to be tested to ensure any subsequent interpretations made based on the results are 

reliable. OLS estimation has 3 major technical problems related to data. They are 

autocorrelation, multicollinearity and heteroskedasticity. The diagnosis tests aim at 

identifying these problems. If such problems are found in the OLS estimation model, 

the model will be corrected with appropriate methods as specified below. 

 

5.1.6.1 Autocorrelation 

 

Autocorrelation arises if error terms of the observations are correlated, i.e. cov (ei, ej) 

≠ 0  for all i, j and i ≠ j. It occurs most likely in time series data. Positive 

autocorrelation is exhibited when a positive (negative) disturbance term in one period 

may be associated with a positive (negative) disturbance term in the next. Negative 

autocorrelation is exhibited when a positive (negative) disturbance term in one period 

is associated with a negative (positive) disturbance term in the next. Positive 

autocorrelation can result in obtaining larger t-value than the actual t-value. 

Subsequently, the coefficients that are in fact insignificant may be shown to be 

significant using standard t-test. 
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First order auto-correlation can be tested using Durbin-Watson test (DW test). The 

closer the DW value to 2, the less likely that there is first order autocorrelation. 

Second order auto-correlation can be tested using the Breusch-Godfrey Lagrange 

multiplier test. 

 

To remedy autocorrelation, autoregressive components acting as regressors can be 

added to the model and EView 3.0 has such a built-in function. 

 

5.1.6.2 Heteroskedasticity 

 

Heteroskedasticity occurs when variance of the error terms are not the same, i.e. Var 

(ei) ≠ constant. This will make the partial regression coefficients to be either too large 

or too small, depending on the exact pattern representing the heteroskedasticity. It is 

because heteroskedastic conditions mean that some variances are larger than others. If 

all variances are assumed to be of equal size and equal weight, as they are done in 

OLS, then the variances will be overweight in their importance. This means although 

the variance still has a mean of zero and is normally distributed, the OLS estimator is 

no longer the best estimator. 

 

White Heteroskedasticity Test examines the problem of heteroskedasticity in a model. 

The multiple of observations and R2 (Obs* R-squared) will be compared with the 

critical value of Chi-squared test at a particular degree of freedom and at a particular 

confidence level. If the Obs*R-squared value does not exceed that critical value, the 

null hypothesis of no heteroskedasticity is not rejected. To remedy heteroskedasticity, 

weighted least squares method can be used. 

 

5.1.6.3 Multicollinearity 

 

When two or more independent variables are highly correlated with each other, 
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multicollinearity arises. This will cause the t-values to be underestimated and create 

difficulties in replicating results with slightly different data sets on the same variables. 

Multicollinearity can be tested with the examination of correlation matrix. The closer 

the correlation value between two independent variables to 1, the more likely that 

these two variables are correlated. 

 

To remedy multicollinearity, correlated variables are dropped or ridge regression is 

used. If hypotheses are confirmed irrespective of the underestimated t-values, this 

problem can be ignored. 

 

5.1.7 Calculating VATFP growth 

 

Many people claim that the productivity of Hong Kong construction industry has been 

declining, but lots of buildings have also been accomplished in a rate faster than a 

decade ago. Which statement is correct then? Therefore, after testing the 

labour-intensiveness of the construction industry, it is necessary to investigate the 

industry’s VATFP growth to see how productive it performs. 

 

VATFP growth reflects the combined effects of disembodied technical change, 

economies of scale, efficiency change, variations in capacity utilization and 

measurement errors (Schreyer 2001, p.16). Based on the parameter estimates, the 

sources of value added output growth in Hong Kong construction industry can be 

calculated as follows:  

 

dT/T = dQ/Q - (α dK/K + β dL/L)  [5.4]  where dT/T = change in VATFP 

 

Through Equation [5.4], the change in VATFP can be calculated by knowing the 

changes in value added output, capital and labour. The change in VATFP will be 

measured in a 3-year period. 
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5.1.7.1 Data sources and data series 

 

Hong Kong construction industry’s value added outputs, gross additions to fixed 

assets and number of labour engaged are collected from Census and Statistics 

Department (2004f). The UVIs are obtained from Census and Statistics Department 

(2004g). Regarding the public TPIs, they are collected from the Architectural Services 

Department (2004) while the private TPIs are collected from the two quantity 

surveying firms – Levett & Bailey Chartered Quantity Surveying Ltd (2004) and 

Davis Langdon & Seah Hong Kong (2004). 

 

The data used are published annually; if not, they are converted to annual basis to 

assure unity. All data series are from 1985 to 2002. 
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5.2 Phase II – Economic Analysis of Advanced Construction 

Technologies 

 

5.2.1 Introduction 

 

When we talk about innovation in the construction industry, advanced construction 

technology is always one of its elements; and it has been treated as a possible way to 

tackle the labour-intensive problem arisen in the industry. However, not many people 

acknowledge the effectiveness of these technologies. Therefore, the purpose of this 

analysis is to investigate the economic feasibility and user benefits of different 

advanced construction methods. An economic evaluation model proposed by 

Warszawski (1999) is adopted in this study. For simplicity, the term “robot” in this 

section means any new construction machineries which are more advanced and 

productive which may not be a pure robot in common sense. 

 

Ganesan et al. (1996) identify several labour-intensive construction activities and 

suggest they could be replaced by more advanced construction methods. Warszawski 

and Navon (1998) investigate the applications of robots in different areas of 

construction. Four construction activities with robot applications which are currently 

employed in other countries are selected for this study: 

 

A. Concrete placing, 

B. Pile driving, 

C. Painting; and 

D. Placement of boards. 

 

5.2.2 Cost of robotization 

 

The most important barrier to the implementation of advanced technologies in 
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building construction is its utilization costs. In simple terms it requires that the 

benefits – preferably tangible benefits like reduction in cost or gain in efficiency – 

derived from the technology’s employment will exceed its utilization costs. 

 

Warszawski (1999, p.408) suggests that the total cost of robotization of a construction 

task is composed of the direct cost of robotized work: the costs of operator, materials, 

auxiliary labour, etc. and the indirect costs: the capital cost of the robotized system, 

the cost of maintenance of the robot, and the cost of the robot’s setup and transfers. 

He then focuses on several key parameters – the cost of labour saved, the cost of 

transfer and the extent of employment to derive a model to judge the economic 

potential for robotization. 

 

5.2.3 Assumptions of Warszawski’s model 

 

1. A uniform labour wage for all types of labour engaged in robotization is 

assumed. 

2. The total transfer cost is assumed as being directly proportionate to the number 

of transfers between sites. The cost of transfer between the sites includes the 

dismantling of the robot, its transfer to the new site, and its setup. It is in most 

cases the dominant component of the total transfer cost. The cost per transfer in 

the model will include therefore the transfer cost between the sites and the 

average cost of transfer onsite. The latter comprises the transfer between 

locations and between workstations and depends on the nature of the building 

and of the composition of its finishing operations. 

3. The terminal value of the robot at the end of its economic life is negligible. 

 

The above assumptions enable approximate calculation of the maximum feasible 

investment in the robotization of construction processes under different circumstances 

pertaining to its most important variables: labour wages, the number of work hours 



 50 

per year, the size of an average project, and the cost per transfer of the robot. 

 

5.2.4 Assessment of economic feasibility 

 

In Warszawski’s model, the maximum feasible investment is calculated in Equation 

[5.5] as a breakeven value of the investment for which the annual benefit B from the 

robot’s use cove its annual cost C. 

 

C = V x pr(i,n) + Cm + (H/h) x Ct + H x Ce  [5.5] 

B = H x k x Cl + I       [5.6]   where  

 

V = the maximum economically feasible investment in a robot (breakeven value)  

H = the total number of robot working hours per year 

pr(i,n) = i(1+i)n/[(1+i)n-1], a capital recovery factor of the investment over a period of 

n years with an interest rate i. It is used to find out the opportunity costs 

associated with the decision to adopt a robot because the money invested can 

be saved into a bank for interest. 

h = the average number or robot working hours per site 

Ct = an average setup and transfer cost per site (all types of transfers) 

Ce = the energy cost of the robot per hour 

k = the number of labour hours saved per hour of robotized work 

Cl = average labour cost per hour 

I = intangible gains of robotization per year 

Cm = the cost of maintenance per year = 0.1V + 0.06H x Cl, i.e. the annual 

maintenance includes repairs and replaced parts at 10% of the initial 

investment in the robot, and a routine maintenance equivalent to the cost of 

6% of the working hours of the robot per year (Warszawski and Rosenfeld 

1994) 
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When C=B, that means the annual cost C is covered by the benefit B and hence a 

breakeven point is achieved. If C>B, the V value will be negative or smaller than the 

market price of the robot, so the benefits of robotization cannot cover the cost and the 

robot is not economically feasible. On the other hand, if C<B, the V value will be 

larger than the market price and the amount of benefits is greater than the cost so the 

robot is economically feasible. 

 

Sometimes contractors do not own a robot; instead, they rent it from the owners. If 

they want to know if the rents they paid for the robots are reasonable, the above model 

cannot help because it is for assessing the feasibility of investing a robot; it does not 

assess that of renting a robot. Therefore, it is modified to make it suit for this purpose. 

 

Since the robot is rented, it is expected that it will be fully utilized on site by the 

contractor. In such case, the H/h ratio is 1. H in this case will be the total number of 

robot working hours during the rental period. In addition, if a contractor rents a robot, 

he does not need to spend money on robot maintenance, i.e. Cm can be omitted. As a 

result, Equation [5.5] can be modified as: 

 

C = R x pr(i,n) + Ct + H x Ce    [5.7] 

where R = the maximum economically feasible rent for a robot (from a borrower’s 

point of view) 

 

Equation [5.6] remains unchanged in the modified version of the model. If R=B then 

the rental cost is covered by the benefits of robotization and thus a breakeven value is 

achieved. 

 

In the result tables, all V (R) values of the robots which are greater than or equal to 

market price (rent) of the robots will be bold and Italic. 
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5.2.5 Parameter values assumptions  

 

In this study, the following parameter values are assumed: 

 

1. The transfer cost of robot is $2,000 per site; if the robot is delicate, say it 

incorporates a computer system, the cost will then be $5,000 per site. 

2. The energy cost of using the robot is $16 per hour. This rate is estimated from 

Warszawski (1999, p.414). 

3. The interest rates used in the model are of two types: HKD deposit rate (0.01%) 

for long term saving, fixed deposit rate (0.5%) for short term saving7. As a result, 

two capital recovery factors are obtained – for long term, the recovery factor is 

0.203 while for short term the recovery factor is 1.0001. 

4. Since intangible gains are difficult to be quantified, they are assumed to be zero 

in calculations. 

 

5.2.6 Possible cost reduction calculation 

 

This calculation can be served as a sample to show that how much benefits an 

advanced technology can give to user. In this section, a brief description is given to 

both conventional and advanced construction methods. Both methods will be applied 

to the same construction task and the total construction cost is estimated for each 

method. The total construction cost is estimated by breaking it down to three elements: 

labour cost, material cost and plant cost, as mentioned in Spence (1996, p.10). 

 

Total costs of performing the task by conventional and advanced methods will then be 

compared and the possible cost reduction can be obtained consequently. If advanced 

methods do not generate any cost reduction, that means they are not worthwhile to 

                                                
7 The interest rates are obtained from HSBC’s website. Available from 
http://www.hsbc.com.hk/script/hk/personal/invest/deposit/defaultb.asp#fold [Accessed on 25 December 
2004] 
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use. 

 

5.2.6.1 Data sources 

 

All the cost data and rates used in this study are collected from Wessex Electronic 

Publishing Ltd (2002) and Davis Langdon & Everest ed. (2001), unless or otherwise 

specified. Since the cost data in these sources are expressed in London GBP, so the 

unit is changed back to Hong Kong Dollar (HKD) in this study. The exchange rate of 

HKD against London GBP is provided by HSBC as at 20 November 20048. 

                                                
8 Available from http://www.hsbc.com.hk/hk/commercial/intbiz/import/ib10905s.htm [Accessed on 20 
November 2004] 
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5.3 Phase III – Examining Construction Practitioners’ 

Viewpoints towards Advanced Technologies 

 

One of the purposes of this study is to investigate and explain the phenomenon of 

slow spreading of new construction practices and technologies in the industry. The 

previous quantitative analyses can only reflect the current situations, but they cannot 

explain them. Therefore, it is necessary to interview construction practitioners so as to 

find out the reasons that lead to their attitude and behaviour. 

 

Mezher et al. (1998) identify different forms of constraints hindering the adoption of 

advanced technologies in construction industry. These constraints are: 

 

1. Bidding practices and contract specification – contractors are not motivated by 

clients to adopt advanced construction technologies and sometimes contractors are 

told to use outdated construction methods. 

2. Financial constraints – contractors cannot afford heavy investment on advanced 

technologies 

3. Human resources – current practitioners are not technically competent to adapt to 

new technologies. 

 

Interview questions 1-5 will be set according to these aspects to examine the attitude 

of interviewees while questions 6-7 let interviewees express their opinions on the 

slow diffusion of advanced technologies in the industry (see Appendix 4). Contractors 

(including sub-contractors) are the parties that use advanced construction technologies, 

so their viewpoints have direct impacts on the adoption and diffusion of technologies, 

and they should be well aware of the pros and cons of advanced technologies. In order 

to minimize possible variation, professionals on client’s side (e.g. developer’s project 

manager or quantity surveyor) will not be interviewed because they have different 

opinions on the adoption of technologies.  



 55 

6 FINDINGS AND ANALYSES 

 

6.1 Phase I – Testing the Labour Intensity and VATFP of Hong Kong 

Construction Industry 

 

6.1.1 Ordinary least square estimation 

 

The data are regressed by using ordinary least square (OLS) method and a parametric 

estimation of the production function (Equation [5.3]) are shown as follows: 

 

ln(Q) = A + α ln(K) + β ln(L)   [5.3] 

 

Dependent Variable: LOG(Q) 
Method: Least Squares 
Sample: 1985 2002 
Included observations: 18 

Variable Coefficient Std. Error t-Statistic Prob. 

LOG(L) 1.325727 0.266169 4.980766 0.0002
LOG(K) 0.201248 0.083842 2.400340 0.0298

A -0.815987 2.613416 -0.312230 0.7592

R-squared 0.822548     Mean dependent var 17.68697
Adjusted R-squared 0.798888     S.D. dependent var 0.292350
S.E. of regression 0.131106     Akaike info criterion -1.074615
Sum squared resid 0.257830     Schwarz criterion -0.926219
Log likelihood 12.67153     F-statistic 34.76506
Durbin-Watson stat 0.663113     Prob(F-statistic) 0.000002

Table 6.1 OLS estimation of the coefficients of transformed Cobb-Douglas Production Function 

 

6.1.2 Diagnosis tests 

 

Before analyzing the results, the reliability of the OLS estimation model has to be 

tested to ensure any interpretations made subsequently are valid. 
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The result of the Durbin-Watson test shown in Table 6.1 shows that the problem of 

positive correlation is serious in this model because the value (0.66) is much smaller 

than 2. 

 

The Breusch-Godfrey Lagrange multiplier test was carried out for determining 

second-order autocorrelation problem in the model and the results are as follows: 

 

Breusch-Godfrey Serial Correlation LM Test: 

F-statistic 3.804563  Probability 0.050032
Obs*R-squared 6.645806  Probability 0.036048

Table 6.2 Breusch-Godfrey LM test results 

 

Since the test value (Obs*R-squared value) is 6.65 which exceeds the critical value 

5.99 9, the null hypothesis of no serial correlation is rejected up to lag order 2 at 95% 

CL. Therefore, second-order autocorrelation exists. 

 

White heteroskedasticity test (cross terms) was performed to test the 

heteroskedasticity of the model. 

 

White Heteroskedasticity Test: 

F-statistic 0.879417  Probability 0.523493
Obs*R-squared 4.826927  Probability 0.437365

Table 6.3 White heteroskedasticity test (cross terms) results 

 

The Obs*R-squared value is 4.83 which does not exceed the critical value 11.07 10 of 

Chi-squared test, so the null hypothesis of no heteroskedasticity is not rejected at 95% 

CL. 

 

A correlation matrix of the model is constructed to investigate the multicollinearity 

                                                
9 This critical value is computed by EViews, up to lag order 2 at 95% CL. 
10 Chi-squared distributed with degrees of freedom 5, at 95% CL. 
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problem. The results are as follows: 

 

 LOG(K) LOG(L) 

LOG(K)  1.000000  0.488629 

LOG(L)  0.488629  1.000000 

Table 6.4 Correlation matrix of the Cobb-Douglas Production Function’s independent variables 

 

The results show that the independent variables are not highly correlated and 

multicollinearity is not severe. 

 

The diagnostic tests showed that the OLS estimation does not suffer from 

heteroskedasticity and multicollinearity. However, there are first- and second-order 

autocorrelation problems so the model is corrected by adding first- and second-order 

autoregressive components to it.  

 

Dependent Variable: LOG(Q) 
Method: Least Squares 
Sample: 1985 2002 
Included observations: 18 
Convergence achieved after 41 iterations 

Variable Coefficient Std. Error t-Statistic Prob. 

LOG(K) 0.168139 0.063218 2.659658 0.0196
LOG(L) 1.272809 0.285006 4.465899 0.0006

A 0.282284 3.673901 0.076835 0.9399
AR(1) 0.995013 0.266816 3.729212 0.0025
AR(2) -0.497293 0.266048 -1.869190 0.0843

R-squared 0.916237     Mean dependent var 17.68697
Adjusted R-squared 0.890463     S.D. dependent var 0.292350
S.E. of regression 0.096757     Akaike info criterion -1.603096
Sum squared resid 0.121705     Schwarz criterion -1.355770
Log likelihood 19.42786     F-statistic 35.54985
Durbin-Watson stat 2.157300     Prob(F-statistic) 0.000001

Inverted AR Roots    .50+.50i    .50 -.50i 

Table 6.5 OLS estimation of the coefficients of transformed Cobb-Douglas Production Function (with 

autoregressive error specification) 
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After all, it can be concluded that the OLS estimation in Table 6.5 is reliable and no 

further refinement of the model is required. Based on the parameter estimates, the 

sources of value added output growth in Hong Kong’s construction industry was then 

calculated using Equation [5.4]: dT/T = dQ/Q - (α dK/K + β dL/L). The results are 

tabulated: 

 

Period 
Value added 
growth 

Capital input 
growth 

Labour input 
growth 

VATFP growth

1985-1987 7.46% 24.75% 20.06% -22.2%
1988-1990 29.52% 5.67% 8.87% 17.3%
1991-1993 31.90% 29.75% 11.17% 12.7%
1994-1996 12.72% -21.79% 12.73% 0.3%
1997-1999 -0.32% -6.08% -6.39% 8.8%
2000-2002 -3.81% -33.42% -12.16% 17.3%
1985-2002 104.38% 59.45% 39.86% 43.7%

Table 6.6 The parametric estimation on sources of value added growth 

 

6.1.3 Analysis of OLS estimation of production function 

 

Table 6.5 shows that the adjusted coefficient of determination is about 0.92 which 

indicates that about 92% of the variations in construction output can be explained by 

the independent variables in the production function, which means this functional 

form is a good fit for the data. The F-statistic also confirms the significance of the R2 

statistic. The degree of freedom of this production function is 19 and the critical value 

at 95% CL is 2.131 11. We can notice that all t-statistics of the independent variables 

are larger than the critical value and are large enough to reject the hypothesis that the 

respective coefficients are zero at 5% level, i.e. all the empirical results of the 

independent variables are significant. The p-values which indicate the chance that the 

estimated coefficient is equal to zero further consolidates the validity of the 

                                                
11 Degree of freedom (df) =no. of observations - no. of independent variables (excluding constant) - 
1=18-2-1=15. If the smallest t statistic obtained from the model is greater than the critical t statistic at 
95% CL and 19df, then the null hypothesis of coefficient=0 can be rejected. Since |t 0.5/2, 15|=2.131< 
2.660, the hypothesis can still be confirmed. 
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coefficients because the smaller the p-value is, the more significant is the estimated 

coefficient. As a result, the independent variables’ coefficients are statistically 

significant at 95% CL. However, constant A has a low p-value and it is statistically 

insignificant, which means the null hypothesis of zero coefficient cannot be rejected at 

5% level. 

 

By estimating the coefficients using OLS method and substituting the values into 

Equation [5.3], Hong Kong construction industry’s production function can be written 

as: 

ln Q = 0 + 0.17 ln K + 1.27 ln L [6.1] 

 

Take the antilogarithms of Equation [6.1] to convert back the original form of the 

Cobb-Douglas production function in the form of Equation [5.2]: 

 

Q = K0.17 L1.27     [6.2] 

 

In the empirical results, all the signs of the coefficients of the independent variables 

are the same as expected and significant. To increase construction output, it is 

necessary to increase inputs like capital resources and labour, holding technological 

level of the industry constant. Therefore, the variables ln K (capital) and ln L (labour) 

have positive coefficients (thus positive indices for K and L in the production 

function), which means when capital inputs and/or labour inputs increase, 

construction output will increase too. 

 

The magnitudes of the coefficients also indicate the significance of the inputs in the 

industry. From the industry’s production function, labour input has a larger coefficient 

than that of capital input, which means labour has a higher input share. Larger 

magnitude implies labour inputs have greater influence on construction output. This 

confirms that the construction industry in Hong Kong is labour-intensive as the 
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industry will try to vary the amount of labour to control the output, rather than varying 

the amount of capital stock. 

 

When both capital input and labour input are increased by m, then output will 

become:  

Q’= (Km)0.17(Lm)1.27 = m(0.17+1.27)K0.17L1.27=m1.44Q  where m>1 

 

Obviously, an increase in inputs will lead to an increase output more than 

proportionately. The sum of elasticity of inputs (α+β) is greater than 1. For a normal 

Cobb-Douglas Production Function, the sum of elasticity of inputs should be equal to 

1 with constant returns to scale. Hence, the production function obtained exhibits 

increasing returns to scale. In this case, if fewer than h units are constructed, the unit 

price will be higher than that of exactly h units. This coincides with the current 

situation at firm-level that construction companies, including consultants and 

contractors, tend to pursue more jobs and produce more products like services and 

buildings, in order to achieve lower average cost per unit product. This can be done by 

sharing resources such as plant and machinery, personnel and materials, as well as 

spreading overheads over a large number of projects. Of course, another purpose of 

such action is to maintain cash flow for the company. 

 

6.1.4 Parametric estimations on value added growth and VATFP 

 

If the construction industry is really labour-intensive, then is its productivity declining 

as pointed out by some researchers? 

 

The value added construction output grew from 1985-1996 reflecting the blooming 

stage of the construction industry in Hong Kong, but it dropped after 1997 

(particularly after Asian Financial Crisis). This fall can be explained by 2 reasons: (i) 

in the private sector, Hong Kong was facing recession and the property market hit a 
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trough, so less building and construction works were carried out and (ii) major 

infrastructure projects like the Hong Kong International Airport and Tsing Ma Bridge 

had been completed. As a result, both capital and labour input growth fell in this 

period. 

 

Capital input growth was positive from 1985-1993 because construction firms 

acquired more plant and machinery to do construction works when the industry was 

blooming. From 1994-2002, capital input generally dropped more than labour input. 

This reflects that labour was difficult to be substituted by other inputs, or practitioners 

were reluctant to do so at that time. In addition, it may imply that labour was used to 

substitute capital stock, as plant and equipment required heavy investment which not 

many contractors had such ability and interest. As a consequence, labour did not drop 

as fast as capital did in that period. Again, this coincides with previous finding that 

Hong Kong construction industry is labour-intensive. 

 

Except the period of 1985-1987, VATFP growth has remained positive over time. 

Since VATFP growth reflects the combined effects of disembodied technical change, 

economies of scale, efficiency change, variations in capacity utilization and 

measurement errors (Schreyer 2001, p.16), it shows that the construction industry has 

been able to sustain certain degree of productivity through improvements in general 

knowledge of labour, better management and organizational change which are 

disembodied technical changes as mentioned in Schreyer (2001, p.20), as well as gain 

in technical efficiency. Thus, the hypothesis: low productivity in construction industry 

is due to the lack of general knowledge of labour and poor project management, is 

rebutted.  

 

It is interesting to observe a downtrend of VATFP growth in the period of 1994-1996, 

when the building industry was blooming. It is expected that contractors would 

increase their productivity so they could build faster and more in order to maximize 



 62 

their profits. Contrary, VATFP growth reduced in this period. This downtrend during 

construction industry boom can be explained as follows: 

 

(i) The speed of construction was increased at the expense of a decrease in 

productivity, as there were overloading problems of workers on sites, lack of 

control of material wastage and efficient use of resources due to poor project 

management. 

(ii) The capacity of the construction industry was not able to cope with the sudden 

extra demand for services and products, so less productive resources were 

attracted to the industry. 

 

Overall, VATFP growth shows that there have been some improvements in 

productivity resulting from disembodied technical changes; however, labour is still 

difficult to be substituted or even be used to substitute capital stock in construction 

industry. Therefore, the labour-intensive nature of the industry is confirmed. Based on 

these findings, we then go on to find out the reason why labour is more preferred by 

testing the feasibility of adopting new technologies in construction works. 
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6.2 Phase II – Economic Analysis of Advanced Construction 

Technologies 

 

Have you ever dreamed of a construction site without any humans but only robots 

working on it? In fact, there are lots of construction robots available in the market, so 

this dream may come true in future. But a contractor may ask: what can robots give to 

me? Are they white elephants? In this section, four advanced construction 

technologies are studied to see what benefits they can give to their users. Samples of 

advanced construction technologies are provided in Appendix 3. 

 

6.2.1 (A) Concrete Placing 

 

6.2.1.1 Concrete formation 

 

Concrete is a mixture of cement, fine aggregate, coarse aggregate and water. The 

proportions of each material control the strength and quality of the resultant concrete. 

 

To cast concrete of a specific mix to form a structure, the following procedures are 

commonly adopted: 

 

1. Batching – measuring the quantities of different ingredients by weight or by 

volume, required to produce concrete of a specific mix. 

2. Mixing – each constituent is thoroughly distributed inside a mixer. 

3. Transportation – After the constituents are properly mixed, concrete is formed. 

The concrete is then transported to the work place by wheel barrow, dumper, 

tipper truck, ready-mixed truck or skips and buckets. If concrete is to be poured at 

higher levels, crane and hopper may be used. 

4. Placing – concrete is distributed at its final position, e.g. formwork, in uniform 

layers and within a short period of time. 
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5. Vibration – concrete is properly compacted or vibrated to remove excessive air 

voids to ensure that it can develop the required strength. 

6. Curing – it is a practical measure to keep concrete in a moist condition during its 

early life after placing to allow it to consolidate and develop its full strength. 

 

6.2.1.2 Conventional practice 

 

Conventionally, concrete is transferred and placed to its final position by wheel 

barrows or hoists. If it is to be placed at much higher levels, cranes with hoppers are 

used. However, this method is not efficient as the delivery speed is constrained by the 

productivity of the workers and operation of the cranes. 

 

6.2.1.3 Advanced method – concrete pumping 

 

Concrete pumping can replace the traditional method for the delivery of concrete on 

site (Ganesan et al. 1996, p.44). Large volumes of concrete are transported from point 

of supply to placing position in one continuous operation through a concrete pump. In 

addition, faster pours can be achieved by controlling the rate of the pump, using a 

two-person crew consisting of the pump operator and an operator at the discharge end. 

Example of actual use of concret pump is a computer controlled mobile concrete 

distributor developed by Putzmeister AG (IAARC 1998, p.71) which allows 

operations at difficult worksites where the outriggers cannot be folded out completely 

and ensures a uniform placement of the concrete.  

 

Concrete can be formed in situ or ready-mixed. Ready-mixed concrete is supplied to 

sites in specially designed truck mixers which are basically a mobile mixing drum 

mounted on a lorry chassis. Hence, the use of ready-mixed concrete eliminates the 

batching and mixing procedures on site. When large amount of concrete is required, 

ready-mixed concrete is often preferred because it is more convenient and thus 



 65 

accelerates the construction process. 

 

6.2.1.4 Cost of concrete 

 

According to Peurifoy and Oberlender (1989, p.190), the cost of concrete in a 

structure includes the cost of aggregate, cement, water, equipment, and of labour 

mixing, transporting, and placing the concrete. When ready-mixed concrete is used, 

some of the costs are transferred from the job to the central mixing plant. The cost of 

the several items just listed will vary with the size of the job, location, quality of the 

concrete, extent to which equipment is used instead of labour, and distribution of 

concrete within the job. 

 

6.2.1.5 Economic analysis12 

 

Economic feasibility – concrete pumping 

 

The market rate of a lorry mounted concrete pump with a 23m maximum distance is 

HKD516.6/hr. 

 

C=R x pr(i,n) + Ct + H x Ce   [5.7] 

B=H x k x Cl     [5.6] 

 

When C=B, i.e. equation [5.6] = equation [5.7], then R is the breakeven rate of the 

concrete pump to the user. If R of a particular situation is larger than the market rent, 

it means the concrete pump is economically feasible in that situation. 

 

In this case, 

                                                
12 Unless or otherwise specified, the rates are adopted from Wessex Electronic Publishing (2002). The 
currency unit for the rates is GBP. Therefore, the rates will be converted to HKD in calculations. 
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Cl: Concretor hourly rate= HKD109.63/hr 

k: time saved per hour of robotized work13= 80/11.1-1=6.2hr 

 

H Cl k pr Ct Ce R 
2 109.63 6.2 1.0001 2000 16 -336.26 
3 109.63 6.2 1.0001 2000 16 -2.96 
4 109.63 6.2 1.0001 2000 16 163.69 
5 109.63 6.2 1.0001 2000 16 263.68 

10 109.63 6.2 1.0001 2000 16 463.66 
13 109.63 6.2 1.0001 2000 16 509.81 
14 109.63 6.2 1.0001 2000 16 520.80 

Table 6.7 The breakeven rates of a concrete pump under different situations 

 

Possible cost reduction – with reference to a construction task 

 

Assume there is a construction project which 500 m3 of ready-mixed concrete of 

grading 20N/mm2 is to be placed at 18m above ground level. Since grading of 

concrete is the same, labour and equipment used in transporting and placing 

ready-mixed concrete make the difference in cost. 

 

Conventional method – wheel barrows and hoist/crane 

 

Material: 

Ready-mixed concrete – dense natural aggregate BS 5328; grade: 20N/mm2 

 

Labour: 

1 crane operator 

1 operator for handling the skip 

1 concretor 

 

                                                
13 Time input of placing concrete: (a) conventional=11.1m3/hr (derived from Peurifoy and Oberlender 
1989, p.196); (b) concrete pump=80m3/hr (derived from Chudley 1999, p.122) 
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Equipment:  

1 track-mounted tower crane (capacity: 25 metre/tonnes; height under hook above 

ground up to 20m) 

A 2 m3 hand-levered concrete skip 

 

Cost of 500m3 ready-mixed concrete: 

HKD840.05/m3 x 500m3 = HKD420, 024.50 

 

According to Peurifoy and Oberlender (1989, p.196), the labour hour of a crane 

operator required to place 1 yd3 of ready-mixed concrete is 0.07, i.e., 0.09hr/m3 , 

which means a crane operator takes 0.09 hour to place 1m3 of ready-mixed concrete. 

Therefore, to place 500m3 ready-mixed concrete, 0.09x500=45hr are required. 

 

Rate of a track-mounted tower crane (inclusive of driver)14: HKD165.89/hr 

 

The cost of operating the crane in this project: 

HKD165.89/hr x 45 hr = HKD7, 465.05 

 

The cost of the hand-levered concrete skip: 

HKD23.68/hr x 45hr = HKD1, 065.49 

 

The costs of the worker who handles the skip and the concretor: 

HKD109.63/hr x 45hr x 2 = HKD9, 867.06 

 

Total project cost:  

HKD420, 324.50 + HKD7, 465.05 + HKD1, 065.49 + HKD9, 867.06  

= HKD 438, 422.1 

                                                
14 The rate is intended to apply solely to daywork carried out under and incidental to a building 
contract. The cost of drivers and attendants are included. 



 68 

New method – Concrete pumping 

 

Material: 

Ready-mixed concrete – dense natural aggregate BS 5328; grade: 20N/mm2 

 

Labour: 

1 pump operator 

1 operator at the discharge end 

1 concretor 

 

Equipment: 

1 concrete pump including hose, valve and couplers mounted on lorry, with a 

maximum distance of 23m 

 

Cost of 500m3 ready-mixed concrete: 

HKD840.05/m3 x 500m3 = HKD420, 024.50 

 

Chudley (1999, p.122) says that the hour output of a concrete pump ranges from 60m3 

to 100m3. Assume the rate of the concrete pump used in this project is 80m3/hr: 

 

To deliver 500m3 ready-mixed concrete, it takes 500/80 hr = 6.25hr 

 

The rate of a lorry mounted concrete pump with a 23m maximum distance: 

HKD516.6/hr 

The salary for the pump operator15: HKD100.19/hr 

 

The cost of running the concrete pump in this project: 
                                                
15 Levett and Bailey Chartered Quantity Surveyors Ltd, Cost data. Available from 
http://www.levettandbailey.com/cost-data/hongkong/cost-labourwages-data-recent12mths.html 
[Accessed on 20 November 2004]. To be consistent with the base date of the rates published in Wessex 
Electronic Publishing (2002), the rate of plant operator in July 2003 is taken. 
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HKD516.6/hr x 6.25hr + HKD100.19/hr x 6.25 hr = HKD3, 854.94 

 

The salary for the operator and the concretor at the discharge end: 

HKD109.63/hr x 6.25hr x 2 = HKD1, 370.43 

 

Total project cost:  

HKD420, 024.50 + HKD3, 854.94 + HKD1, 370.43 

= HKD425, 249.9 

 

In applying concrete pumps for placing concrete, the following limitations have to be 

concerned: 

1. Concrete supply must be consistent and regular; therefore well-planned and 

organized deliveries of ready-mixed concrete are crucial to ensure a smooth 

running of the system. 

2. Concrete mix must be properly designed and controlled since not all concrete 

mixes can be pumped. The concrete is pumped under high pressure which can 

cause bleeding and segregation of the mix; therefore the mix must be properly 

designed to avoid these problems as well as having good cohesiveness, plasticity 

and self-lubricating properties to enable it to be pumped through the system 

without excessive pressure and without causing blockages. 
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6.2.2 (B) Pile Driving 

 

Piles are used to transmit foundation loads to strata of adequate bearing capacity and 

to eliminate settlement from the consolidation of overlying materials (RS Means 1990, 

p.62). This is the case when soils near the ground are too weak to support the load and 

excessive settlement will cause damages to the structure. 

 

Piles can be made of timber, concrete, prestressed concrete and steel. In Hong Kong, 

most of the buildings are high-rise structures and thus impose a substantial loading to 

the ground; stronger piles like prestressed concrete piles or steel H-columns are more 

commonly used. 

 

In addition, piles can also be interlocked together to form a cofferdam in earth or 

water to exclude soil and/or water from a construction area. 

 

Piles can be classified according to the mode of pile installation. 

 

 Displacement pile - a solid pile, or hollow pile driven with its tip closed, which 

displaces an equivalent soil volume by compaction or by lateral or vertical 

displacement of the soil. No soil is removed from the ground. 

 

 Replacement pile - constructed by excavating a shaft and replacing the soil with 

concrete and reinforcement. 

 

 Hand-dug caisson - a cylinder shaft formed in the ground and the shaft is 

excavated in stages by hand 

 

In this section, we will focus on displacement pile. 
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6.2.2.1 Pile driving plant 

 

Displacement piles are generally driven into the ground by holding them in the correct 

position against the piling frame and applying hammer blows to the head of the pile. 

Piles can also be driven into the ground by vibration where soft clays, sands and 

gravels are encountered.  

 

Pile-driving plant consists of: 

 

 Piling frames – steel frames are commonly used, these being mounted on 

swiveling traveling wheels, fitted with screw jacks, so that the frame leaders to 

which the pile is attached and which guided the pile may be plumbed to a true 

vertical position. Frames are adjustable which the leaders may be canted to an 

angle, thus permitting the piles to be driven on the rake. 

 

 Hanging leaders – constructed of channels suitably held together so as to form 

leaders for the pile. They are suspended from the jib of a crane or derrick. 

 

 Pile hammers – there are four types of hammers (Chudley 1999, p.217): 

 

(a) Drop hammers are blocks of cast iron or steel and are raised by a cable 

attached to a winch. The hammer is allowed to fall freely by gravity onto 

the pile head. 

(b) Single-acting hammers are activated by steam or compressed air; these have 

much the same effect as drop hammers in that the hammer falls freely by 

gravity through a distance. The hammer can be lifted by a piston rod or in 

the other case, the piston is static and the cylinder is raised and allowed to 

fall freely. 

(c) Double-acting hammers are activated by steam or compressed air and 
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consist of a heavy fixed cylinder in which there is a light piston or ram 

which delivers a large number of rapid light blows in a short space of time. 

(d) Diesel hammers are suspended from a crane or mounted in the leaders of a 

piling frame. A measured amount of liquid fuel is fed into a cup formed in 

the based of the cylinder. The air being compressed by the falling ram is 

trapped between the ram and the anvil which applies a preloading force to 

the pile. The displaced fuel, at the precise moment of impact, results in an 

explosion which applies a downward force to the pile and an upward force 

on the ram, which returns to its starting position to recommence the 

complete cycle. 

 

6.2.2.2 Conventional practices 

 

To construct a sheet pile cofferdam, it is popular to use vibratory hammer to drive the 

steel sheet piles into the ground. The procedures of installing a steel sheet pile by a 

vibratory hammer are as follows: 

 

1. A sheet pile is lifted up by cable to the correct position. 

2. The sheet pile is lowered onto the ground. 

3. After checking the verticality of the pile, a vibrating unit is mounted on the pile 

head. 

4. The vibrating unit transmits vibrations of a required frequency and amplitude 

down the length of the pile by two eccentric rotors propelled in opposite 

directions to generate vertical vibrations. 

5. The sheet pile sinks into the ground under its own weight and that of the 

vibrating unit under the aid of continuous vibrations. 

 

For a high-rise building’s foundation, stronger steel H-piles are used. H-piles are often 

driven into the ground onto the bearing rock by diesel hammers. The procedures of 
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installing a steel H-pile by a diesel hammer are as follows: 

 

1. A steel H-pile is lifted up by cable from piling rig. 

2. The H-pile is held in position against the piling frame. 

3. The piling rig moves the pile to the correct position marked on for driving. 

4. The H-pile is lowered on the ground. 

5. Engineers check the verticality of the H-pile by means of a spirit level. If the pile 

is not vertical, adjustments have to be made.  

6. When everything is checked properly and ready, the hammer starts driving the 

H-pile into the ground until the required level is reached. 

7. The diesel hammer is lifted and the H-pile is installed. 

 

6.2.2.3 Advanced method – SideGrip Vibratory Pile Driver 

 

Sonic SideGrip Vibratory Pile Driver with Movax Robotic Technology is an 

excavator-mounted attachment with articulating arms and side-gripping jaws that 

speed and simplify the pile driving process. It grips sheet pile and pipe and H-beam 

piles from the side to perform all operations, including lifting, driving, and extracting 

piles and compacting16. According to Hercules Machinery Corporation (2004), the 

articulating features of Side Grip Pile Driver (SGPD) allows the operator to load, 

unload, separate, stack, place, drive and extract sheets of piling without ever leaving 

the cab. The 360° rotation and the 3-axis of movement make it possible to pick up 

piling, transport it across the jobsite, place it into position and drive it into the soil 

with one motion. In addition to being a safety benefit, this capability eliminates the 

need for peripheral equipment such as cranes, loaders and lulls. It also significantly 

reduces the manpower that has typically been used in piling operation. 

 

                                                
16 This system was the winner of the “2001 NOVA Award” instituted by the Construction Innovation 
Forum. More details available from http://www.cif.org/Nom2001/PreWin01.htm#SideGripPileDriver 
[Accessed on 6 December 2004] 
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The SGPD mounts on an 18-ton excavator or larger using the same pins as a bucket. It 

comes in a variety of sizes with dynamic drive forces ranging from 40 to 100 tons. 

High frequency vibration of 3,000 cycles per minute coupled with the 15 tons of 

crowd force produced by the excavator effectively drive pile into different types of soil 

condition. 

 

In addition, a computerized steering system with a digital real-time graphic display 

assists the operator when driving the pile. By utilizing boom and stick sensors, it 

allows the operator to automatically drive pile to within 1° of plumb. 

 

6.2.2.4 Cost of pile driving work 

 

According to Spence (1996, p.56), several factors contribute to the total cost of pile 

driving work. These factors are: 

 

 The cost involved in hauling the piling plant. 

 The cost involved in the way of site excavation, leveling, etc. in readiness for the 

erection of the piling plant, should this be necessary. 

 The cost of erecting and of the dismantling of the piling plant. 

 The cost of preparing the piles. 

 The cost of pitching and driving the piles to the requisite depths. 

 

6.2.2.5 Economic analysis17 

 

Economic feasibility – SGPD 

 

The market rate of SGPD is HKD486.25/hr. 

                                                
17 Unless otherwise specified, the rates are adopted from Davis Langdon & Everest ed. (2001). The 
currency unit for the rates is GBP. Therefore, the rates will be converted to HKD in calculations. 
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C=R x pr(i,n) + Ct + H x Ce   [5.7] 

B=H x k x Cl     [5.6] 

 

When C=B, i.e. equation [5.6] = equation [5.7], then R is the breakeven rate of SGPD 

to the user. If R of a particular situation is larger than the market rent, it means SGPD 

is economically feasible in that situation. 

 

In this case, 

Cl: Vibratory hammer operator hourly rate= HKD163.45/hr 

k: time saved per hour of robotized work18= 78.13/10.42-1=6.5hr 

 

H Cl k pr Ct Ce R 
2 163.45 6.5 1.0001 2000 16 46.42 
3 163.45 6.5 1.0001 2000 16 379.72 
4 163.45 6.5 1.0001 2000 16 546.37 
5 163.45 6.5 1.0001 2000 16 646.36 

10 163.45 6.5 1.0001 2000 16 846.34 

Table 6.8 The breakeven rates of SGPD under different situations 

 

Possible cost reduction --- with reference to a construction task 

 

Assume a steel sheet pile cofferdam of 5,000 sq.ft. is to be constructed. The job 

dimension is 200 wall feet, 25 ft long. Since material used, i.e., interlocking steel sheet 

piles are the same, only labour and plant costs are calculated. 

 

Conventional method --- vibratory hammer 

 

Labour: 

2 operators for operating the crane and the vibratory hammer respectively 

                                                
18 Time input of placing concrete: (a) conventional=10.42sq.ft/hr (derived from from RS Means 1990, 
p.82); (b) SGPD=78.13sq. ft/hr (derived from Hercules Machinery Corporation 2004) 
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1 attendee for handling the sheet piles 

4 pile drivers 

 

Plant: 

1 40-ton truck mounted mobile crane 

1 vibratory hammer --- cent. force 59 tonne, pulling force 36 tonne 

 

Production rate for using 4 pile drivers: 10.42 sq.ft/man-hr x 4 = 41.68 sq.ft/man-hr 

Hours to complete the project: 5,000/41.68= 119.96 hr 

 

Hourly rate of a crane operator: HKD171.77/hr 

Hourly rate of a vibratory hammer operator: HKD163.45/hr 

Hourly rate of an attendee at loading: HKD136.33/hr 

Hourly rate of a pile driver: HKD 163.45/hr 

 

The project labour cost 

= HKD (171.77 + 163.45 + 136.33 + 4 x 163.45)/hr x 119.96 hr 

= HKD134, 996.99 

 

Hourly rate of a 40-ton crane: HKD705.59 

Hourly rate of a vibratory hammer: HKD1043.39 

 

The project plant cost 

= HKD (705.59 + 1043.39)/hr x 119.96 hr 

= HKD209, 807.64 

 

Total project labour and plant cost 

= HKD134, 996.99 + HKD 209, 807.64 

= HKD344, 804.63 
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New method – SGPD 

 

Labour: 

1 operator for operating the excavator 

1 labour for handling the sheet piles 

 

Plant: 

1 40-ton excavator 

1 SGPD 

 

Production rate: 78.13 sq.ft/man-hr 

Hours to complete the project: 5000/78.13 = 64.00 hr 

 

Hourly rate of an excavator operator: HKD163.45/hr 

Hourly rate of an attendee at loading: HKD136.33/hr 

 

Total project labour cost: HKD (163.45 + 136.33) x 64hr = HKD19, 185.92 

 

Hourly rate of an excavator: HKD848.23/hr 

Hourly rate of a SGPD19: HKD486.25/hr 

 

Total project plant cost 

=HKD (848.23 + 486.25)/hr x 64hr 

=HKD85, 406.72 

 

Total labour and plant cost: 

=HKD19, 185.92 + HKD85, 406.72 

=HKD104, 592.64 

                                                
19 Ibid 
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6.2.3 (C) Painting 

 

The functions of applying paint to the elements, components, trims and fittings of a 

building are to impart colour and to provide a protective coating which will increase 

the durability of the member (Chudley 1999, p.356). 

 

Most paints are liquids containing pigments and may be applied in one, two, three or 

more coats, with sufficient time allowed between successive coats to permit the prior 

coat to dry thoroughly. To achieve a good durable finish the preparation of the 

applying surface and the correct application of the paint are of the utmost importance. 

The first coat (prime coat) should fill the pores of the surface, if such exist, and bond 

securely to the surface to serve as a base for the other coats. Paints can be applied 

onto a surface with a brush, a roller, or a spray gun. 

 

6.2.3.1 Conventional method 

 

As mentioned before, paints can be applied onto a surface by brushing, rolling or 

spraying; the first two methods involve direct contact of apparatus with the surface to 

be painted while spraying does not. Generally, painting is done by brushing or rolling 

in Hong Kong. 

 

Ganesan et al. (1996, p.42) regarded the trade “painter” as a labour intensive activity. 

Painter’s skills determine the quality of the finish and any acceleration of the works 

may lead to sub-standard finish; however, each painter can only brush on his/her own. 

If one wants to increase productivity, one must employ more painters to do the works. 

Hence, preparing a quality painted surface could be a time-consuming and labour 

intensive process. 

 

The operations required to prepare a surface for painting in order to apply complete 
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paint coverage will vary with the kind of surface to be painted, number of coats to be 

applied, and kind of paint used. For example, before paint is applied to a plaster 

surface, sealer is often applied first to fill the pores and neutralize the alkali in the 

plaster; or the surface of new metal may be covered with a thin layer of oil which 

must be removed with warm water and soap prior to applying the prime coat of paint. 

 

In addition, access equipment such as ladders, scaffold and foot boards will be 

required if surfaces going to be painted are of higher levels. 

 

6.2.3.2 Advanced painting methods 

 

(a) Robotic system for painting 

 

Spraying can decrease the application time, hence increase the productivity of the 

painting process. The whole spray painting process can be twice as fast as those 

conventional application methods20. As a result, spray painting has already started to 

substitute brush painting or roller painting in other developed countries like the USA 

and Japan. 

 

A basic spray painting system consists of a spray painting gun, a pressurized paint 

container, a compressed air system, and flexible tubes connecting it all together. The 

system uses air to atomize paint and to provide a spray or fan pattern. Paint flows 

through a tube from a pressurized paint pot. Atomizing air is supplied to the gun tip. 

The pressure in the paint pot pushes the required amount of paint through the paint 

lines to the gun tip. There, the atomizing air breaks the paint into small particles and 

propels it to the surface that is being painted (Crumpler 1997). By keeping the 

distance between the gun tip and the surface around 6-8 inches and moving the spray 

                                                
20 RS Means (1990, p.502) lists out the application time in man-hours for painting. The time required 
for painting concrete wall with a roller is 0.004 man-hours per square foot while that with a spray gun 
is 0.002 man-hours per square foot. 



 80 

gun, the surface can be painted easily. 

 

Technological advancements allow further improvement in productivity; powerful 

computers and complex mechanical engineering technologies have led to the 

appearance of applicable robots in construction industry. The International 

Association for Automation and Robotics in Construction (IAARC) (1998) contains a 

catalogue of construction robots, which lists and describes 76 working robots and 

automated machines in construction. 2 of these 76 robots are painting robots, 

produced and utilized by Japan-based construction companies Kajima Corporation 

and Taisei Corporation respectively. This shows that such technologies are actually 

not new and have been adopted in the construction industry for some time; however, 

their applications are rare in Hong Kong. 

 

Another factor which stimulated the robotization of painting is that spray painting will 

create unhealthy cloud of paint sprayed in the air which is hazardous to humans 

(Kahane and Rosenfeld 2004); such situation will be even worse in interior working 

environment without proper ventilation. Therefore, it is necessary to substitute labour 

with robots in this case. 

 

A robotic painting system consists of a robot with sprayers mounted as an end-tool on 

its arm. The robot’s ability to carry heavy tools allows designing an end-effector that 

combines several sprayers, able to spray simultaneously. This is achieved by 

mounting the sprayers on a metal bar fixed to the manipulator of the robot. Although 

the end of the manipulator can only move within the nominal work envelope of the 

robot, the metal bar with the sprayers can cover surface beyond the nominal work 

envelope of the robot (Kahane and Rosenfeld 2004). In this way, the output of the 

robot can be increased. 

 

To paint a surface, various kinds of information such as dimensions and features of 
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the object and the plan of the workstation will be inputted into the robot. For locating 

the robot its actual location, navigation method suggested by Pritschow et al. (1996) 

can be used - by measuring the distance to two nearby nonparallel walls using 

distance sensors, the robot’s position is determined accordingly. The robot will then 

divide the surface into several painting strips. The robot will move the end-effector 

along each strip. During the movement, each sprayer is activated or de-activated 

according to the presence of openings (doors, windows) in front of it. After the robot 

finished one painting strip, it will move to the other strips until the work is finished. 

 

(b) High-volume, low-pressure (HVLP) spray painting 

 

Conventional spray painting systems use low volume of air at high pressure (LVHP) 

to atomize paint, which cause the paint to literally bounce back from the surface and 

create large amounts of overspray (clouds, mist). These clouds or mist will lead to an 

unhealthy environment for workers to work in and costly paint wastage. Paint wastage 

can be reflected from the transfer efficiency of the system, i.e., the theoretical 

coverage of paint versus the actual coverage after the paint is applied (Crumpler 1998). 

The transfer efficiency of LVHP systems ranges from 20% to 50% (Crumpler 1998), 

which means only half of the paint applied sticks to the surface. Although spraying 

can improve the speed of painting, wastage problem hinders the extensive use of this 

method. 

 

High-volume, low-pressure (HVLP) spray systems replace the high-pressure air used 

in conventional spray systems with a high volume of air to atomize paint (Mulford 

2002), so the spray is not blown out at high speed, thus it is softer and there is much 

less bounce-back. These results in less waste of material and less “fog” in the spray 

booth or spray area. The transfer efficiency of HVLP systems can be up to 90% for 

turbine HVLP guns (Crumpler 1998). The reason for the greater transfer efficiency is 

low velocity. Low velocity results in less bounce back, less blow-by, and reduced 
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paint usage. 

 

6.2.3.3 Cost of painting 

 

The cost of painting includes materials, i.e. paints, labour, and equipment like brushes, 

roller or spray gun, depending on which method is used. 

 

The covering capacity of paint is generally expressed as the area covered by the paint 

per volume of one coat (Peurifoy and Oberlender 1989, p.312). Since the covering 

capacity determines the amount of paint required for a surface, it will have influence 

on the cost of painting. The covering capacity of paint varies with several factors, 

according to Peurifoy and Oberlender (1989, p. 313), these factors are as follows: 

 

1. The kind of surface painted; 

2. The porosity of the surface; 

3. The extent to which paint is spread as it is applied; 

4. The extent to which a thinner is added to the paint; and 

5. The temperature of the air - thinner coats are possible during warm weather, 

resulting in greater coverage. 

 

6.2.3.4 Economic analysis21 

 

Economic feasibility – Robotic system for painting 

 

Since the robots are developed and used by the companies for their own projects, no 

lease or rental data is available; thus, an investment feasibility study is carried out. 

According to Warszawski (1999, p.416), the investment in such robot could be around 

                                                
21 Unless otherwise specified, the rates are adopted from Wessex Electronic Publishing (2002). The 
currency unit for the rates is GBP. Therefore, the rates will be converted to HKD in calculations. 
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HKD 661, 300. The initial capital investment, therefore, would not be lower than this 

figure. 

 

C=V x pr(i,n) + Cm + (H/h) x Ct + H x Ce   [5.5] 

B=H x k x Cl        [5.6] 

 

When C=B, i.e. equation [5.5] = equation [5.6], then V is the breakeven value of the 

robot to the user. 

 

In this case, 

Cl: Construction plant mechanic cost per hour22 = HKD 825.6/8 = HKD 103.2/hr 

k: time saved per hour of robotized work23 = 0.086/0.019 – 1 = 3.52 hr 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                
22 Census and Statistics Department (2004a) 
23 Time input of painting a concrete wall for 2 coats of paint: (a)with a brush= 0.086hr/m2 (RS Means 
1990, p. 502); (b) with a painting robot= 0.019 hr/m2 (Kahane and Rosenfeld 2004) 
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H h H/h Cl k pr Cm Ct Ce V 

600 120 5 103.2 3.52 0.203 63003.38 5000 16 592881.85 
600 60 10 103.2 3.52 0.203 54752.56 5000 16 510373.60 
600 30 20 103.2 3.52 0.203 38250.91 5000 16 345357.10 

600 15 40 103.2 3.52 0.203 5247.61 5000 16 15324.09 

700 140 5 103.2 3.52 0.203 74879.09 5000 16 705446.86 
700 70 10 103.2 3.52 0.203 66628.26 5000 16 622938.61 
700 35 20 103.2 3.52 0.203 50126.61 5000 16 457922.11 

700 17.5 40 103.2 3.52 0.203 17123.31 5000 16 127889.11 

800 160 5 103.2 3.52 0.203 86754.79 5000 16 818011.88 
800 80 10 103.2 3.52 0.203 78503.96 5000 16 735503.63 
800 40 20 103.2 3.52 0.203 62002.31 5000 16 570487.13 

800 20 40 103.2 3.52 0.203 28999.01 5000 16 240454.13 
1000 200 5 103.2 3.52 0.203 110506.19 5000 16 1043141.91 

1000 100 10 103.2 3.52 0.203 102255.37 5000 16 960633.66 

1000 50 20 103.2 3.52 0.203 85753.72 5000 16 795617.16 

1000 25 40 103.2 3.52 0.203 52750.42 5000 16 465584.16 
1100 220 5 103.2 3.52 0.203 122381.89 5000 16 1155706.93 
1100 110 10 103.2 3.52 0.203 114131.07 5000 16 1073198.68 

1100 55 20 103.2 3.52 0.203 97629.42 5000 16 908182.18 
1100 27.5 40 103.2 3.52 0.203 64626.12 5000 16 578149.17 

1200 240 5 103.2 3.52 0.203 134257.59 5000 16 1268271.95 
1200 120 10 103.2 3.52 0.203 126006.77 5000 16 1185763.70 
1200 60 20 103.2 3.52 0.203 109505.12 5000 16 1020747.19 
1200 30 40 103.2 3.52 0.203 76501.82 5000 16 690714.19 

Table 6.9 The breakeven values of a painting robot under different situations 

 

If the V value of a particular situation is larger than the initial capital investment, 

which means the robot is economically feasible in that situation. 

  

Possible cost reduction – with a reference to a construction task 

 

Assume a flat with 200m2 plastered wall area to be painted and the height of the wall 

is 2.70m. Two coats of emulsion paint are applied. 
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Conventional method – brushing 

 

Material: 

Emulsion paint 

 

Labour: 

Painter x 1 

 

Equipment: 

Ladder 

Brush 

 

Emulsion paint required: 

According to E&FN Spon (1998, p.218), 1 litre of standard emulsion paint can cover 

up to 15 m2. Hence, 200/15 x 2=26.67 L of emulsion paint is needed for this task. 

 

Total Paint cost24  

= 26.67 L x HKD 47.36/L = HKD1, 262.93 

 

Time required to finish this task: 

= 200 m2 x 0.086 hr/m2 

= 17.2 hr 

 

Total labour cost25 

=17.2 hr x 2 x HKD110.3/hr 

=HKD3, 794.32 

 

                                                
24 A 2.5 % waste factor per litre has been counted. 
25 Census and Statistics Department (2004a) 
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Total equipment cost 

=HKD200 

 

Total project cost 

=HKD1, 262.93 + HKD3, 794.32 + HKD200 

=HKD5, 257.25 

 

(i) New method – robotic painting system 

 

Material: 

Emulsion paint 

 

Labour: 

Operator x 1 

 

Equipment: 

Painting robot 

 

Total paint cost26= HKD1, 262.93/0.5=HKD2, 525.86 

 

Time required to finish the task: 

=200 m2 x 0.019 hr/m2 

=3.8hr 

 

Total labour cost for employing a construction plant operator27 

=3.8hr x HKD103.2/hr 

=HKD392.16 

                                                
26 A 50% waste factor is assumed for the use of LVHP spray guns. 
27 Census and Statistics Department (2004a) 
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Total equipment cost 

=Energy cost + transfer cost 

=HKD2/hr x 3.8hr + HKD2, 000 

=HKD2, 007.60 

 

Total project cost 

=HKD2, 525.86 + HKD392.16 + HKD2, 007.60 

=HKD4, 925.62 

 

(ii) New method - High-volume, low-pressure (HVLP) spray painting 

 

Material: 

Emulsion paint 

 

Labour: 

Painter x 1 

 

Equipment: 

HVLP spray gun 

 

Emulsion paint required: 

According to E&FN Spon (1998, p.218), 1 litre of standard emulsion paint can cover 

up to 15 m2. Hence, 200/15 x 108%28 x 2 = 28.8 L of emulsion paint is needed for 

this task. 

 

Total Paint cost  

= 28.8 L x HKD 47.36/L = HKD1, 364.0 

                                                
28 Difference in transfer efficiency between HVLP and brushing is 97.5%-90%=7.5%, so the amount 
of paint required in new method is 1/ (1-7.5%) = 108% of the conventional method. 
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Time required to finish this task: 

= 200 m2 x 0.043 hr/m2 29 

= 8.6 hr 

 

Total labour cost30 

=8.6 hr x HKD110.3/hr 

=HKD948.6 

 

Total equipment cost 

=HKD23.68/hr x 8.6hr 

=HKD203.7 

 

Total project cost 

=HKD1, 364.0 + HKD948.6 + HKD203.7 

=HKD2, 516.3 

                                                
29 Time input of painting a concrete wall for 2 coats of paint: (a)with a brush= 0.086hr/m2; (b) with a 
spray gun=0.043hr/m2 (RS Means 1990, p. 502) 
30 Census and Statistics Department (2004a) 
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6.2.4 (D) Placement of Boards 

 

6.2.4.1 Conventional practice 

 

Erection of partitions inside the building space is very important part of the building 

process. One of the most widely accepted methods is their erection with gypsum 

boards (plasterboards) which are attached to light steel framing with screws. Such 

finish allows placement of insulation, electricity conduits and other kinds of 

installations between the board and the main wall or floor element. 

 

Plasterboard can weigh 8.3-17.1 kg/m2 depending on its thickness (Wessex Electronic 

Publishing 2002). Hence, placing plasterboards on partitions, walls or ceilings is a 

strenuous task when performed manually; temporary staging composed of stepladders 

and staging boards have to be set up if plasterboards are to be placed at higher levels. 

 

In 2003, among 4,546 of the construction injuries cases reported, about 16% of them 

were caused by lifting and carrying31, which is the third major cause of injuries after 

slipping, tripping or falling on the same level (19%) and hitting by moving object 

(16.7%)32; while in 2002, injuries caused by lifting and carry accounted to 14% of 

total 6,369 construction accidents33. From these figures, it can be deduced that 

construction workers are susceptible to get hurt when moving or lifting heavy items. 

There are many chances which workers can hurt themselves during the placement of 

boards, for example, when workers are lifting plasterboards to construct ceiling, they 

may hurt their bodies due to improper movements or lose balance and fall down from 

work stage. 

 
                                                
31 Labour Department (2004). Occupational Injuries in Construction Industry in 2003 
- analysed by Type of Accident. Available from 
http://www.labour.gov.hk/eng/osh/statistics/content/st-oi-4.html [Accessed on 25 December 2004] See 
also Appendix 1 
32 Ibid 
33 Ibid 
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6.2.4.2 Advanced method – light weight manipulator 

 

In order to reduce the chance of getting hurt, apart from adopting safe lifting 

procedures, one direct method is to substitute labour with robot. In Japan, Tokyu 

Construction Co. Ltd. developed a robotic manipulator for handling heavy equipment 

and machines, and to fit interior materials (IAARC 1998, p.103; Warszawski 1999, 

p.378). Similar robots have also been developed by Taisei Construction Corporation 

and Shimizu Corporation (Warszawski 1999, p.378). These robots are designated to 

do heavy tasks – pick a board from an adjacent carriage, place it at the required 

location and hold it until it is attached to the frame by the worker. They can handle 

boards much larger and heavier than humans and eliminate the physical effort 

associated with the placing and fixing process.  

 

As reported by IAARC (1998, p.103), Tokyu Construction’s manipulator can have a 

carrying capacity of 150kg and a workable ceiling height about 3m and can serve as a 

mobile staging with a strong and flat work stage, so the setting up of temporary 

staging is not necessary. It is operated by a worker using a handle near its tip. It is 

provided with a reversing arm that turns up and down by 180°, which makes it 

possible to suck and fit interior materials as they are. Suction grippers are used as 

end-effectors and a contact sensor is provided to monitor the pressing force, and if an 

excessive force is applied in fitting boards or other materials, the boom of the robot 

will stop operation to prevent damages. 

 

It should be emphasized that in general, even with robotic assistance, a large part of 

the work like the fastening and fitting of boards near openings and corners, is done 

with manual labour. The main advantage of the manipulator is that it eliminates the 

heavy tasks in the procedure of placement of boards. Therefore, it is found to generate 

the greater productivity gain in ceiling work than work in partitions (Warszawski 1999, 

p.378), because lots of effort is saved in lifting up the plasterboards to ceiling level. 
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6.2.4.3 Cost of placing plasterboards 

 

The cost of placing plasterboards includes the cost of the plasterboards, labour, 

equipment costs like screws and electric screw driver, energy cost, and the cost of 

temporary work stage if the work is on ceiling. 

 

6.2.4.4 Economics analysis34 

 

Economic feasibility – light weight manipulator 

 

The official announced price of this robot is about HKD523, 320 (IAARC 1998, p. 

103). 

 

C=V x pr(i,n) + Cm + (H/h) x Ct + H x Ce   [5.5] 

B=H x k x Cl        [5.6] 

 

When C=B, i.e. equation [5.5] = equation [5.6], then V is the breakeven value of the 

robot to the user. If the V value of a particular situation is larger than the initial capital 

investment, it means the robot is economically feasible in that situation. 

 

In this case, 

Cl: Construction general worker hourly rate35= HKD578.5/8 = HKD72.3/hr 

k: time saved per hour of robotized work36= 0.226/0.033-1=5.85hr 

 

 

 
                                                
34 Unless otherwise specified, the rates are adopted from Wessex Electronic Publishing (2002). The 
currency unit for the rates is GBP. Therefore, the rates will be converted to HKD in calculations. 
35 Census and Statistics Department (2004a) 
36 Time input of placing plasterboard on ceiling of 3m high: (a) conventional=0.226hr/m2 (derived 
from RS Means 1990, p.479); (b)robotic manipulator=0.033hr/m2 (derived from Warszawski 1999, 
p.378) 
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H h H/h Cl k pr Cm Ct Ce V 
400 80 5 72.3 5.85 0.203 46635.13 5000 16 448999.34 
500 100 5 72.3 5.85 0.203 60356.62 5000 16 581876.24 
500 50 10 72.3 5.85 0.203 52105.80 5000 16 499367.99 
500 25 20 72.3 5.85 0.203 35604.15 5000 16 334351.49 
500 12.5 40 72.3 5.85 0.203 2600.85 5000 16 4318.48 
600 120 5 72.3 5.85 0.203 74078.11 5000 16 714753.14 
600 60 10 72.3 5.85 0.203 65827.29 5000 16 632244.88 
600 30 20 72.3 5.85 0.203 49325.64 5000 16 467228.38 
600 15 40 72.3 5.85 0.203 16322.34 5000 16 137195.38 
700 140 5 72.3 5.85 0.203 87799.60 5000 16 847630.03 
700 70 10 72.3 5.85 0.203 79548.78 5000 16 765121.78 
700 35 20 72.3 5.85 0.203 63047.13 5000 16 600105.28 
700 17.5 40 72.3 5.85 0.203 30043.83 5000 16 270072.28 
800 160 5 72.3 5.85 0.203 101521.09 5000 16 980506.93 
800 80 10 72.3 5.85 0.203 93270.27 5000 16 897998.68 
800 40 20 72.3 5.85 0.203 76768.62 5000 16 732982.18 
800 20 40 72.3 5.85 0.203 43765.32 5000 16 402949.17 
900 180 5 72.3 5.85 0.203 115242.58 5000 16 1113383.83 
900 90 10 72.3 5.85 0.203 106991.76 5000 16 1030875.58 
900 45 20 72.3 5.85 0.203 90490.11 5000 16 865859.08 
900 22.5 40 72.3 5.85 0.203 57486.81 5000 16 535826.07 

Table 6.10 The breakeven values of a light weight manipulator under different situations 

 

Possible cost reduction – with a reference to a construction task 

 

Assume a ceiling of area 20m2 and height 3m is designed to be covered with 

plasterboards (12.5mm Gyproc wallboard in 1800x1900 panels) in one thickness. The 

channels of softwood joists have been installed. The plasterboards will be fixed to the 

joists by screws and all the joints will be filled, taped and finished flush; holes will be 

filled with joint filler. 

 

Conventional method – manual placement of boards 

 

Material: 

Plasterboards 
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Screws 

 

Equipment: 

Access staging 

Electric screw driver 

 

Labour: 

General workers x 2 

 

The specialist price for one thickness of plasterboard fixed in accordance with the 

requirements37: HKD347.99/m2 

 

Total project cost:  

= HKD347.99/m2 x 20m2  

= HKD6, 959.80 

 

New method – light weight manipulator 

 

Material: 

Plasterboards 

Screws 

 

Equipment: 

Light weight manipulator 

Electric screw driver 

 

Labour: 

General worker x 1 

                                                
37 The rates of supplying the plasterboards and filling of joints are counted. 
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Plasterboard cost = HKD33.15/m2 x 20m2=HKD663 

Screw cost = HKD50 

Total material cost = HKD663 + HKD50=HKD713 

 

Time required to finish the job=20m2 x 0.033hr/m2 = 0.66hr 

 

Total equipment cost 

= energy cost + transfer cost + electric screw driver cost 

= HKD2/hr x 0.66hr + HKD2, 000 + HKD500 = HKD2, 501.32 

 

Total labour cost (including the cost of assigning worker to fill and tape the joints)  

= HKD129.44/m2 x 20m2 = HKD2, 588.74 

 

Total project cost 

=HKD713 + HKD2, 501.32 + HKD2, 588.74 

=HKD5, 803.06 
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6.3 Evaluation of Phase II Results 

 

Four types of construction work have been examined on their breakeven values for 

renting or capital investment and cost associated in using conventional and advanced 

methods with reference to a construction work. Based on these results, percentage of 

cost reduction compared with conventional method, cost per unit work and 

improvement acquired after adopting advanced methods are analyzed and exhibited in 

Table 6.11. 

 

The minimum robot working hour to achieve breakeven rent for concrete pumping is 

14hr/job, which means for delivering small amount of concrete, say a few metre cubes, 

it will not be cost-effective to use concrete pump; instead, traditional methods like 

wheeling or hoisting are preferred. From the cost per unit work, it is observed that 

concrete pumping can help to reduce the cost in transporting and placing concrete in 

large volumes at high levels. In this example, the cost is reduced by about 3.0% after 

adopting concrete pumping in delivering concrete. This tangible benefit is created due 

to the increase in productivity. Concrete pumping also provides intangible benefit like 

improvement in safety, as workers’ chances of being hit by the moving buckets and 

falling objects from crane are eliminated. However, there are constraints related to 

concrete supply and concrete mix for this method so it may not be applicable even it 

is proved to be cost-effective in certain projects. 

 

The minimum robot working hour to achieve breakeven rent for using SGPD is 

4hr/job, which means it is suitable for jobs of medium to large scale. In the sheet pile 

driving example given in previous section, it demonstrates the advantage of SGPD – 

high production rate. Its production rate is nearly 7.5 times to that of conventional 

method using one pile driver. Obviously, by shortening the duration of construction 

process, the employment of labour is reduced and cost is saved. Moreover, SGPD 

reduces the plant cost because it helps avoid the use of expensive machinery like  
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vibratory hammer. In this example, near 30% of the total labour and plant cost is 

saved after SGPD is adopted. SGPD’s intangible advantage is its accuracy in driving 

piles. Since SGPD is equipped with a computerized steering system, it aids the 

operator to drive the piles precisely and thus errors can be reduced. As a result, 

reinstatement of piles, which is a waste of time and resources, can be avoided. 

 

Although the paint cost and equipment cost of the robotic painting system are higher 

that those of brushing, labour cost is much reduced through the adoption of the 

painting robot because of improvement in productivity. After all, the cost per unit 

work after using the painting robot is lowered by 6.3%. It should be emphasized that 

though the robot working hour per year is 700hr, extensive employment of the robot 

on site, i.e. longer robot working hour per site (lower H/h ratio), is required to achieve 

the breakeven value. When the robot working hours per year is 1200 or above, the 

painting robot is found to be feasible disregarding its extent of application on site. 

Either figure of robot working hour per year implies the robot does not need to be 

used very frequently. Assume the robot works 8 hours a day, which means the owner 

has only to use it for around 88-150 days a year before he/she gets positive return 

from it.  

 

The painting robot also enhances worker’s safety because workers no longer need to 

climb ladders or work on temporary staging to paint surfaces at higher levels. 

However, one major disadvantage of this robot is the wastage problem. Pressurized 

spray painting (usually LVHP) has low transfer efficiency; lots of paint will not be 

able to stick onto the applied surface, so more paint is required and thus results in a 

higher material cost. Otherwise, this robot is expected to reduce more cost than the 

result shown. 

 

Compared with conventional method, HVLP system increases the productivity so the 

job can be finished faster; hence labour hours employed are reduced. As a result, the 
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total cost decreases by more than 60%. Nevertheless, HVLP spray gun system does 

not offer any benefit on labour or wastage reduction or quality improvement, so it is 

anticipated that in large-scale project, the productivity advantage will gradually fade 

out due to increase in labour and paint waste. 

 

In addition, the prices or the rents of a LVHP spray gun and that of a HVLP spray gun 

are about the same. There are many occasions where HVLP spray gun can substitute 

LVHP spray gun. Therefore, HVLP spray gun can be used to reduce the paint waste 

when using the paint robot, which is equipped with a LVHP spray gun. If so, the total 

project cost in the painting job example can be lowered by 27.7% instead of just a few 

percents. Unfortunately, up till now, the HVLP technology and robotic painting 

system have not yet been integrated; otherwise, these two advanced technologies can 

complement with each other to further improve construction performance. 

 

The minimum robot working hours per year for using the light weight manipulator is 

500hr which means with a reasonable demand of this robot’s service it is 

economically feasible. When the robot working hours per year is 900 or above, the 

painting robot is found to be feasible disregarding its extent of application on site. The 

manipulator helps to reduce the number of workers but its transfer cost is high, 

resulting in less significant cost reduction benefits. The cost reduction after adopting 

the manipulator is 16.6%. The intangible benefit obtained from using this manipulator 

is safety. With this manipulator, workers no longer need to lift or carry heavy items so 

the chance of getting hurt is lowered; moreover, the stable and flat working platform 

provided by the manipulator gives workers a safe access staging for working above 

the ground. 

 

Table 6.11 shows that all advanced construction methods offer tangible benefit on cost 

reduction to different extents. Some intangible benefits like safety improvement and 

quality enhancement are also found. However, the amount of cost reduction obtained 
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after using advanced construction methods is generally lower than expected. Except 

HVLP spray gun reduces the cost by nearly 50%, the others reduce not more than 

30%. This can be explained by the imperfectness of the advanced construction 

methods. No doubt that these methods increase productivity, other costs associated or 

incurred such as transfer cost, equipment cost or even wastage have increased at the 

same time. For example, the production rate of painting robot is nearly 5 times faster 

than that of brushing, but the wastage is great; the production rate of concrete 

pumping is also faster than that of conventional concrete delivery method, but the rent 

of the concrete pump is high. 

 

In addition, new construction methods do not always reduce the use of labour; in fact, 

sometimes the case may be machine operator substituting general worker. There is no 

difference on the number of people involved in construction task, though there is 

change in type of worker. For example, the substitution of crane operator by concrete 

pump operator in concrete pumping. 

 

It does not mean these advanced methods are not valuable. Intangible benefits like 

safety and quality associated with the use of these methods bring unquantifiable 

advantages to the users; they bring money to users indirectly. For example, when less 

construction workers get injured, then the employer will have a workforce at full 

strength so productivity can be maintained and delay is reduced; provision of better 

quality of work may even make a contractor have higher chance to get a job during 

tendering. 

 

In Phase I analysis, VATFP growth shows that construction productivity has been 

enhanced by disembodied technical changes. Nevertheless, Hong Kong construction 

industry Hong Kong is still labour-intensive and labour is difficult to be substituted or 

is even suspected to substitute for capital such as plant and machinery. Consider the 

results from Phase II analysis together with those from Phase I, it is interesting to 
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observe that even new technologies can provide cost reduction and other benefits, not 

many practitioners want to adopt them in Hong Kong; even they are adopted, they 

will not be widely spread among the industry. In fact, construction industry 

practitioners still prefer to regulate the amount of labour to control outputs. Why are 

they reluctant to use new technologies? The breakeven values of advanced 

construction method adoption from Phase II analysis may give us some clues. 

Although the results show that the advanced methods (except concrete pumping) do 

not require very extensive employment for the user to attain positive return, this is 

only an analysis based on existing data and market prices; no macroeconomic and 

financial management factors has been considered. 

 

Hong Kong’s construction industry is under recession currently and the problem of 

lack of large-scale construction projects is not a secret. Since construction firms need 

jobs to maintain their cash flow, without large construction projects will certainly put 

them into financial troubles. The breakeven prices of the construction robot are in the 

order of hundred thousands dollars, but the bank accounts of some construction firms 

may only be in the order of million dollars. Therefore, even though robots are 

economically feasible, investing in such robots will greatly reduce the liquidity of 

these construction firms. If they borrow money for such investments, the loan and the 

interest associated will definitely be a burden to them. Owing to the high risk involved, 

construction firms refuse to invest in robots. Obviously, only those firms with strong 

financial back-up and human resources can make technology investments. Big firms 

can enjoy economies of scale by introducing advanced technologies as they can lower 

the average cost of products by producing more with productive machines or methods. 

In fact, large construction firms are rare in Hong Kong, and most local construction 

firms are only medium or small scales which are unable to afford the cost associated 

in developing advanced construction methods. The common way for these medium 

and small construction firms to control outputs is to regulate the utilization of labour 

because employment of labour does not require substantial investment and is easy to 
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regulate. When market demand for construction products increases, they employ more 

labour; they simply employ less or sack some people they have when demand is low. 

However, if these firms own plant and machinery, they will not enjoy such flexibility. 

Problems arise when the market is under recession, when firms usually have 

difficulties in maintaining cash flow. It will be difficult to sell job-specific plant and 

machinery; moreover, they will depreciate even they are idling. 

 

Renting plant and machinery from special suppliers or larger contractors seems to be a 

feasible way for medium or small firms to make use of technologies in construction 

works as this could avoid heavy capital investment. However, special trainings have 

to be provided to professionals and site workers to equip them with the necessary 

knowledge to use the machines. It takes significant time and effort for them to learn a 

new type of technology, especially when the technology is complicated. This is some 

sort of learning cost. While most decision-makers of medium or small firms could be 

risk-averse because of limitations on capital and human resources, spending plenty of 

money and time to train their employees will be a risky action to them because it does 

not guarantee that employees will be more productive with first adoption of new 

technologies. This learning cost is just too large for some of the decision makers.  

 

Therefore, the spread of new technologies in Hong Kong construction industry is 

perceived to be driven by large construction firms. Smaller firms have less interest in 

developing or using new technologies because of their limitations on capital and 

human resources. They still prefer to use labour as the major input. As a consequence, 

the progress of new technologies adoption is rather slow in the construction industry. 
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6.4  Phase III - Examining Construction Practitioners’ Viewpoints 

towards Advanced Technologies 

 

6.4.1 Background 

 

Two interviews were conducted for this study and the interviewees were: 

1. Mr. George C.C. Cheung, quantity surveyor of Advance Specialist Treatment 

Engineering Ltd. 

2. Mr. James Lee, quantity surveyor of Sanfield Building Contractors Ltd. 

 

Since contractor quantity surveyors (QS) are responsible for working on tender 

documents, administrating the contract, agreeing interim payments and preparing final 

accounts, they have many chances to expose themselves to different aspects of a 

construction project and thus are well aware of various types of constraints facing by 

the contractor and client's attitude towards a project. Therefore, their opinions are 

valuable and reliable. The following is the summary of points raised during the 

conversations. 

 

6.4.2  Opinions on local bidding practices and construction specifications 

 

Both interviewees agreed that it was not a usual practice for clients in Hong Kong to 

motivate contractors to use advanced construction technologies by offering 

advantages to them. They said that lack of motivations, along with low bidding prices, 

had rendered contractors not to use advanced technologies because normally the 

contractors would not bear the risk in an unpredictable market like Hong Kong. They 

both addressed two things that clients concerned when awarding a contract: tender 

price and contractor’s past performance. Clients only care about the product, i.e. the 

building, rather than the process. So long as a building is completed within budget and 

fully complied with all types of requirements, clients do not mind whether this 
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building is built by automatic systems or conventional methods. 

 

The interviewees also said that clients did not assume the responsibility to drive the 

construction industry forward because they supposed professionals would do this for 

the industry. Mr. Cheung described clients in Hong Kong as “result-oriented” people. 

He thought developing a technology needed money; if the client was reluctant to pay, 

professionals could not propose the use of technology. Therefore, it is not surprising 

to find outdated specifications. 

 

6.4.3  Opinions on developing and adopting advanced technologies 

 

Both interviewees agreed that developing, testing and using a new technology took a 

long period of time. As a result, a contractor will not be able to develop and use a new 

technology in a single project. Again, it is the client’s requirements that restrict 

contractor’s creativity – a client always wants the building to be accomplished as soon 

as possible so that he/she can start making money earlier. 

 

Mr. Cheung considered the problem of high degree of sub-contracting caused the lack 

of new technologies in the industry. He thought that most construction works were 

done by sub-contractors who might not be financially strong enough to invest on 

technologies and prefer to carry the works based on their experience. Furthermore, 

lower layers sub-contractors are paid by unit price basis. They are paid when they 

finished a unit of work. This makes the lowest layer sub-contractors not only do not 

allocate resources on developing and maintaining new technologies, but also look for 

short cuts to make the work finished more quickly in order to work for another unit 

and earn the money. Owing to this, the quality of construction products is 

compromised and not many new technologies emerged in the construction industry. 

 

In order to adopt new technologies, Mr. Lee suggested that the implementation 
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method should not be direct changeover; it should be “project-by-project” or 

“trade-by-trade”. For example, conduct a number of trials on several sites before 

applying a technology extensively. Similarly, in the case of automation, it is not 

appropriate to use automation in every trade suddenly, automation should be gradually 

implemented, say, start from excavation, then concreting, then painting and so on. The 

purpose of this is to allow the workers to have enough time to adapt to changes 

without seriously affecting their productivity, and thus avoid chaos on site. 

 

6.4.4  Technical competence of practitioners 

 

Mr. Cheung thought that most professionals would not have difficulties in adapting to 

advanced technologies; however, he worried about the competence and adaptability of 

unskilled labour who may not be well-educated. These workers may not be able to 

understand the details of the machine’s user manuals by themselves and thus 

contractor has to spend lots of resources to train them, while such expenses may not 

be paid off at the end. 

 

Mr. Lee generally had the same points of view as Mr. Cheung. Apart from doubting 

the ability of unskilled workers, Mr. Lee also concerned about the adaptability of elder 

workers. He said the elder workers might not be managed to learn new things quickly. 

Under such circumstances, training cannot solve the problem. 

 

6.4.5 Contractor’s attitude towards advanced construction technologies 

 

Mr. Cheung showed affirmative attitude towards useful advanced construction 

technologies. He explained that advanced technologies could improve productivity of 

labour and these machines’ reliability would be invaluable as quality of construction 

products could then be guaranteed. 
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Mr. Lee had different opinions. He thought even advanced technologies were proved 

to be useful and cost-effective, the utilization rate of these technologies was the 

utmost important issue for consideration. He said that unless a technology could be 

applied to 80% of the projects the company undertook, he would not recommend the 

use of it. He said only those large contractors could have such resources to develop 

and use an advanced technology. 

 

6.4.6 Comments on the lack of knowledge sharing in the industry 

 

Both interviewees thought that knowledge sharing was difficult among the 

construction industry because all firms wanted to acquire competitive advantages. 

Consequently, the technological level of construction industry has been progressing in 

a relatively slow rate. It would be very tough to change this situation. 

 

As a result, Mr. Cheung suggested that Construction Industry Training Authority 

(CITA), the Environment, Transport and Works Bureau and other relevant government 

departments should actively participate in R&D in order to search for new 

technologies which could be shared within the industry. The industry could not just 

rely on several scholars’ efforts. 

 

6.4.7 Comments on the suggestion of setting up an independent body for  

  testing and certifying advanced construction technologies 

 

Mr. Cheung agreed this was a good suggestion. He said suppliers could provide 

misleading information about a new technology; an independent body could guarantee 

the technical products were of a certain standard. This could provide security to users 

and the users would be more willing to adopt new technologies, which could then 

achieve the goal of mobilization or automation. 
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Mr. Lee had some reservations on this suggestion. He said universities could assume 

the role of testing and certifying advanced technologies, there was no point in setting 

up another body to do this job.  

 

6.4.8  Evaluation of the interviews 

 

The attitude of the client towards advanced construction technologies is 

result-oriented while that of contractor’s is positive, though there some reservations. 

Things that a contractor will concern before adopting advanced technologies can be: 

 

 Motivations given by client 

 Financial capacity 

 Project timeframe 

 Utilization rate of the technology 

 The capability of labour 

 

These points generally conform to those raised by Mezher et al. (1998), other 

researchers (see Section 4.3.2), as well as the interpretations made in Phase II. From 

Phase II analysis, we know that some advanced construction technologies can only 

provide a positive breakeven value when enough usage frequency is attained; it is 

suspected that contractor will not use these technologies (even there are both tangible 

and intangible benefits) if he cannot secure a certain amount of work to apply them. 

The interviewee’s concern on the utilization rate of technology proves that Phase II’s 

explanation is correct. However, Phase II analysis cannot find out the negative impact 

of high degree of sub-contracting on the development of advanced technologies in 

construction industry. 

 

The previous analyses of this study, together with the interviewees’ recommendations, 

can serve as some implications for policy makers and practitioners. 
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 The government should promote and participate in R&D activities in the 

construction industry actively. Loans or subsidies should be provided to private 

bodies which have a decent proposal to realize and apply a new construction 

technology. The current funding programmes of the Innovation and Technology 

Fund (ITF) seem not very attractive to practitioners in construction industry. 

When we look at the statistics provided by the ITF38, we find that requests made 

by local contractors for research funding are rare; contrary, there are many 

applications for funding in projects related to manufacturing, software 

engineering, nanotechnology, textiles, etc. This phenomenon can be explained by 

contractor’s lack of interest in advanced construction technology as reported in 

this study, and may also be due to the stringent vetting mechanisms of the ITF 

funding programmes. Therefore, a review of the current vetting mechanisms is 

necessary. 

 The government should reinforce the current training courses offered to 

construction workers so that more workers can be equipped with the basic skills 

to handle a new construction technology. For example, the CITA can introduce 

more skill enhancement courses on advanced building systems or information 

technology. 

 The setting up of an independent body to test and certify newly developed 

construction technology is worth consideration. In this way, the certificates 

issued by such body can serve as an assurance of quality and safety so that more 

people acknowledge its functions and are willing to use it. Local universities can 

also take similar roles.  

 Private construction companies should cooperate more frequently with local 

universities to carry out collaborative projects. This allows better sharing of 

resources between private sector and academies.

                                                
38 ITF (2005) Project information. Available from http://www.itf.gov.hk/eng/Intro.asp [Accessed on 24 
March 2005] 
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7 CONCLUSION 

 

Hong Kong’s construction industry is one of the main pillars of its economy. However, 

the construction industry has long been criticized for its labour-intensive nature. 

Compared to other industries such as textile, automobile and food production, local 

construction industry is relatively backward in terms of technology; labour remains 

the major inputs to many construction processes. Labour-intensive construction 

activities can lead to problems in productivity, construction products’ quality and 

occupational safety. As a result, many methods are proposed to remedy these 

problems and the adoption of advanced construction technologies is one of them. This 

study tries to verify the labour-intensity of Hong Kong construction industry and 

examine the feasibility of using advanced technologies so as to let readers gain some 

insights into the root of the problem. 

 

Indicating construction industry as “labour-intensive” based on our observations 

seems a little bit risky; it means nothing but only a hypothesis in a scientific research. 

Therefore, a quantitative approach is used in Phase I analysis to test this hypothesis. A 

Cobb-Douglas Production Function is set up for Hong Kong construction industry and 

it shows that the proportion of labour input is larger than that of capital input in the 

industry’s production process. Thus, we can confirm that Hong Kong construction 

industry is labour-intensive. From this production function, the construction industry’s 

value added total factor productivity (VATFP) growths from 1985 – 2002 are also 

calculated. The trend shows that the VATFP growths for construction industry has 

increased by 43.7% in this period, which implies that the industry has been able to 

sustain certain degree of productivity through improvements in general knowledge of 

labour, better management and organizational change. The value added productivity 

of the industry has improved, but the industry remains labour-intensive. This fact 

further implies that labour can be difficult to be substituted in construction industry. 
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Substituting technologies for labour is a hot topic in construction industry. However, 

many people have doubts in using technologies like advanced machinery, automatic 

building systems or robotics because they think that they are white elephants. In Phase 

II analysis, four advanced construction technologies are investigated and the results 

show that they are cost-effective and productive; some of them also offer intangible 

benefits to user, e.g. better product quality and safer work environment. Then why 

people still treat them as white elephants? The economic analyses in Phase II give us 

some hints to answer this question. The results tell us that for some technologies, the 

user has to attain a certain utilization rate in order to achieve the breakeven point of 

investment. Hong Kong construction industry has hit the bottom over the past few 

years. Since the amount of works and resources available to contractors is limited, 

they may not have interest in investing in these technologies even they are proved to 

be applicable. 

 

In Phase III analysis, two practitioners were interviewed to collect their opinions in 

order to understand contractor’s attitude towards advanced technologies and serve as 

implications for policy makers and practitioners. From the findings of the interviews, 

we know that motivations offered by client, contractor’s financial capacity, project 

timeframe, technology’s utilization and the capability of labour are the concerns of 

contractors for the adoption of advanced technologies. It seems that the government 

inevitably has to initiate the construction industry into the use of advanced 

technologies; the realization and diffusion of technologies cannot be done without 

government’s participation because private companies are reluctant to exchange 

research results, experience or other resources for the sake of competitive advantage. 

Therefore, it is recommended that the government should allocate more resources on 

R&D and offer more extensive training courses for construction workers so that they 

can readily adapt to new practices after introducing advanced technologies. Moreover, 

in order to guarantee users the functions, quality and safety of a new technology, an 

independent body for testing and certify new construction technologies is required. 
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There are several limitations in this study. First, due to inadequacy of local cost data, 

especially those about advanced construction technologies, the data used in this 

research are overseas data, which may not truly represent the price of a particular 

construction technology in Hong Kong because of differences in price levels and 

inflation rate. Nevertheless, it is expected that such differences are not great if the 

construction technology is sold in Hong Kong because most technologies are 

imported. Second, the interviewees’ opinions may not be representative because only 

two practitioners were interviewed and they are from contractors of similar sizes. 

Contractors of various sizes should be interviewed to collect different viewpoints so 

that the analysis can be more comprehensive. Despite of all its limitations, this study 

provides a good example to apply simple economic analysis to examine the feasibility 

of using a technology and points out the major obstacles in using it. This can raise 

contractors’ awareness of the need of a change in conventional practices and a way to 

assess the potential of a technology. 

 

For future studies on the adoption of advanced construction technologies, researchers 

can try to use local cost data of advanced technologies. In case such data are not 

available, researchers can obtain quotations from suppliers as references. The impacts 

of other technologies such as prefabrication of building components can also be 

assessed by similar methods adopted in this study. Since this study only focuses on 

contractor’s viewpoints towards advanced technologies, future researchers can try to 

compare the viewpoints of both clients and contractors to see if there is any solution 

for the conflicts between the two sides. Studies can also be done to assess the possible 

impacts of government’s participation in promoting and initiating the adoption of 

advanced construction technologies. Researchers can adopt quantitative approach like 

investigating the economic performance of advanced construction technology in ITF 

funded projects, or qualitative approach like interviewing public and private 

practitioners.
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Appendix 1 – Occupation injuries in Hong Kong construction 
industry in 2003 

 
Total number of injuries cases reported in 2003: 4,546 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Legend: 
A: Trapped in or between objects 

B: Injured whilst lifting or carrying 

C: Slip, trip or fall on same level 

D: Fall of person from height 

E: Striking against fixed or stationary object 

F: Striking against or struck by moving object 

G: Stepping on object 

H: Exposure to or contact with harmful substance 

I: Contact with electricity or electric discharge 

J: Trapped by collapsing or overturning object 

K: Struck by falling object 

L: Struck by moving vehicle 

M: Contact with moving machinery or object being machined 

N: Drowning 

O: Exposure to fire 

P: Exposure to explosion 

Q: Injured by hand tool 

R: Injured by fall of ground 

S: Contact with hot surface or substance 

T: Injured by animal 

U: Injured in workplace violence

V: Others 

 
Source: LABOUR DEPARTMENT, HKSAR 
(2004) Occupational Injuries in Construction 
Industry in 2003 - analysed by Type of Accident. 
Available from 
http://www.labour.gov.hk/eng/osh/statistics/cont
ent/st-oi-4.html [Accessed on 25 December 2004]
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Appendix 3 – Samples of advanced construction technologies 

 
Concrete pump developed by Putzmeister AG  
Source: http://www.putzmeister.de/images/news/werbung/2614_GB.jpg 

 

  
The Sonic SideGrip Vibratory Pile Driver 
Source: Hercules Machinery Corporation (2004) 
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Robotic system for painting 
Source: Kahane and Rosenfeld (2004) 

 
 
 

 
Board placing robots developed by Shimizu Corporation 
Source: Warszawski (1999, p.378) 
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Appendix 4 - Questions for identifying the barriers in the adoption 
and diffusion of modern construction technology  

in Hong Kong 
 

 
Interviewee’s name: 
Company: 
Position in company: 
 
1. It is believed that most clients do not encourage contractors to adopt modern 

construction technology, do you think so? And why do they have no such 
incentive? 

 
2. Does developing and using a modern construction technology take a long period 

of time? Do you think most project timeframes are too tight for that? 
 
3. Do you think your staff’s current technical competence (e.g. IT knowledge) will 

be able to cope with the difficulties in using modern construction technology?  
 
4. Do you think teaching staff to use a new technology is time-consuming and 

costly? 
 
5. Will you still reject the use of new technology even if they are found to be useful 

and cost-effective? If yes, what are the reasons behind your decision? 
 
6. Sharing information can benefit the development of construction industry in the 

long run. However, contractors in Hong Kong normally do not share technical 
knowledge and experience with the others. Why are they reluctant to do so? 

 
7. It seems that many modern construction technologies have only been tested by 

their suppliers and their qualities and standards are not guaranteed; thus people 
have doubts on their functions. Do you agree that setting up an independent body 
(e.g. the National Research Council in Italy is this kind of organization) for 
testing and certifying these technologies, will help their diffusion among the 
industry?  

 
 

- End - 


