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This is a pre-published versionThis is a pre-published versionThis paper takes Gary Becker’s theory of marriage seriously. In his seminal paper,

Becker [1973] proposes an invisible hand theorem for the marriage market. He argues

that the competition for spouse leads men and women to be matched in such a way

that maximizes the sum total of marital output. Applications of the economic approach

to marriage are now commonplace. Becker et al. [1977] study the effect of imperfect

information on divorce. Benham [1974], Scully [1979] and Wong [1986] estimate the

effect of wife’s education on husband’s earnings. Grossbard-Shechtman [1993] and Rao

[1993] focus on the effect of sex ratio on (implicit or explicit) bride prices or dowries.

The literature, however, has virtually ignored Becker’s hypothesis that marriage markets

maximize total marital output, i.e., that marriage markets are efficient.

Mistakes are no doubt made in marriage decisions. The marriage market is not a

textbook example of perfect competition because of elaborate social norms, substantial

search costs, and room for bargaining and opportunistic behavior. Nevertheless, we

intend to push Becker’s efficient marriage market model at face value, and directly

confront it with data. The hypothesis that the marriage market maximizes marital

output provides a framework that allows estimating a model of spouse selection which

recovers some of the parameters of the production function for marital output. Using

the estimated parameters, we can use programming techniques to find the optimal male-

female pairing that maximizes the sum of marital output. The degree to which the actual

pairing of husbands and wives corresponds to the optimal pairing provides a goodness-

of-fit test of the efficient marriage market hypothesis. Our method is applied to census

data in Hong Kong.

A model of spouse selection (and other matching models) differs from a discrete

choice model (e.g., McFadden [1984]) in two important ways. First, the choice of a spouse

is mutual. Not only does each man choose a woman that yields him the highest net

utility, but each woman also picks a man that gives her the highest net utility. Second, in

a discrete choice model, several individuals can choose the same alternative. In marriage

markets, this is prohibited under monogamy. Thus new methods have to be developed

to analyze choice in marriage markets. Although marital output and the shadow price
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of husbands and wives are not observable, the theory of optimal matching allows us

to write down the likelihood function for the observed choice of marital partners. It

turns out that this model of spouse selection reduces to a version of the Tobit model

under the assumption that error terms are independently and identically normal. In

multinomial logit models the interpretation of parameters is cumbersome, especially

when the number of alternatives is large. In our model of spouse selection, the estimated

parameters are directly related to the production function of marital output. The signs of

these parameters can be used to address the issue of positive versus negative assortative

mating. The model can also be used to test marginal product pricing in the marriage

market.

With the estimated production function from the model of spouse selection, we can

impute the marital output for all possible male-female pairs. Using these imputed output

figures, the optimal pairing between men and women that maximizes the sum of marital

output can be found using an algorithm that solves the assignment problem. The degree

to which this optimal pairing corresponds to the observed pairing then provides a natural

way of assessing marriage market efficiency. Given the limited range of information

contained in the census, we find that our model of spouse selection fits the observed

choices better than other models (such as one based on ranking method). Following

Varian’s [1990] proposal for goodness-of-fit tests for optimizing models, we derive a

measure of efficiency which is based on the distance between total imputed marital

output under observed matching and that under optimal matching. This efficiency

index is calculated to be about 80 percent, which is 27 standard deviations greater than

the mean efficiency index under random assignment.

Previous empirical work on the choice of marriage partners are mostly descriptive in

nature. The issue of positive versus negative assortative mating has attracted attention

from demographers, psychologists, sociologists, and economists alike (e.g., Winch [1958];

Epstein and Guttman [1984]; Mare [1991]). Most of these studies rely on cross tabula-

tions (when the personal traits are qualitative) or on simple correlations (when the traits

are quantitative). Our approach can deal with qualitative and quantitative traits, as well
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as same-trait interactions and cross-trait interactions, under a unified framework. More

importantly, tools such as tabulations and correlations are ad hoc and are inadequate

for hypothesis testing. By focusing on the correlation of traits between married couples,

these methods ignore the matrix of potential couples in a marriage market. The fact

that two people can—but choose not to—marry each other contains information about

the underlying production function of marital output. Our model makes use of the full

information contained in the data as specified by the theory of efficient matching. In-

terpretation of parameters is straightforward and hypothesis testing is well integrated

with the underlying theory.

The theory behind this paper is not new. We consider the matching of husbands

and wives as an optimal assignment problem (see Koopmans and Beckmann [1957] and

Becker [1973]). In taking this track, we implicitly assume price taking behavior and

ignore the bargaining issues associated with matching. Alvin Roth and others (e.g.,

Roth and Sotomayor [1990]; Shapley and Shubik [1972]; Gale and Shapley [1962]) have

studied extensively the game theoretic aspect of matching problems with and without

transferable utility. Manser and Brown [1980], McElroy and Horney [1981] and Lund-

berg and Pollak [1993] discuss intrafamily allocation problems from a Nash bargaining

perspective. Cohen [1987] and Allen [1992] analyze the problems that arise when trans-

action costs within marriage are significant. The extent to which such problems affect

the conclusions of the competitive model, however, is an empirical issue. This paper in-

tends to determine how well a pure competitive model corresponds to observed marital

patterns.

Research on marriage using the optimal assignment approach is sparse. Bergstrom

and Lam [1994] were the first to apply linear programming methods to the empirical

study of marriage. Their paper focuses on matching by age and its relationship to

the “marriage squeeze.” The full implications of an efficient marriage market are not

explored. Foster and Khan [1994] and Foster [1996] develop an empirical model of

marriage market equilibrium that relies on the notion that couples in a marriage market

do not want to exchange partners. Their papers are similar in spirit to ours, but they
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do not address issues relating to pricing and efficiency in the marriage market.

I. AN EMPIRICAL MODEL OF SPOUSE SELECTION

In this section we briefly review the theory of efficient marriage markets, with an

eye on empirical implementation. The theory is a direct application of the optimal

assignment problem in operations research, which is in turn a special case of linear pro-

gramming. More detailed discussions can be found in Koopmans and Beckmann [1957],

Shapley and Shubik [1972], Becker [1973], and in most texts on linear programming.

The main innovation in this paper is in the econometric implementation of the theory,

rather than in the theory as such.

We focus on the selection of spouse rather than the decision to get married. Suppose

there are n women and n men in the marriage market. The ith woman is characterized

by a vector of characteristics Fi = (Fi1, . . . , FiK), and the ith man has characteristics

Mi = (Mi1, . . . , MiK). If woman i and man j get married, their marital output will be

given by the production function:

Zij = Z(Fi, Mj , uij).

Here uij refers to the effect of random disturbances that are unobservable by the econo-

metrician but are known to the participants in the marriage market (e.g., “personal

chemistry”). We assume the uij ’s are independent for all i and j.1 Marital output Zij

need not be material output, and it is unobservable.

To be more specific, let the production function take the form:

Zij = α +
∑

k
β0kFik +

∑
k
γ0kMjk +

∑
k
δkFikMjk + uij .

This production function exhibits complementarities if the δ coefficients are positive.

When this is the case, people with similar characteristics will be matched together in

an efficient market (see also Sattinger [1975] and Kremer [1993]). For example, let

characteristic k refer to years of schooling, and let δk be positive, normalized to one.

Suppose there are two men in the market, one with 16 years of schooling and the other

with 12 years. Similarly, let the two women in the market have 16 and 12 years of
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schooling respectively. If men and women with similar education marry each other (i.e.,

positive assortative matching), total marital output will be 256 + 144 = 400. If the

college educated woman marries the high school man (negative assortative matching),

total marital output will be 192 + 192 = 384. An efficient marriage market will then

match men and women with similar characteristics. Conversely, if ∂2Zij/∂Fik∂Mjk = δk

is negative, corresponding male and female traits are substitutes in the production of

marital output. One would then expect to see negative assortative matching.

An efficient marriage market is one which maximizes the sum of marital output sub-

ject to the constraint that each woman marries only one man and each man marries only

one woman.2 Without loss of generality, we arrange the women and men in the sample

in such a way that the ith woman and the ith man are married couples. A necessary

and sufficient condition for efficiency is that there exist vectors P m = (Pm
1 , . . . , Pm

n ) and

P f = (P f
1 , . . . , P f

n ) such that

P f
i + Pm

i = Zii, i = 1, . . . , n;

P f
i + Pm

j ≥ Zij , i 6= j.

The P f and Pm vectors are the shadow values for women and men in the competitive

marriage market.3 The equality restrictions state that the sum of shadow values for

a couple is equal to their marital output. The inequalities imply that no “blocking

coalition” exists in the marriage market equilibrium. If the inequality restriction is not

satisfied for some pair of man and woman who are not a couple, they can be made better

off by marrying to each other and dividing the marital output in such a way that both

get more income than their existing shadow values.

We assume the distribution of personal traits is continuous and sufficiently dense so

that the shadow prices are uniquely determined.4 Given that woman i commands a price

of P f
i , the net marital output for man i who wants to marry her will be Zii −P f

i = Pm
i .

If man i marries another woman, say j, his net marital output will be Zji − P f
j < Pm

i .

Thus, given the efficiency conditions shown above, man i will maximize his net income

by choosing woman i as his spouse. Similarly the ith woman will maximize her net

marital output by marrying the ith man. The competitive marriage market with its set
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of shadow prices works like an invisible hand that ties men and women together in such

a way that maximizes total marital output.

The shadow prices are unobservable to the econometrician. One way of estimating

them is to treat them as individual fixed effects. This will be attempted in Section IV.

However, estimating a large number of fixed effect parameters is not always practical.

One way of simplifying the model is to treat the shadow prices as hedonic functions of

individual characteristics. Specifically, we let

P f
i = αf +

∑
k
β1kFik +

∑
k
β2kF

2
ik;

Pm
i = αm +

∑
k
γ1kMik +

∑
k
γ2kM

2
ik.

The quadratic terms are designed to capture the non-linear effects arising from assor-

tative matching (e.g., Rosen [1982]; Kremer [1993]). For example, if there is positive

assortative matching in education, shadow prices will be convex in years of schooling.

Notice that the shadow price of a person in the marriage market only depends on

his or her personal characteristics, but not on the identity of his or her spouse.5 As

in Rosen’s [1974] model of competitive market for differentiated products, the price of

a product depends on its attributes but not on the identity of the buyer.6 Bargaining

and small numbers problems are assumed away. Also note that we have not included

a random term in the hedonic price functions. Doing so will introduce complicated

interdependence into the model so that the resulting log-likelihood function will not be

manageable. This is remedied in Section IV, where we estimate fixed effects models for

random sub-samples of smaller size.

Given our specification of the production function and of the price functions, the

conditions for market efficiency can be rewritten as:

−(a + b1Fi + b2F
2
i + c1Mi + c2M

2
i + dFM ii) = uii, i = 1, . . . , n;

−(a + b1Fi + b2F
2
i + c1Mj + c2M

2
j + dFM ij) > uij , i 6= j.

In the above expression, a = α−αf −αm, b1 = β0−β1, b2 = −β2,c1 = γ0−γ1, c2 = −γ2,

and d = δ. F 2
i and M2

i are the vectors of the squares of female and male attributes.

FM ij refers to the vector of interaction terms. The products are understood to be inner

products.
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We assume the uij ’s are independently distributed with density function φ(·) and

distribution function Φ(·). Thus the log-likelihood function for the sample observations

is: ∑
i
log φ(−(a + b1Fi + b2F

2
i + c1Mi + c2M

2
i + dFM ii))

+
∑

i6=j
log Φ(−(a + b1Fi + b2F

2
i + c1Mj + c2M

2
j + dFM ij)).

If u is normally distributed, this log-likelihood function is equivalent to that of a Tobit

model. Let the dependent variable be yij = max{0, a + b1Fi + b2F
2
i + c1Mj + c2M

2
j +

dFM ij + uij}. If yij is censored for i 6= j and is uncensored for i = j, and if yij is

identically zero, the resulting log-likelihood function is identical to our model of spouse

selection. Thus our model can be estimated by simply running a Tobit regression with

zero as the dependent variable and with Fi, Mj , F
2
i , M2

j and FM ij as independent vari-

ables.

There are two differences from the conventional Tobit model, however. First, since

the uncensored variables are identically zero, the variance of the error distribution can-

not be identified. In other words, all the estimated parameters are unique up to a

multiplicative constant. In what follows, we normalize the variance to one. Second, in

a sample of n couples, the log-likelihood function consists of the sum of n2 terms. It is

as if one were to estimate the Tobit model on n2 observations.

It can also be observed that the production function parameter β0 and the hedonic

price function parameter β1 cannot be separately identified. Similarly only the difference

c1 = γ0 − γ1 is identifiable. The production parameter (δ = d), and the quadratic terms

in the price function (β2 = −b2, γ2 = −c2), on the other hand, are identifiable (up to a

multiplicative constant). Thus estimators of d can be used to test hypotheses concerning

positive or negative assortative matching. Estimators of b2 and c2 can be used to assess

the concavity or convexity of the hedonic price functions.

We can further use the model to test marginal productivity theory in the marriage

market. In our model, the shadow price of attribute k for the jth man is γ1k +2γ2kMjk.

The marginal product of this attribute for this man is γ0k + δkFjk. The theory of

marginal productivity suggests that the price of an attribute is equal to its marginal
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product. Unless matching is perfect, however, this restriction is unlikely to be true for

each and every couple in the sample. We test a weaker version of marginal product

pricing by summing the equality restriction over all couples. Denote the sample mean

values of Fjk and Mjk by F.k and M.k, respectively. Then, in terms of the parameters

that can be estimated, the implied restriction on the model coefficients can be written

as

c1k + 2c2kM.k + dkF.k = 0,

for all attributes k. This restriction will be tested both for men and for women.7

II. DESCRIPTION OF THE DATA

The empirical model of spouse selection developed in this paper is estimated using

census data from Hong Kong. We choose to work on Hong Kong data mainly because

of convenience and familiarity. As in any industry study, determining the appropriate

extent of the market is fraught with difficulties. We simply assume the entire territory

of Hong Kong constitutes the relevant marriage market.8

Data for this study are drawn from the ten percent random sample of the Hong Kong

1976 population by-census. More recent censuses do not contain information about the

year of marriage and are less suitable for our purposes. We identify all couples who were

married a year before the census and who were living in the same household at the time

of the census. People who were not born in Hong Kong or China are excluded. This

gives a sample of 2110 couples.

We focus on people who were married in 1975 for two reasons. First, our model

assumes anyone in the marriage market can marry anyone else if he or she so chooses.

If the data contain, say, a man married in 1970 and a woman married in 1975, the man

would have to first obtain a divorce before he could legally marry that woman. One

could argue that, ex ante, the man has the option to delay marriage; that is, before

1970, the man and the woman were in the same marriage market (unless the woman

was a minor at that time). However, this kind of argument will bring the timing of

marriage into the model and complicate the analysis.9 We choose instead to consider
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the marriage market as consisting of men and women who were married within some

relatively short period of time (one year). The second reason for excluding people who

were married more than one year before the census is that we have information on wages

at the time of the census but not at the time of marriage. Wages in 1976 are a better

indicator for wages in 1975 than they are for wages in, say, 1970. Focusing on the newly

married therefore has the advantage that the wage data will more accurately reflect the

information available at the time marriage decisions were made.

To examine the issue of assortative matching in wage, we further select only those

records with wage information for both husband and wife. The resulting group of 772

couples will form the main data set of our empirical work. The main difference between

this sample and the full sample of 2110 couples is that women with wage information on

average received one more year of education than women in the full sample. The labor

force participation rate for newly married women (.44) is between that for all married

women aged 16–30 (.35) and for single women in the same age group (.69).

Many personal characteristics that are relevant for marriage decisions are not avail-

able from the census. This study concentrates on four observable characteristics: age

at marriage, years of schooling, place of birth, and market wage rate. The variables

age and school measure the first two characteristics. The variable china is a dummy

variable indicating whether the person was born in China (china = 1) or born in Hong

Kong (china = 0).

The construction of the wage variable requires some explanation. There are system-

atic differences in wage rates during the life cycle. For example, on average, a 25 year

old man is expected to earn less than a 35 year old. This does not necessarily make

the 25 year old man a less desirable spouse because it is the present value of lifetime

earnings that counts in marriage decisions. For this reason, the variable wage is obtained

by standardizing the observed log wage at the mean age of marriage. For males, we run

an OLS regression of log wage on schooling, place of birth and a fourth order polyno-

mial on age. If the vector of age variables is denoted A and the vector of corresponding

estimated coefficients in the wage regression is denoted η̂, the wage variable is defined

9



as

log(observed wage) − η̂A + η̂Ā,

where Ā is the vector of age variables evaluated at the sample mean. The definition of

the wage variable for women follows that for men, except that η̂ is computed from a

selection-bias corrected regression instead of by ordinary least squares.10

Table I shows some descriptive statistics of the various variables. Numbers in the

bottom row refer to the means and standard deviations of male characteristics, and num-

bers in the marginal column refer to female characteristics. For example, the husbands

in this sample were on average 3.3 years older than the wives, and had .7 more year

of education. The main elements in the cross table are correlation coefficients between

male and female characteristics. For example, the simple correlation between husbands’

age and wives’ age is .578. All the diagonal entries are positive, indicating that there is

positive assortative matching on each attribute.

Notice, however, that correlation coefficients are reduced-form statistics. For exam-

ple, suppose f school and m school are complementary in the production of marital

output, while f wage and m wage are substitutes. If more educated people tend to

earn more, and if the complementarity between education is much stronger than the

substitutability between wage, we will observe that more educated (higher wage) men

are married to more educated (higher wage) women. The observed correlation between

f wage and m wage would then be positive even though these two attributes are sub-

stitutes. The table of correlation coefficients in Table I, therefore, does not reveal the

underlying substitutability and complementarity relationships in the production func-

tion for marital output.

III. TESTING ASSORTATIVE MATCHING

AND MARGINAL PRODUCT PRICING

Our model of spouse selection is estimated with (Model W) and without (Model

NW) the wage variable. The parameter estimates are displayed in the first two columns

of Table II. The coefficients on female traits and on male traits represent linear combi-
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nations of production function and price function parameters. Theory does not place

any restrictions on their sign or statistical significance. The main parameters of interest

are those associated with the interaction terms. In each specification, the coefficients for

the same-trait interaction terms are positive and highly significant. This indicates that

corresponding male and female traits are complements in the production function for

marital output. Such results are consistent with positive assortative matching in age,

schooling, place of birth, and wage.

Comparing Model W to Model NW, the model that includes wage variables gives

a significantly higher log-likelihood ratio. Earnings power seems to be an important

consideration in marriage decisions. Although Becker [1973] predicts negative assortative

matching in wage as a result of the household division of labor, our findings do not

support his hypothesis. Lam [1988] offers a theoretical reason why Becker’s prediction

may fail in the presence of household public goods. Our empirical results are also

consistent with Watkins and Meredith [1981], who report a positive correlation between

husband’s and wife’s income.11

The coefficients on the squared terms in Table II are all negative and statistically

significant. This means the shadow prices are convex functions of the personal attributes

(since b2 = −β2 and c2 = −γ2). The convexity of the price functions is consistent with

complementarities in the production function of marital output.

Cross-Trait Interactions

The specification of the marital output production function need not be confined to

same-trait interactions. There may exist complementarity relations between husband’s

education and wife’s age, or between wife’s education and husband’s age. Such cross-trait

interactions need not be symmetric either. In fact the set of female characteristics used

in the estimation does not have to be the same as the set of male characteristics. In other

applications of the assignment model, such as the matching of houses to homeowners,

positive or negative assortative matching is not an issue because the characteristics of

a house cannot be directly compared to the characteristics of a homeowner. Yet the

matching model developed here is still applicable. If there are K1 relevant attributes on
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one side and K2 relevant attributes on the other side, a full model will involve K1K2

parameters to be estimated for the interaction effects.

The last two columns of Table II shows the estimated coefficients of the full interac-

tions model with and without wage variables. For Model NW-C, 4 out of 6 coefficients

for the cross-trait interaction terms are statistically insignificant (at the .01 level). The

likelihood ratio test fails to reject the hypothesis that the cross-interaction effects are

jointly zero. Although the hypothesis that the cross effects are jointly zero is rejected

for Model W-C, 9 out of 12 coefficients for the cross-trait terms are not significant indi-

vidually. Introducing cross-interaction effects does not substantially improve the fit of

the model.12 Moreover, the coefficient estimates for same-trait interaction terms do not

change much across specifications; it is only the coefficients that are imprecisely esti-

mated that change quite a bit. We therefore prefer to work with the simpler same-trait

interactions model. In the remainder of the paper, the empirical work will focus only on

Models W and NW.

Robustness

Our sample of 772 couples does not include those for which wage information for

either husband or wife is not available. To make sure that our results are robust to

sample selection rule, we have re-estimated Model NW using the records of all 2110

newly married couples. The estimated coefficients are not materially different from

those obtained from the smaller sample. For example, the coefficients (standard errors)

associated with the same-trait interaction terms for age, china, and school are 0.010

(0.001), 0.288 (0.030), and 0.020 (0.001), respectively. These estimates are fairly close

to those reported in in first column of Table II.

The wage variable used in this study has been adjusted for life-cycle differences in

wage. We have also estimated Model W where the observed log wage is used instead

of the standardized wage. It turns out that using the raw wage instead of the adjusted

wage does not change any qualitative results. In particular, our conclusion about positive

assortative matching in wage still holds.

Finally we have checked the robustness of the model against alternative functional
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forms for the error distribution. If the error terms are not normal, the model of spouse

selection can no longer be estimated by a Tobit regression. Nevertheless the likelihood

function can still be regarded as one arising from a survival type model (e.g., Cox and

Oakes [1984]) involving censored and uncensored observations. We have estimated the

model using the extreme value distribution, the logistic distribution and the gamma

distribution. Again, the results regarding positive assortative matching continue to

hold. Our model of spouse selection is not very sensitive to the assumed distribution of

the error term.13

Marginal Product Pricing

The theory of marginal product pricing requires that the marginal product of a

personal attribute to be equal to its marginal value in the marriage market. In terms of

the parameters of the model, the theory applied to women requires that b1k + 2b2kF.k +

dkM.k = 0, and the theory applied to men requires c1k + 2c2kM.k + dkF.k = 0. We

impose these restrictions separately and jointly to our model of spouse selection. Table

III shows the results.

The coefficient estimates shown in Table III do not differ much from those in Table

II. Formal statistical tests do not reject the equality restrictions imposed by the theory

of marginal productivity. Under the null hypothesis, two times the difference in the

value of the log-likelihood function is distributed as a chi-squared random variable with

degrees of freedom equal to the number of equality restrictions imposed. For example,

the χ2-statistic for models W-M&F is 2.15 with 8 degrees of freedom. The critical χ2-

statistic at the .01 significance level is 20.09. As shown in the bottom row of Table III,

the χ2-statistics are all smaller than the corresponding critical values at conventional

levels of statistical significance. The hypothesis that personal traits are correctly priced

in the marriage market is not rejected.

IV. FIXED EFFECTS MODEL

One problem with the empirical model of spouse selection estimated in the previous

section is that it ignores unobserved individual fixed effects. This problem is particularly
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important when census data is used, because the census only contains very limited

information relevant to marriage decisions. Individual characteristics such as personality,

wealth, family background and “looks” are probably more important determinants of

marital choice than the basic demographic variables (age, schooling, place of birth, wage)

used in our estimation. Such characteristics are unobservable to the econometrician but

are observable to participants in the marriage market, and they affect marital output as

well as shadow prices. In this section we attempt to control for unobserved heterogeneity

using a fixed effects model.

We let marital output be a function of observable characteristics as well as individual

fixed effects:

Zij = µfz
i + µmz

j + βFi + γMj + δFM ij + uij .

Shadow prices (P f
1 , . . . , P f

n ) and (Pm
1 , . . . , Pm

n ) are simply specified as fixed constants.

The condition for marriage market efficiency becomes:

−(µf
i + µm

i + βFi + γMi + δFM ii) = uii, i = 1, . . . , n;

−(µf
i + µm

j + βFi + γMj + δFM ij) > uij , i 6= j;

where µf
i = µfz

i − P f
i and µm

j = µmz
j − Pm

j . With these fixed effects, the parameters β

and γ will not be identified and the log likelihood function can be reduced to:

∑
i
log φ(−(µf

i + µm
i + δFM ii)) +

∑
i6=j

log Φ(−(µf
i + µm

j + δFM ij)).

This log likelihood function can again be maximized using a Tobit regression.

With a sample of 772 couples, estimating a fixed effects model would require esti-

mating more than 1500 parameters. To deal with the computational problem, we resort

to a bootstrap procedure (see, for example, Efron and Tibshirani [1993]). We randomly

draw (without replacement) a sub-sample of 100 couples from the original sample.14

A Tobit model is estimated for this sub-sample, which involves 200 rather than 1544

fixed effects. The coefficient estimates of δ are saved. This procedure is repeated one

thousand times. The means of the saved values of δ will give the point estimates of δ

and the standard deviations of these saved values will give the standard errors.
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The second and fifth columns in Table IV shows the bootstrap estimates of the

parameters in the fixed effects model with (Model W-FE) and without (Model NW-FE)

the wage variable. The coefficients for the same-trait interaction terms are all positive

and significant, indicating that age, schooling, place of birth, and wage of husband and

wife are complementary inputs to the production of marital output. The introduction

of individual fixed effects therefore does not change our conclusions about assortative

matching.

Our original hedonic pricing model estimated in Section III (i.e., without fixed ef-

fects) can be regarded as a special case of the fixed effects model where the individual

fixed effects are constrained to be of the form:

µf
i = af +

∑
k
b1kFik +

∑
k
b2kF 2

il;

µm
j = am +

∑
k
c1kMjk +

∑
k
c2kM

2
jk;

where af + am = a. We estimate the hedonic pricing model on the same 1000 random

sub-samples and the results are displayed in the first and fourth column of Table IV.

Comparing Model NW to Model NW-FE, the largest χ2-statistic in these 1000 sub-

samples is 9.54. The critical χ2-statistic (189 degrees of freedom) at the .01 level is

237.15. In other words, in none of the 1000 random sub-samples does the fixed effects

model give a significantly better fit to the data than the hedonic price model. Similarly,

comparing Model W to Model W-FE, two times the difference in log-likelihood never

exceeds 17; while the corresponding critical χ2 value is 233 (185 degrees of freedom).

This indicates our original hedonic pricing model is a good and parsimonious way of

representing the marriage market; introducing fixed effects into the model does not

substantially improve the fit.

We also use the bootstrap method to estimate the model with restrictions imposed

by marginal productivity theory. The results are shown in columns 3 and 6 of Table

IV. In all the 1000 bootstrap runs, marginal product pricing is not rejected. This agrees

with our earlier conclusion reached using the full sample of 772 couples.

V. PREDICTING MARRIAGE PARTNERS
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Is the efficient marriage market model useful in predicting actual marriage patterns?

We approach this question by using the estimated spouse selection model to compute

the optimal pairing of men and women that maximizes the sum of imputed marital

output. Such optimal pairing is then compared to the observed pairing. We find that

the efficient market model correctly predicts more married couples than either random

pairing or pairing based on ranking.

In our model of spouse selection, the estimated coefficients cannot be used to give

an imputed marital output, Ẑij , because some of the production function parameters

are not identified. Fortunately the theory of optimal assignment (see Koopmans and

Beckmann [1957]) establishes that any assignment that maximizes
∑

Ẑij also maximizes
∑

(Ẑij + λf
i + λm

j ), for any fixed vectors (λf
1 , . . . , λf

n) and (λm
1 , . . . , λm

n ). Since the index

variable, Iij , from the Tobit regressions (with or without fixed effects) only differs from

Ẑij by two fixed vectors, we can solve the optimal assignment problem by maximizing
∑

Iij instead of
∑

Ẑij .
15

The actual solution of an optimal assignment problem is non-trivial, but there are

efficient computer algorithms that can be used. We rely on the Fortran subroutine in

Burkard and Derigs [1980]. We save the predicted index variable Iij from the Tobit

regressions and use Burkard and Derigs’s program to find the optimal pairing between

men and women that maximizes
∑

Iij . Of the n optimal pairs computed by the program,

if k pairs are actual married couples, the model is said to make k correct predictions.

One way to assess a model which gives k correct matches out of n pairs is to find the

probability that such an event will occur by pure chance. Let p(n, k) be the probability of

having k married couples when n husbands and wives are randomly re-matched.16 When

n is moderately large (greater than 20, say), the distribution of k is well approximated

by a Poisson distribution with parameter 1. That is,

p(n, k) ≈ e−1/k!.

Two features about the distribution of k are worth mentioning. First, for large n, the

approximate distribution of k is independent of n. For example, the probability of

predicting one married couple from one hundred randomly re-shuffled couples is approx-
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imately the same as the probability of predicting one married couple from one thousand

randomly re-shuffled couples. Second, the mean and variance of k are both equal to 1.

On average, therefore, randomly matching n pairs will give 1 correct prediction regard-

less of n.

The first column in Table 5 gives the exact distribution of k for n = 100. Note that if

the matching of men and women is random, the probability of finding no correct match

is non-trivial (.368), while the probability of finding 10 or more matches is almost nil.

In the remaining four columns of Table V, we display the empirical distributions of the

number of correct predictions using the efficient market model. For each Tobit regression

that we run on the 1000 sub-samples discussed in Section 4, we record the number of

correct predictions generated by Burkard and Derigs’s optimal assignment program.

For example, the model using the variables age, school and china without fixed effects

yields on average 5.34 correct predictions. Under random matching the probability of

giving 5 or more correct predictions is less than 1 percent, while the model gives more

than 5 correct matches in 605 out of 1000 trials. The fixed effects model produces

similar results as the model without fixed effects. When the variable wage is added to

the spouse selection model, the average number of correct predictions increases to 6.70

(without fixed effects) and to 6.75 (with fixed effects), respectively. The spouse selection

model clearly gives more correct predictions than what pure chance would suggest.

While predicting 6 married couples out of 100 may seem trivial, it is not clear what

the appropriate metric is for assessing whether a certain number of correct predictions is

“large” or “small.” With 100 men and 100 women, there are 100! ≈ 9.3× 10157 possible

permutations. Table V shows that the chance of making 6 or more correct predictions

is less than one in a thousand. Predicting 6 correct matches on average is not so easy

as it may first seem.

Another way of assessing the spouse selection model is to compare the number of

correct predictions with that generated by an alternative model. In the literature on

assortative matching (e.g., Epstein and Guttmann 1984), positive or negative sorting is

indicated by the sign of the correlation coefficient between the traits of husbands and
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wives. Thus one method to predict marriage partners is to match men and women

by their rank in the distribution of traits. For example, if there is positive assortative

matching in wage, we can match the woman with the rth highest female wage to the

man with the rth highest wage among men.

To implement the ranking method to the case involving more than one trait, we rely

on canonical correlation analysis.17 Suppose men and women are arranged in such a way

that the ith man is married to the ith woman. Let Fi1, . . . , FiK be relevant traits of

the wife, and let Mi1, . . . , MiK be the husband’s characteristics. Instead of examining

the simple correlation coefficient between each trait separately, canonical correlation

analysis examines the correlation between the K traits combined. More specifically, the

analysis finds two vectors of weights, (θf
1 , . . . , θf

K) and (θm
1 , . . . , θm

K), such that the linear

combinations xi =
∑

k θf
kFik and yi =

∑
k θm

k Mik have the maximal correlation.

In our 1000 random sub-samples, the canonical correlation between husbands and

wives averages to .713 for the model using age, school and china. The average canonical

correlation increases to .758 when wage is included. For each sub-sample, we also save

the canonical latent variables x and y. The woman with the rth highest x value is

matched to the man with the rth highest y. The number of correct married couples

predicted by this ranking method is recorded.

Figure 1 compares the distributions of the number of correct matches generated

by the spouse selection model to that generated by the ranking method using the four

variables age, school, china and wage. The ranking method produces an average of

3.2 correct predictions. On the other hand, the efficient market models give an aver-

age of 6.7 correct matches. In 856 of the 1000 bootstrap samples, the spouse selection

model (Model W) gives more correct matches than the ranking method, while the rank-

ing method gives more correct matches in only 83 of the 1000 samples. The frequency

distributions in Figure 1 clearly show that the efficient market model first-order stochas-

tically dominates the ranking method. Comparison of the ranking method to the spouse

selection model without the wage variable yields essentially the same results.

VI. HOW EFFICIENT IS THE MARRIAGE MARKET?
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In optimizing models, Varian [1990] argues that the economically relevant measure of

goodness-of-fit is the distance between the predicted and the observed value of the ob-

jective function. Even if the observed pairing of men and women bears little resemblance

to the pattern predicted by the efficient matching model, it is possible that the resulting

loss in total marital output is economically insignificant. In our model, let Zo =
∑

Ẑii

denote the imputed total marital output. If the optimal assignment matches man π∗(i)

to woman i, let Z∗ =
∑

Ẑi,π∗(i) denote the maximum marital output. Then a natural

measure of the degree of marriage market efficiency is Zo/Z∗.

Assuming the estimated coefficients in our spouse selection model are the true pro-

duction function parameters, information on total marital output can be partially recov-

ered even though marital output is not directly observable. Since some of the produc-

tion function parameters are unidentified, however, the index variable from our Tobit

regressions, Iij , will differ from imputed marital output, Ẑij , by two fixed but unknown

vectors, (λf
1 , . . . , λf

n) and (λm
1 , . . . , λm

n ). Thus, for any assignment π that assigns man

π(i) to woman i, the sum of the index variables will differ from the sum of marital output

by an additive constant:
∑

Ii,π(i) = Λ +
∑

Ẑi,π(i), where Λ =
∑

i(λ
f
i + λm

i ). Because Λ

is unknown, Zo/Z∗ cannot be recovered from
∑

Iii and
∑

Ii,π∗(i). We therefore use an

alternative measure of marriage market efficiency:

E = (Zo − Z∗)/(Z∗ − Z∗),

where Z∗ is the value of the objective function given by the assignment π∗ that minimizes

the sum of imputed marital output.18

Denote Io =
∑

Iii, I∗ =
∑

Ii,π∗(i), and I∗ =
∑

Ii,π∗(i), then (Io − I∗)/(I∗ − I∗) =

(Zo − Z∗)/(Z∗ − Z∗) regardless of the magnitude of the additive constant Λ. Therefore

the efficiency measure E can be computed even though the marital output production

function is not fully identified. This measure of efficiency ranges between zero and one:

If the marriage market minimizes marital output, the efficiency measure is equal to zero;

if it maximizes output, the efficiency measure is one.

Using the sample of 772 couples, and using the spouse selection model based on

the variables age, school, china and wage, (i.e., Model W in Table 2), we find that
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E = .801. Thus, compared to a full information and perfectly competitive market, the

inefficiency loss in the Hong Kong marriage market is about twenty percent.19

One way to assess whether the calculated efficiency measure is “large” or “small” is

to compare it to the efficiency measures generated from other possible assignments. With

772 couples, there are a total of 772! ≈ 6.4 × 101895 possible assignments. Clearly it is

impossible to exhaust all possibilities. We instead draw one million random assignments

and compute the value of E for each case. Under Model W, the one million values

of E have a mean of .476 and a standard deviation of .012. The maximum value of

the efficiency index from these one million random assignments is .533 (4.7 standard

deviations away from the mean). In contrast, the actual efficiency measure of is .801,

which is 26.7 standard deviations greater than the mean. In other words, none of the one

million random assignments produces a total marital output above that in the marriage

market.20 Such an event will occur with a probability of less than 3.7 × 10−44 if Zo is

not in the top 1/10000 quantile of the distribution of
∑

Ẑi,π(i). This exercise lead us to

conclude that the marriage market is not grossly inefficient.

VII. CONCLUDING REMARKS

With information only on the basic demographic characteristics available from the

census, we do not expect the spouse selection model to explain every detail of the

marriage market. On the whole, however, the empirical model derived from the efficient

marriage market hypothesis fits the data well. We find that corresponding male and

female attributes (age, schooling, place of birth, and wage) are complementary in the

production function for marital output. The hedonic pricing function is found to be

a good representation of shadow prices in the marriage market, and marginal product

pricing is not rejected. The empirical model also suggests that the marriage market is

relatively efficient: total marital output is greater than that under generated by most

other assignments.

One obvious way to improve on the model is to utilize data sets that contain richer

information on personal characteristics. For example, if panel data is used, pre-marriage
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wage and occupation can safely be assumed to be independent of marital decisions. Such

information can be exploited to help settle the question of whether there is positive or

negative assortative matching in wage.

Conventional large scale surveys, however, are not expected to contain many of the

variables pertinent to marriage decisions. More fruitful use of our model probably de-

pend on new applications and more novel data sets. For example, the matching of CEOs

to corporations can be regarded as an optimal assignment problem and estimated using

the model developed here. With information on corporate characteristics and the per-

sonal characteristics of the CEOs, the model will help determine the complementarity

relationships between such characteristics. Another example is the matching of houses

to homeowners. Data on the characteristics of houses and of homeowners are readily

available. By deriving an empirically matching model that is fully consistent with max-

imizing behavior, we hope this paper will stimulate the empirical research on such and

other matching problems.
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solves the optimal assignment problem. Seminar participants at the University of Hong
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particularly indebted to Doug Allen, Yoram Barzel, William Chan, Rick Harris, Bob

Pollak, Gene Silberberg and Alan Siu for their helpful advice.

1 The problem of unobserved individual heterogeneity will be addressed in a fixed

effects model in Section IV.

2 We ignore polygamy and polyandry.

3 The optimal matching of women and men can be described as a linear program

that maximizes
∑

ij xijZij subject to
∑

i xij = 1,
∑

j xij = 1, and xij ≥ 0. The P f

and Pm vectors are the Lagrange multipliers of the equality constraints. As usual these

Lagrange multipliers can be interpreted as shadow values.

4 See, for example, Roth and Sotomayer [1990], Bennett [1988] and McLaughlin

[1994] for discussions of matching models involving thin markets.

5 The shadow value of a certain male attribute will depend on the distribution

of the corresponding female attribute in the market. For example, if male and female

education are complementary, the shadow value of male education will be relatively high

in a market where women are well educated, and the shadow value will be relatively low

in a market where women are less well educated. There is an extensive literature on how

the age distribution of the population produces a “marriage squeeze” (e.g., Grossbard-

Shechtman [1993]; Rao [1993]). In a large market, however, each individual woman will

have negligible effect on the shadow value of male characteristics.

6 The shadow price of a woman is her net utility from marriage. If a woman marries

an otherwise undesirable man, she will be compensated by a higher material output

(see Grossbard-Shechtman [1993]), but her net utility—i.e., her shadow price—remains
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unchanged.

7 If the production function and pricing function parameters were known rather than

estimated, we can also test marginal productivity theory by performing a paired t-test

between γ1k + 2γ2kMjk and γ0k + δkFjk.

8 Assuming the entire territory constitutes one market is less unrealistic for a city

such as Hong Kong than for larger countries. Researchers interested in marriage markets

elsewhere are advised to analyze the data at the city or county level rather than at the

national level.

9 See, for example, Keeley [1977] for a discussion on the optimal timing of marriage.

10 We use Heckman’s [1979] two-stage estimation procedures to correct for this self se-

lectivity. In the first stage probit regression, we use household size, schooling (quadratic),

place of birth and age (third order polynomial) as independent variables. The inverse

Mills ratio computed from the probit estimates together with the above independent

variables except household size are entered into the second stage wage regression. The

estimated coefficient on the self-selectivity term is negative but statistically insignificant.

11 The wage observations we have are post-marriage wages. Since the division of

labor within the family may affect the choice of occupations and labor effort (see Becker

[1985; 1991]), observed wages may be correlated with marital choice. Using pre-marriage

wages would be superior to post-marriage wages if such data are available.

12 Including wage variables into Model NW uses 5 degrees of freedom and increases

the log-likelihood by 51.3. Including cross-interaction terms into Model W uses 12

degrees of freedom and increases the log-likelihood by 17.2.

13 Detailed tables showing the coefficient estimates under the alternative specifica-

tions discussed in this sub-section are available from the authors.

14 If sampling were done with replacement, a couple could appear more than once

in a sub-sample and equilibrium matching would not be unique.

15 In effect this means that only interaction effects are important in predicting mar-

riage partners. Therefore the ability to identify δ (subject to a multiplicative constant)
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is sufficient to generate a prediction for optimal pairing. Knowledge about α, β and γ

are not required.

16 The problem of finding p(n, k) is a classic problem in probability. One version of

this problem goes with the following story: A secretary has prepared n different letters

and envelopes addressed to different persons. He puts his letters randomly into the n

envelopes. What is the probability that k letters will go to the intended destination?

This problem was solved more than two centuries ago by the mathematician Montmort,

and the formula for p(n, k) can be found in probability texts such as Feller [1968].

17 Canonical correlation analysis was introduced by Hotelling [1935]. Manly [1986]

contains an elementary exposition of the subject.

18 Both the minimum and the maximum assignment problem can be solved by

Burkard and Derigs’s program with a simple change of signs.

19 Models of individual maximization (e.g., Cochrane [1989]; Varian [1990]) typically

find an efficiency loss of less than five percent. However, since the envelope theorem does

not apply to the optimal assignment problem, the order of magnitude of the efficiency

index in these two types of models are not directly comparable.

20 We also perform a similar exercise for Model NW. The maximum E from one

million random assignments is .537 while the actual E is .806. Again the actual marriage

pattern is more efficient than any of the one million random assignments.
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Table I

Sample Means, Standard Deviations, and Correlation Coefficients

m age m school m china m wage mean

(female)

f age .578 .208 .148 .144 23.108

(3.660)

f school .043 .669 −.008 .520 9.220

(3.908)

f china .152 −.007 .249 −.086 .266

(.442)

f wage −.110 .421 −.121 .552 2.855

(.606)

mean 26.439 9.877 .380 3.161

(male) (4.470) (3.685) (.486) (.626)

The bottom row contains the means and standard deviations (in parentheses) of male characteris-
tics. The last column refer to female characteristics. Main elements in the cross table are simple
correlation coefficients between the corresponding male and female attributes.



Table II

Parameter Estimates for Spouse Selection Model

Variable NW W NW-C W-C

intercept 1.0550 2.8599 0.9748 3.1975
(0.4017) (0.5499) (0.4450) (0.7899)

Male traits

m age −0.1502 −0.1496 −0.1329 −0.1050
(0.0240) (0.0244) (0.0253) (0.0321)

m china −0.0784 −0.0745 −0.0793 −0.0133
0.0301 (0.0304) (0.1819) (0.2445)

m school −0.0595 −0.0527 −0.1107 −0.0261
(0.0158) (0.0162) (0.0272) (0.0413)

m wage −0.4682 −0.9684
(0.1514) (0.2390)

m age2 −0.0027 −0.0026 −0.0027 −0.0027
(0.0005) (0.0005) (0.0005) (0.0005)

m school2 −0.0076 −0.0066 −0.0079 −0.0065
(0.0011) (0.0011) (0.0011) (0.0011)

m wage2 −0.1133 −0.1429
(0.0267) (0.0298)

Female traits

f age −0.1064 −0.1185 −0.1215 −0.1841
(0.0244) (0.0250) (0.0257) (0.0322)

f china −0.1234 −0.1157 −0.0579 0.1576
(0.0379) (0.0382) (0.1808) (0.2278)

f school −0.1015 −0.0811 −0.0423 −0.0497
(0.0141) (0.0146) (0.0249) (0.0346)

f wage −0.6888 −0.4884
(0.1451) (0.2261)

f age2 −0.0050 −0.0047 −0.0053 −0.0049
(0.0008) (0.0008) (0.0008) (0.0008)

f school2 −0.0067 −0.0062 −0.0067 −0.0064
(0.0010) (0.0010) (0.0010) (0.0010)

f wage2 −0.1094 −0.1055
(0.0276) (0.0288)

Same-trait interactions

m age*f age 0.0128 0.0126 0.0131 0.0127
(0.0011) (0.0011) (0.0011) (0.0012)

m china*f china 0.2897 0.2829 0.3055 0.2876
(0.0546) (0.0549) (0.0577) (0.0587)

m school*f school 0.0226 0.0199 0.0229 0.0211
(0.0015) (0.0015) (0.0015) (0.0018)

m wage*f wage 0.4116 0.4789
(0.0456) (0.0570)

continued on next page



Table II (continued)

Variable NW W NW-C W-C

Cross-trait interactions

m age*f china −0.0033 −0.0036
(0.0066) (0.0066)

m age*f school −0.0024 −0.0018
(0.0008) (0.0009)

m age*f wage −0.0088
(0.0063)

m china*f age −0.0033 −0.0045
(0.0080) (0.0084)

m china*f school 0.0078 0.0160
(0.0068) (0.0086)

m china*f wage −0.0373
(0.0552)

m school*f age 0.0024 0.0006
(0.0011) (0.0013)

m school*f china 0.0017 0.0111
(0.0077) (0.0094)

m school*f wage −0.0196
(0.0091)

m wage*f age 0.0227
(0.0085)

m wage*f china −0.0927
(0.0579)

m wage*f school 0.0004
(0.0089)

log-likelihood −4660.51 −4609.22 −4653.92 −4592.02

Standard errors are in parentheses. Models labeled by “W” includes the wage
variable, and models labeled by “NW” does not include the wage variable. The
suffix “C” refer to models that include cross-interaction terms.



Table III

Spouse Selection Model: Restricted Estimates

Variable NW-M NW-F NW-M&F W-M W-F W-M&F

intercept 1.2239 1.0453 1.2774 3.0062 2.6810 2.8265
(0.3697) (0.3767) (0.3120) (0.4982) (0.4974) (0.3923)

Male traits

m age −0.1637 −0.1504 −0.1642 −0.1631 −0.1504 −0.1624
(0.0453) (0.0240) (0.0450) (0.0453) (0.0243) (0.0452)

m china −0.0771 −0.0791 −0.0762 −0.0754 −0.0750 −0.0749
(0.0145) (0.0302) (0.0141) (0.0146) (0.0305) (0.0143)

m school −0.0604 −0.0603 −0.0606 −0.0533 −0.0530 −0.0532
(0.0319) (0.0157) (0.0319) (0.0321) (0.0161) (0.0320)

m wage −0.4553 −0.4683 −0.4383
(0.2615) (0.1513) (0.2604)

m age2 −0.0024 −0.0027 −0.0024 −0.0024 −0.0026 −0.0024
(0.0005) (0.0005) (0.0005) (0.0005) (0.0005) (0.0005)

m school2 −0.0075 −0.0076 −0.0075 −0.0066 −0.0066 −0.0066
(0.0011) (0.0011) (0.0011) (0.0011) (0.0011) (0.0011)

m wage2 −0.1137 −0.1128 −0.1159
(0.0255) (0.0267) (0.0252)

Female traits

f age −0.1030 −0.1062 −0.1071 −0.1151 −0.1097 −0.1105
(0.0242) (0.0352) (0.0348) (0.0249) (0.0354) (0.0351)

f china −0.1226 −0.1082 −0.1090 −0.1145 −0.1060 −0.1071
(0.0376) (0.0202) (0.0202) (0.0378) (0.0204) (0.0204)

f school −0.1017 −0.0998 −0.1005 −0.0810 −0.0798 −0.0801
(0.0139) (0.0295) (0.0295) (0.0145) (0.0298) (0.0631)

f wage −0.6919 −0.6548 −0.6568
(0.1449) (0.2680) (0.2679)

f age2 −0.0050 −0.0050 −0.0049 −0.0047 −0.0048 −0.0048
(0.0008) (0.0008) (0.0008) (0.0008) (0.0008) (0.0008)

f school2 −0.0067 −0.0067 −0.0066 −0.0062 −0.0063 −0.0063
(0.0010) (0.0009) (0.0009) (0.0010) (0.0010) (0.0010)

f wage2 −0.1092 −0.1122 −0.1119
(0.0276) (0.0275) (0.0274)

Same-trait interactions

m age*f age 0.0126 0.0127 0.0126 0.0125 0.0126 0.0125
(0.0011) (0.0011) (0.0011) (0.0011) (0.0011) (0.0011)

m china*f china 0.2904 0.2850 0.2871 0.2840 0.2792 0.2821
(0.0545) (0.0533) (0.0532) (0.0549) (0.0538) (0.0537)

m school*f school 0.0226 0.0226 0.0226 0.0199 0.0199 0.0198
(0.0015) (0.0015) (0.0015) (0.0015) (0.0015) (0.0015)

m wage*f wage 0.4113 0.4099 0.4100
(0.0456) (0.0455) (0.0455)

log-likelihood −4661.2 −4660.7 −4661.4 −4610.0 −4609.6 −4610.3

χ2-statistic (d.f.) 1.33 (3) 0.37 (4) 1.79 (6) 1.59 (4) 0.75 (4) 2.15 (8)

Models marked with “F” indicate that marginal productivity restrictions are applied to females.
Models marked with “M” impose such restrictions to males. Models marked with “F&M”
impose the restrictions to both sexes. Standard errors are shown in parentheses.



Table IV

Spouse Selection Model: Bootstrap Estimates

Variable NW NW-FE NW-M&F W W-FE W-M&F

intercept 3.1329 3.3351 5.4508 5.4078
(1.1342) (1.1573) (1.3396) (1.4184)

Male traits

m age −0.2027 −0.2169 −0.2020 −0.2154
(0.0551) (0.0581) (0.0568) (0.0594)

m china −0.0913 −0.0871 −0.0887 −0.0855
(0.0513) (0.0426) (0.0524) (0.0431)

m school −0.0734 −0.0735 −0.0650 −0.0645
(0.0249) (0.0237) (0.0267) (0.0259)

m wage −0.5943 −0.5708
(0.2170) (0.2358)

m age2 −0.0036 −0.0032 −0.0036 −0.0032
(0.0018) (0.0018) (0.0018) (0.0018)

m school2 −0.0096 −0.0093 −0.0085 −0.0083
(0.0036) (0.0035) (0.0035) (0.0035)

m wage2 −0.1580 −0.1532
(0.0789) (0.0768)

Female traits

f age −0.1534 −0.1510 −0.1736 −0.1625
(0.0617) (0.0629) (0.0690) (0.0700)

f china −0.1492 −0.1245 −0.1401 −0.1221
(0.0867) (0.0608) (0.0089) (0.0616)

f school −0.1248 −0.1222 −0.0999 −0.0982
(0.0241) (0.0226) (0.0245) (0.0236)

f wage −0.8547 −0.8210
(0.2654) (0.2666)

f age2 −0.0066 −0.0063 −0.0062 −0.0060
(0.0031) (0.0030) (0.0032) (0.0030)

f school2 −0.0085 −0.0083 −0.0081 −0.0079
(0.0031) (0.0030) (0.0031) (0.0030)

f wage2 −0.1579 −0.1546
(0.0909) (0.0905)

Same-trait interactions

m age*f age 0.0173 0.0192 0.0168 0.0172 0.0193 0.0167
(0.0054) (0.0060) (0.0052) (0.0054) (0.0061) (0.0052)

m china*f china 0.3409 0.3691 0.3281 0.3336 0.3653 0.3218
(0.1718) (0.1831) (0.1603) (0.1733) (0.1862) (0.1624)

m school*f school 0.0285 0.0304 0.0278 0.0253 0.0277 0.0247
(0.0068) (0.0073) (0.0067) (0.0069) (0.0074) (0.0067)

m wage*f wage 0.5527 0.6509 0.5391
(0.1994) (0.2296) (0.1945)

mean log-likelihood −420.56 −418.72 −421.29 −413.71 −410.86 −414.55

Columns marked with “FE” refer to the fixed effect models. Estimates of the individual fixed
effects are not shown in this table. Columns marked with “M&F” indicate that marginal
productivity restrictions are applied. Bootstrap standard errors are shown in parentheses.



Table V

Theoretical and Empirical Distribution of Correct Matches

k (n = 100) random matching NW NW-FE W W-FE

k ≥ 1 0.6321 0.996 0.996 1.000 0.999
k ≥ 2 0.2642 0.972 0.969 0.992 0.995
k ≥ 3 0.0803 0.908 0.891 0.970 0.970
k ≥ 4 0.0190 0.791 0.774 0.909 0.912
k ≥ 5 0.0037 0.605 0.618 0.809 0.810
k ≥ 6 0.0006 0.432 0.444 0.673 0.672
k ≥ 7 0.0001 0.294 0.273 0.529 0.526
k ≥ 8 1.0e-05 0.177 0.163 0.374 0.374
k ≥ 9 1.1e-06 0.091 0.097 0.212 0.231
k ≥ 10 1.1e-07 0.043 0.048 0.117 0.127
k ≥ 11 1.0e-08 0.017 0.024 0.071 0.073
k ≥ 12 8.3e-10 0.009 0.007 0.030 0.039
k ≥ 13 6.4e-11 0.003 0.003 0.008 0.014
k ≥ 14 4.5e-12 0.000 0.000 0.004 0.003
k ≥ 15 3.0e-13 0.000 0.000 0.001 0.001

mean 1 5.338 5.307 6.699 6.746

The theoretical distribution is calculated by using the formula in Feller
(1968). The empirical distribution is obtained by solving the optimal as-
signment problem for the predicted index variables from each of the 1000
sub-samples.
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Figure 1
 Frequency Distributions of Correct Predictions: Model W
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Abstract. This paper takes Becker’s efficient marriage market hypothesis at face value,

and directly confront it with data from Hong Kong. The theory of optimal assignment is

used to develop an empirical model of spouse selection, which resembles a Tobit model.

This model can address positive or negative assortative matching as well as marginal

product pricing in marriage markets. We also use a computer algorithm to solve the

assignment problem for imputed marital output. The degree to which the actual pairing

of husbands and wives corresponds to the optimal pairing provides a goodness-of-fit test

of the efficient marriage market hypothesis.
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