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The mesoscopic transport through a toroidal carbon nan-

otube (TCN) system applied with ac fields to the elec-

trodes has been investigated by employing the nonequilibrium

Green’s function (NGF) technique. The Landauer-Büttiker

-like formula is presented for numerical calculations of differ-

ential conductance and tunneling current. The conductance

resonance takes place due to the electrons resonating in the

quantum levels of TCN and side-band caused by the external

ac fields. The photon-assisted transport can be observed both

in conductance oscillation and current oscillation with respect

to the magnetic flux. The side peaks and current suppressions

are the main effect of photon absorption and emission in the

transport procedure. The stair-like current-voltage charac-

teristics are resulted from the quantum nature of TCN and

applied microwave fields. The photon-electron pumping effect

can be obtained by applying the microwave fields to the leads.

PACS: 73.40.-c; 73.63.Fg; 73.61.Wp; 73.22.-f

The electronic properties of carbon nanotubes (CN)

attract much attention of physicists and electronic en-

gineers due to their profound physical connotations and

potential applications. The metallic and semiconducting

behaviors are intimately related to the diameter and chi-

rality of a CN [1-4], and the metal-semiconductor tran-

sition takes place by applying an external magnetic field

[5,6]. The material and shape of devices play central roles

for the feature and quality. Recently, the development

of nano-technology provides the possibility for fabricat-

ing various nano-devices. CNs are prospective materi-

als of future electronic devices due to the metallic and

semiconducting behaviors. Some electronic devices like

field effect transistors [7,8] and diodes [9] have been fab-

ricated for the application of point view. This opens up a

new artifical laboratory to study low dimensional trans-

port properties, and provides novel physical prediction

for the further application [10-16]. The toroidal carbon

nanotube (TCN) is a form of carbon structure, which is

a torus structure by bending the carbon tube such that

the two edges are connected. The tori proposed are con-

structed by introducing a single pentagon-heptagon pair

into the perfect hexagon bonding pattern to connect car-
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bon tubules, and its construction can be based on the

C60. The theoretical [17-19] and experimental [20] inves-

tigations on the electron properties of carbon toroid re-

vealed the quantum nature of quasi-one-dimensional ring.

Compared with normal metal or semiconductor ring, the

TCN can carry larger persistent current due to the mod-

ification of energy structure and energy gap [21], and

it provides rich physical properties due to its structure.

The TCN coupled with normal metals (N-TCN-N), the

Andreev reflection in the TCN coupled to normal metal

and superconductor (N-TCN-S), and the dc Josephson

current through the system with a TCN coupled to two

superconducting leads (S-TCN-S) [22] have been investi-

gated to display novel electronic transporting properties.

TCN is threaded with a static magnetic flux φ which

induces Aharonov-Bohm-like effects. The conductance

and tunneling current are evaluated to show the reso-

nant and oscillating behaviors associated with magnetic

flux. The Aharonov-Bohm magnetic flux controls the

tunneling current since it causes the metal-semiconductor

transition in the TCN. In this paper, we investigate the

photon-assisted mesoscopic transport through the TCN

coupled to two normal metal electrodes (N-TCN-N) sys-

tem by imposing microwave fields to the leads. Since

the system is perturbed by the microwave fields, the tun-

neling current is characterized with the oscillating fea-

tures of the external microwave fields. The external mi-

crowave fields split the channels to form side-bands, and

electrons resonate with the photon energies. We employ

the Green’s function (NGF) technique to calculate the

tunneling current[23-25].

The TCN is formed by rolling a finite graphite sheet

from the origin to the vectors Rx = m1a1 + m2a2, and

Ry = p1a1 + p2a2 simultaneously, where a1 and a2

are the two primitive lattice vectors possessing the same

magnitude as a =| a1 |=| a2 |= b × 31/2. Here b = 1.44

Å is the C-C bond length of CNs known to be slightly

larger than that of graphite [3]. We denote the TCNs

by (m1,m2; p1, p2) as convention. The TCN satisfies the

periodical boundary conditions along both of the longitu-

dinal and transverse directions. Two kinds of TCN with

highly symmetric structures are armchair (m,m;−p, p)

TCN and zigzag (m, 0;−p, 2p) TCN. The armchair TCN

possesses the symmetry with armchair structure along

the transverse direction and zigzag structure along the

longitudinal direction. The zigzag TCN has the struc-

ture in both of the directions being zigzag. We denote

the diameter of CN as dt, and the diameter of mesoscopic

ring as Dt. The diameters of the armchair (m,m;−p, p)

TCN are dt = 3bm/π, and Dt = 31/2bp/π; the diameters

of the zigzag (m, 0;−p, 2p) are given by dt = 31/3bm/π,

and Dt = 3bp/π. In the absence of magnetic flux, the

armchair TCN is a metal as p = 3ν (type I TCN), while

it is a semiconductor with narrow energy gap as p = 3ν±1

(type II TCN) where ν is an integer. The zigzag TCN

exhibits semiconductor behavior with large energy gap in
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the order Eg = 0.1 ∼ 1.0 eV. We investigate the system

with the diameter ratio of the nanotube dt to the diam-

eter Dt of mesoscopic ring being much smaller than 1,

i.e., κ = dt/Dt << 1.

The system is composed of three parts: the central

TCN, and the normal metal leads. The central TCN

is applied with a static magnetic field B perpendicular

to the ring, which induces a magnetic flux φ threaded

through the TCN. The electrons are free from the mag-

netic field B, but the vector potential A affects the be-

haviors of electrons due to the Aharonov-Bohm effect.

The electrons of the leads are described by the grand

canonical ensembles, and the central TCN is described

by the tight-binding Hamiltonian. We consider the cir-

cumstance that the two leads are biased by the dc volt-

age V which is the drop of chemical potentials of the

two leads µL − µR = eV . The microwave field with

frequency ωγ is applied to the γth lead forming poten-

tial drop eṼγdcos(ωγt) in it. So that the electron energy

in the γth lead is described by the time-dependent one

εγk(t) = εγk + eṼγdcos(ωt) in the adiabatic approxima-

tion. In the diagonalized representation of TCN, the elec-

tronic properties can be determined by the total Hamil-

tonian of the system, which is the summation of the three

sub-Hamiltonians and the tunneling interaction term

H =
∑

γkσ

εγk(t)a†γ,kσaγ,kσ +
∑

j`δσ

Eδ,`j(φ)c†δσ,j`cδσ,j`

+
∑

γkσ

∑

j`δ

[R∗γδ,j`(k)c†δσ,j`aγ,kσ + H.c.], (1)

where a†γ,kσ (aγ,kσ), and c†δσ,j` (cδσ,j`) are the creation

(annihilation) operators of electron in the two leads and

TCN, respectively . Rγδ,j`(k) is interaction strength of

particles between the γth lead and TCN. Eδ,`j(φ) is the

energy of TCN, which is intimately associated with the

structure of concrete TCN. The energy of armchair TCN

in tight-binding approximation is given by [21]

Eδ,`j(φ) = δγ0{1 + 4cos(
πj

m
)cos[

π(` + φ/φ0)
p

]

+4cos2[
π(` + φ/φ0)

p
]}1/2. (2)

The energy of the zigzag TCN in the tight-binding ap-

proximation is given by

Ẽδ,`j(φ) = δγ0{1 + 4cos(
πj

m
)cos[

π(` + φ/φ0)
p

]

+4cos2(
πj

m
)}1/2, (3)

where j = 1, 2, ..., m; ` = 1, 2, ..., 2p; δ = ±, γ0 = 3.033

eV, and φ0 = h/e is the flux quantum. We employ the

NGF technique to evaluate the current formulas. The

detailed definitions of Green’s functions and derivation

of the photon-assisted tunneling current can be found

in Refs.[23-25], in which we have made gauge transform

to remove the time dependent energy in the interaction

strengths.

The time-averaged tunneling current can be expressed

by the Fourier transformed Green’s functions GX
δ`jσ(ε) as

[25]

Iγ = −2e

h
Im

∑

δ`jσ

∫
dεΓγ [fγ(ε)Gr

δ`jσ(ε) +
1
2
G<

δ`jσ(ε)],

(4)
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where fγ(ε) is the Fermi distribution function given

by fγ(ε) = 1/{exp[(ε − µγ)/kBT ] + 1} at temperature

T . We define the retarded Green’s function of the iso-

lated TCN as gr
δ`jσ(ε) = 1/[ε − Eδ,`j (φ) + iη], where

η → 0. The retarded Green’s function of TCN in the

coupled system can be solved by employing Dyson equa-

tion Gr = gr + grΣrGr, where Σr =
∑

γ Σ r
γ is the self-

energy of the system defined by summing up the self-

energies in the two leads. The Keldysh Green’s func-

tion of the coupled TCN is derived from the equation

G< = gr[ΣrG< + Σ<Ga]. The retarded, advanced and

Keldysh self-energies of the system is related to the cor-

responding Green’s functions by the relation ΣX(ε) =

∑
γmk J2

m(Λγ)gX
γ,kσ(ε − mh̄ωγ),(X ∈ {r, a, <}), where

Λγ = eṼγd/h̄ω. We assume that the electrons are

equally coupled between different tunneling channels,ie.,

Rγδ,j`(k) = Rγ(k) , and the line-width of lead is defined

by Γγ(ε) = 2π
∑

k | Rγ(k) |2 δ(ε − εγk). The Green’s

function of the coupled TCN system is therefore given

by

Gr
δ`jσ(ε) =

1
ε− Eδ,`j(φ)− Σr(ε)

. (5)

The density of state (DOS) of the γth lead is ργ(ε) =

∑
k δ(ε−εγk), and the retarded self-energy of this lead can

be described by the imaginary and real parts as Σr
γ(ε) =

∑
m J2

m(Λγ)[βγm(ε)− iΓγ(ε−mh̄ωγ)/2], where

βγm(ε) =| Rγ |2
∫

dε1
ργ(ε1 −mh̄ωγ)

ε− ε1
.

Similarly, we can obtain the Keldysh Green’s function

by solving the Dyson-like equation self-consistently to

give the pseudo-equilibrium expression. Substituting the

Green’s functions above into the current formula (4), fi-

nally we obtain the current formula of the γth lead as

Iγ =
e

h

∑
mnσ

∑

β 6=γ

∫
dεTγβσ,mn(ε)[fγ(ε−mh̄ωγ)

−fβ(ε− nh̄ωβ)], (6)

where the transmission coefficient of electron tunneling

from the γth lead to the βth lead is defined by

Tγβσ,mn(ε) = Γγ(ε−mh̄ωγ)Γβ(ε− nh̄ωβ)

×J2
m(Λγ)J2

n(Λβ)
∑

δ`j

| Gr
δ`jσ(ε) |2 .

The transmission coefficient Tγβσ,mn(ε) of the system de-

notes the electrons transporting from the γth lead in the

m channel to the βth lead in the n channel. The current

conservation
∑

γ Iγ = 0 is satisfied for the time-averaged

current. The external microwave fields induce two ef-

fects: one is the splitting of electron level to form multi-

channels in the leads, and the other is to modify the

chemical potentials of the leads. This mesoscopic trans-

port contains the photon-electron pumping effect and the

Aharonov-Bohm effect. The magnetic flux controls the

energy gap Eg(φ) to form periodic oscillation of current

with respect to φ in period φ0. By varying the magnetic

flux φ, the metal-semiconductor transition takes place,

and the energy gap alternates with φ.

At zero temperature, the tunneling current formula

Eq.(6) is reduced to
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I =
e

h

∑
σ

∑
mn

∫ eV +mh̄ωL

nh̄ωR

TLRσ,mn(ε)dε. (7)

We have taken the chemical potential of the right lead µR

as the energy measurement point by setting µR = 0. This

means that the Fermi level of the TCN is zero as eV = 0,

and it is symmetric about this point. In the absence of

microwave field, the electrons can not transport through

the system as V = 0 at zero temperature for the semi-

conducting TCN, since the energy gap Eg(φ) > 0 acts

as the threshold to restrict the tunneling of electrons.

However, in the presence of microwave fields, the tunnel-

ing current exhists as | eV + mh̄ωL − nh̄ωR |> Eg(φ)/2

(n,m = 0,±1,±2, ...). Therefore, the tunneling current

is the result of compound effects related to the photon-

electron pumping, Aharonov-Bohm effect, and the de-

tailed TCN structure. For the leads broaden immediately

at the connection to TCN, the line-width can be treated

by wide-band limit, which means that the line-width is

independent on the energy variable ε, i.e., Γγ(ε) = Γγ .

In the wide-band limit, the retarded self-energy of the

system Σr = −i
∑

γ Γγ/2. For the symmetric situation

ΓL = ΓR = Γ and wide-band limit, the tunneling current

at zero temperature is given by

I =
2e

h
Γ

∑
mn

∑

δj`

J2
m(ΛL)J2

n(ΛR)

×{tan−1[
eV + mh̄ωL − Eδ,`j(φ)

Γ
]

−tan−1[
nh̄ωR − Eδ,`j(φ)

Γ
]}. (8)

The differential conductance at zero temperature is de-

termined by the Breit-Wigner resonant form

dI

dV
=

2e2

h

∑
m

∑

δj`

J2
m(ΛL)Γ2

(eV + mh̄ωL − Eδ,`j(φ))2 + Γ2
. (9)

The factor 2 in Eqs.(8) and (9) comes from the spin de-

generation of the system. The resonance of the differ-

ential conductance declines as the photon number m in-

creases by the form J2
m(ΛL). The resonance is strongly

associated with the energy structure of the TCN and the

applied photon energy. The resonant position is deter-

mined by eV = Eδ,`j(φ)−mh̄ωL.

In the follows we perform the numerical calculations

of differential conductance dI/dV and tunneling current

I versus source-drain bias eV , magnetic flux φ, and the

magnitude of ac field Λγ . The symmetric system is stud-

ied by setting ΓL = ΓR = 0.001γ0. The photon energies

of the fields are taken as h̄ωL = h̄ωR = h̄ω = 0.01γ0,

which is related to the frequency in the microwave re-

gion as f = 7.36 × 1012 Hz. We take the quantities

G0 = 2e2/h and I0 = 2eγ0/h as the measurement scales

of differential conductance and tunneling current. Fig-

ure 1 displays the structures of differential conductance

for different TCN systems in the presence of external ac

fields. The resonant structures of the differential con-

ductance are modified due to the applied ac fields. The

absorption and emission of photons induce novel resonant

levels, and some levels of TCN are overlapped by the side-

band. Therefore, we observe that some of the resonant

peaks are suppressed by the ac fields. Diagrams (a), (b),

and (c) are associated with the type II, type I, and type

III TCNs. There is no energy gap in type I TCN system,
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but there exists large energy gap in type III TCN system.

In the absence of magnetic flux, the energy gap of type

II TCN can be calculated by Eg = 2γ0 | 1− z(ξ) |, where

z(ξ) = cos(ξ)− 31/2sin(ξ), and ξ = b/(31/2Dt) [22]. The

energy gap of the (7,7;-160,160) TCN is calculated to be

Eg ≈ 68.77 meV. The photon energy applied to the sys-

tem is h̄ω = 30.33 meV, which is much smaller than the

energy gap, i.e., h̄ω << Eg. Therefore, the electrons in

the valence band can not jump to the conductance band

for this system by absorbing photons. However, the ap-

plied ac fields provide new channels for electron to tun-

nel. This means that the electrons in the electrodes can

transport through the system by applying the ac fields

when eV = 0. This procedure can be explained as the

photon-electron pumping effect. The energy gap for the

type III (7,0;-160,320) TCN is about Eg ≈ 1.1 eV.

We present the differential conductance versus mag-

netic flux in Fig.2 to show the oscillation structure of

dI/dV. The conductance is associated with the mag-

nitude of external field as ΛL = 0.8 and frequency

f = 0.01γ0/h. The periodic oscillations can be seen

for different TCNs with period φ0, and the oscillation

structure is different for different types of TCN. In dia-

gram (a), the solid and dotted curves are related to the

zero-biased conductance of the type I (7,7;-159,159) and

type II (7,7;-160,160) TCNs, respectively. For the type

I TCN, a large resonant peak is accompanied with two

small side resonant peaks in a period. These small side-

peaks are arisen from the photon-assisted tunneling pro-

cedure. We can also note that the resonant structure is

composed of the wave oscillation where two peaks form

a bouble oscillation, and a resonant peak is embedded

between the pair-peaks in a period. The small peaks lo-

cated at φ = nφ0 are caused by the photon emission and

absorption. As the source-drain bias eV = 0.5γ0, the os-

cillations of differential conductance are displayed in di-

agram (b). The oscillation structures are quite different

from the ones related to zero-biased conductance. The

oscillations shift and the side-peaks rise due to applying

the voltage. However, the period is still φ0 for each of

the oscillation. The differential conductance of type III

TCN at eV = 0.5γ0 is shown in diagram (c). One ob-

serves that the main peaks are split, and small peaks are

embedded at the valleys due to applying external field.

The current oscillation structures versus the magnetic

flux φ are shown in Fig.3 for different types of TCNs.

We compare the current oscillation for the cases as the

applied fields ΛL = ΛR = 0.8 with the cases in the ab-

sence of the external fields ΛL = ΛR = 0. Diagram

(a) displays the current tunneling through the type II

TCN. One observes that the magnitude of oscillation is

suppressed, and the valleys are raised due to applying

microwave field. Diagram (b) shows the current oscilla-

tion through the type I TCN system. Compared with the

type II TCN system, we notice that the main peaks are

split, and their magnitudes are smaller. The two current
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oscillations possess the phase shift by φ0/2. The similar

magnitude suppression and valley rising caused by the

microwave field are also observed evidently. However, the

oscillating structures for the type III TCN shown in dia-

gram (c) are quite different from those in the type I and II

TCN systems. In the absence of microwave field, the in-

verse resonance appears compared with diagrams (a) and

(b). The current decreases abruptly around φ = nφ0,

and it changes mildly away from these points to form

plateaus. The microwave field suppresses the valleys and

splits the plateaus to form small valleys. The suppression

of tunneling current is caused by the incoherent scatter-

ings of photons with electrons.

Figure 4 shows the current-voltage characteristics of

the type II and III TCN systems in the large region of

source-drain bias −γ0 < eV < γ0. The nonliear and

obvious changes are observed. For the type II TCN sys-

tem, the energy gap Eg can not be observed obviously,

since it is much smaller than the region of source-drain

bias (the dotted curve). However, we can see the effect

of energy gap for the type III TCN clearly in the I-V

curve (the solid curve), since the energy gap is compa-

rable with the source-drain bias. We present the current

changes with the magnitude of microwave field in Fig. 5.

It is seen clearly that the current changes mildly in the

region of magnitude 0 < Λ < 2.6, and then it declines

rapidly as Λ > 2.6. This indicates that the current can

be suppressed very much by applying strong microwave

field. The tunneling current may possess different cur-

rent magnitudes for different types of TCN system, but

the difference of current magnitude is smeared as the

magnitude of microwave field is large enough.

We depict current-voltage and differential conduc-

tance versus source-drain bias in the small region −5 ×

10−2γ0 < eV < 5 × 10−2γ0 in Fig. 6 to display the

photon-assisted tunneling behaviors obviously. The stair-

like tunneling current is exhibited clearly in diagram

(a). In the absence of microwave field, the steps are

induced by the nature of TCN due to the discrete en-

ergy levels corresponding to the dotted curve. As the

microwave fields are applied, novel steps are induced at

eV ≈ 0,±3.5× 10−2γ0. This procedure is related to the

absorption and emission of photons during the electron

transport. The corresponding differential conductance is

presented in diagram (b). We observe that in the ab-

sence of microwave field, two resonant peaks are located

closely (pair-peak), and there exist large spaces between

the pair-peaks. The magnitude of the differential con-

ductance is about 2G0 in this region. As the microwave

field is applied, the magnitude of the conductance reduces

to 1.6G0, and the novel small peaks emerge between the

pair-peaks. The steps in the I-V curves are associated

with the resonant peaks of the differential conductance.

In summary, we have investigated the mesoscopic

transport through the TCN system applied with ac fields

to the electrodes. The photon-assisted tunneling current
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formulas are presented for evaluating the resonance and

oscillation behaviors. The differential conductances are

modified by the applied microwave fields. The conduc-

tance resonance takes place due to the electrons resonat-

ing in the quantum levels of TCN and side-band caused

by the external ac fields. By changing the frequencies

of the fields, we can obtain different photon energies,

and hence the novel resonant conductance structure. The

photon-assisted transport can be observed both in con-

ductance oscillation and current oscillation with respect

to the magnetic flux. The side peaks and current suppres-

sions are the main effect of photon absorption and emis-

sion in the transport procedure. The stair-like current-

voltage characteristics are resulted from the quantum na-

ture of TCN and applied microwave fields. The photon-

electron pumping effect can be obtained by applying

the microwave fields to the leads. The current suppres-

sion becomes significant as the magnitudes of external ac

fields are large enough as Λ > 2.6.
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Figure Captions

Fig. 1, The differential conductance versus the source-

drain bias eV . The parameters are chosen as ΛL =

0.8, h̄ω = 0.01γ0, and φ = 0. Diagrams (a),(b) and

(c) correspond to the (7,7;-160,160), (7,7;-159,159) and

(7,0;-160,320) TCNs, respectively.

Fig. 2, The differential conductance versus the mag-

netic flux φ. The parameters are chosen as ΛL =

0.8, h̄ω = 0.01γ0. Diagram (a) represents the zero-biased

conductance as eV = 0 for the (7,7;-160,160) (dotted

curve) and (7,7;-159,159) (solid curve) TCNs, respec-

tively. Diagram (b) represents the differential conduc-

tance as eV = 0.5γ0 for the (7,7;-160,160) (dotted curve)

and (7,7;-159,159) (solid curve) TCNs, respectively. Di-

agram (c) is the differential conductance as eV = 0.5γ0

for the (7,0;-160,320) TCN.

Fig. 3, The tunneling current versus magnetic flux

φ at eV = 0.5γ0. The solid curves are associated with

the cases as ΛL = ΛR = 0.8, and the dotted curves are

associated with the cases as ΛL = ΛR = 0. Diagrams

(a), (b), and (c) correspond to the (7,7;-160,160), (7,7;-

159,159), and (7,0;-160,320) TCNs, respectively.

Fig. 4, The current-voltage characteristics of the sys-

tem as ΛL = ΛR = 0.8, and φ = 0. The solid and dot-

ted curves are associated with (7,0;-160,320) and (7,7;-

160,160) TCNs, respectively.
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Fig. 5, The tunneling current versus the magnitude of

ac fields for the case ΛL = ΛR = Λ as eV = 0.8γ0 and

φ = 0. The solid and dotted curves are related to the

(7,7;-160,160) and (7,0;-160,320) TCNs, respectively.

Fig. 6, The current-voltage characteristics and corre-

sponding differential conductance of (7,7;-160,160) TCN

versus source-drain bias eV. The dotted and solid curves

are related to the parameters ΛL = ΛR = 0, and

ΛL = ΛR = 0.8, respectively.
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