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Deformation rigidity of the rational homogeneous space
associated to a long simple root

Jun-Muk Hwang! and Ngaiming Mok 2

As a continuation of our previous works [HM1] and [Hw1], we study the following conjecture on
the rigidity of rational homogeneous spaces of Picard number 1 under Kahler deformation. For
the background of this conjecture, see the introduction of [HM1].

Conjecture Let G be a complex simple Lie group and P be a mazimal parabolic subgroup. Let
7:X —» A ={teC,lt| <1} be a smooth projective morphism from a complex manifold to the
unit disc. If X; := w1(t) is biholomorphic to G/P for all t # 0, then X, is also biholomorphic
to G/P.

A natural approach is to construct a geometric structure on X, using the tangent vectors to
minimal rational curves. In [HM1] (resp. [Hwl]), we constructed a G-structure (resp. a contact
structure) this way and proved the Conjecture. By the work of Yamaguchi ([Ya]), for the cases
different from the symmetric or the contact cases, it suffices to recover the nilpotent Lie algebra
structure of a differential system to prove the Conjecture. The purpose of this paper is to show
this when P is associated to a long simple root, including the cases of all maximal parabolic
subgroups when all roots of G are of the same length:

Main Theorem Let G be a complex simple Lie group and P be a mazimal parabolic subgroup
associated to a long simple root. Let m : X — A = {t € C,|t| < 1} be a smooth projective
morphism from a complex manifold to the unit disc. It X; := n~'(t) is biholomorphic to G/P
for allt # 0, then X is also biholomorphic to G/P.

As in [HM1] and [Hw1] our approach consists of studying distributions derived from varieties
of minimal rational tangents (see Section 2 for the definition), notably on questions of integra-
bility. There is however an essential difference in that we have to deal with a nilpotent Lie
algebra structure of the differential system, which is much more complicated than a G-structure
or a contact structure. The hypothesis on P enters in a crucial way in the proof. In fact, P is
associated to a long simple root if and only if the minimal G-invariant distribution on G/P is
spanned by varieties of minimal rational tangents. ‘

With some oversimplification to streamline the comparison with earlier works the proof of
the Main Theorem breaks down into three steps. The first step, which parallels the first steps
of [HM1] and [Hw1], is to show that the normalized space K, of minimal rational curves at a
generic point z of X, agrees with that of the model G/P. The proof of this step is a refinement of
arguments in [HM1] or [Hw1] requiring deeper knowledge of the geometry of Hermitian symmetric
spaces (as varieties of minimal rational tangents). The second step is to show that the variety
of minimal rational tangents C, C PT;(Xy), which is the image of K; under the tangent map,
agrees with that of the model as a projective subvariety. The third step is then to show that
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the differential system generated by the varieties of minimal rational tangents has the same
nilpotent Lie algebra structure as the model G /P. The second and the third steps are closely
intertwined and handled together in Section 3. Here new difficulties arise which were not present
in [HM1] or [Hw1]. As a matter of fact, while the third step is completely trivial for the Hermitian
symmetric case and is rather straightforward for the contact case, it is highly non-trivial in other
cases covered by the Main Theorem. An analogue of the third step is also the main obstacle in
extending the Main Theorem to the case when P is associated to a short root.

For the second step, in the Hermitian symmetric case it is enough to show that the varieties
of minimal rational tangents at the central fiber span the full tangent bundle; in the contact case
it is enough to show that they must span a distribution of codimension 1 (as on a generic fiber).
In both cases assuming the contrary we would have obtained an integrable distribution spanned
by varieties of minimal rational tangents, leading to a contradiction since Xp is of Picard number
1. Essential to this line of proof is the particular projective geometry of the variety of minimal
rational tangents of the model space G/P. For instance, in the model contact case, varieties of
minimal rational tangents span the contact distribution D, and are Legendrian subvarieties of
the projectivization of PD. From this it followed that any drop in the rank (when compared to
D) of the distribution W spanned by varieties of minimal rational tangents in the central fiber
Xo would force W to be integrable by results from [HM1]. In other words, we relied on the fact
that the contact distribution in the model contact manifold is Just short of being integrable.

In the situation of the Main Theorem and assuming that G /P is neither Hermitian symmetric
nor of the contact type, the distribution D spanned by varieties of minimal rational tangents
on the model space can be very far away from being integrable. The problem is to prove that
the failure of integrability, in a sense to be made precise, is stable under deformation. Even on
the model space the differential system may have many levels, and jumps of simple numerical
invariants such as ranks of distributions are far from being enough to lead to contradictions. On
Xo we have to consider the differential system obtained by augmenting W by taking successive
Lie brackets. The nilpotent Lie algebra structure associated to the differential system is precisely
the algebraic structure in which the failure of integrability is encoded. The novel point of the
proof of our Main Theorem is Proposition 6, which shows that a natural integrability condition
obtained in [HM1] coming from the deformation theory of minimal rational curves turns out to
be equivalent to the finiteness condition in the Serre presentation of the simple Lie algebra. This
is essentially a result on the model G/P and is expected to be useful in the study of geometry
of G/P itself, independent from the deformation problem.

In a sense, the main motivation for studying the Conjecture for us is that it is a good
testing ground for the study of Fano manifolds of Picard number 1 through minimal rational
curves. The problem of recovering the structure of a given Fano manifold of Picard number 1
from the information on the minimal rational curves is broader and of greater importance to us
than the Conjecture itself. From this perspective the study of the large classes of G/P in the
Main Theorem reveals that the deformation theory of rational curves provides a powerful tool
to unravel the algebraic structures of differential systems arising from distributions spanned by
varieties of minimal rational tangents. In the case at hand it provides a means of identifying
varieties of minimal rational tangents and recovering the complex structure of these rational
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homogeneous spaces. It is in this context that we believe that our result enhances the general
perspective in our geometric study of Fano manifolds as put forth in [HM1,2,3].

1 Rational homogeneous spaces associated to long simple
roots

In this section, we will review some basic facts about the rational homogeneous space associated
to a long simple root (see e.g. [Ya] or Section 2 of [HM2]).

Let g be a complex simple Lie algebra. Choose a Cartan subalgebra h and the root system
® C h* of g with respect to h. Fix a system of simple roots {as,...,} and a distinguished
choice of a simple root ;. Given an integer k, —m < k < m, we define ®; as the set of all roots
Zézl mgqoy with m; = k. Here m is the largest integer such that ®,, # 0. For a € @, let g, be
the corresponding root space. Define

go = ho 6%) Ba

acdq

P g, k#0.

aEdy,

Il

gk

The decomposition g = @) _,, 8k gives a graded Lie algebra structure on g. Define

P = 8Dg 1D - Dgm
1 2o
u = g9 - Dg-m

Il

We say that p is the maximal parabolic subalgebra associated to the simple root «;.
u is the unipotent radical of p and p = u + 1 is a Levi decomposition. Let us remark that our
choice of p has signs of roots different from the choice in some references, e.g., [Ya]. We prefer
this choice because positive roots correspond to positive line bundles. .

Each g;,1 < j < m, is an irreducible l-module. Let W C g; be the cone of highest weight
vectors of the irreducible I-module g;. Its projectivization PW C Pg; will be called the highest
weight variety. 1 has 1-dimensional center. The semi-simple part of 1 has rank [ — 1 and its
Dynkin diagram is obtained by removing «; from the Dynkin diagram of g. From this, one can
easily determine the highest weight variety in Pg,. We list the pairs (a;; PW) below. For the
numbering of simple roots, we will use the convention of [Yal.

@ g = Al
(ai;Pi—l X Pl—z’)
[ ] g = Bl

(ei; Pi1 X Qogoiy—1) for 1 < i <1 —1,(a;;Gr(2,1 - 2))




e g = Cl
(ai; Pic1 x Poggy—q1) for 1 <4 <1 -1, (ay; v2(Pr-1))

e g=0D
(ai; Pi1 X Qoqoiy—2) for 1 < <1 —2,(oq_1; Gr(2,1 — 2)), (as; Gr(2,1 - 2))

e g = EG
(a1;GrI(5,5)), (a2; GT(3,3)), (az; Py x Gr(2,3)), (ag; Py x P x Py)

e g = E7
(al; GTII(63 6))) (a2; GT(?), 4))a (037 Pl X GT(Q; 4))1 (014; Pl X P2 X P3>7 (a5, PQ X G?"(Q, 3))7
(ag; P1 X G’)"II(S, 5)), (a7; E6)

® g — ES
(a1; GrTI(7,7)), (ag; Gr(3,5)), (as; Py x Gr(2,5)), (ag; Py X Py x Py), (a5, P3 x Gr(2,3)),
(046; Pg X GT‘H(5, 5)), (017; P1 X Es), (O(g; E7)

e g=1F
(al;GT”I(3>3)), (02; Py x v3(Ps)), (a3; Py x P,), (044;G7"H(3a3)>

e g==0y
(a1;P1), (az; v3(P1))

In the list, Qi denotes the k-dimensional smooth hyperquadric, Gr(k,!) denotes the Grass-
mannian of k-dimensional subspaces in (k + [)-dimensional vector space, Gr'!(k, k) denotes the
orthogonal Grassmannian of k-dimensional isotropic subspaces in a 2k-dimensional orthogonal
vector space, Gr''I(k, k) denotes the Lagrangian Grassmannian of a 2k-dimensional symplec-
tic vector space, and Eg (resp. E;) denotes the Hermitian symmetric space with the group
Eg (resp. E7). va(Py) (resp. vs(Pg)) denotes the 2nd (resp. 3rd) Veronese embedding of the
projective space. Except these Veronese embeddings of projective spaces, all other irreducible
Hermitian symmetric spaces are embedded in a minimal way and the product stands for the
Segre embedding coming from tensor product of the embeddings of each factor.

Now let G (resp. P) be a complex Lie group with Lie algebra g (resp. p ). The quotient
variety G/P is called the rational homogeneous space associated to the simple root «;.
The quotient map G — G/ P defines a P-principal bundle on G/P. The left action of P on the
reductive group L = P/U where U is the unipotent radical of P, induces an L-principal bundle L
on G/P. The Picard group of G/P is generated by an ample line bundle £. This line bundle L is
homogeneous and is associated to L by a 1-dimensional representation of L. This representation
can be described as follows. Let a; be the simple root defining P. Let H,, € h be its coroot. The
center of the reductive group L = P/U has Lie algebra CH,,. Hence a Z-functional on ZH,,
induces a character of L, giving rise to a homogeneous line bundle on G/P. The line bundle £




is the one associated to the functional having value 1 on H,,. It is well-known that £ is very
ample.

For example, when G/P = P,, g = sl, has a unique simple root and corresponding coroot.
A functional having value k € Z on the coroot gives rise to the line bundle O(k) on P;.

On our rational homogeneous space G/P, we have rational curves which are lines under the
embedding defined by L. Let o; be the simple root defining P and H,, € h be its coroot. Let
Sq; C g be the subalgebra isomorphic to sl; such that s,, "h = CH,, and H,, is the coroot for
Sqa,. The orbit of o € G/P under the subgroup S,, C G with Lie algebra s,, is a rational curve
and will be denoted by C,,. Note that the character of L defining £ has value 1 on H,,. Thus
C,, is a line under the embedding of G/P defined by £. Under the natural identification of g;
as a subspace of the tangent space T,(G/P), H,, is a tangent vector of the line C,, at the point
o€ G/P.

So far all our discussions work for any simple root «;. But for the next Proposition we need
to assume that o; is a long simple root.

Proposition 1 If a; is a long simple root of g, then the Chow space of lines through the base
point o € G/ P is isomorphic to the highest weight variety PW C Pg,.

Proof. Each point w € PW can serve as the highest weight vector H,, under a suitable choice
of the Cartan subalgebra h and the Weyl chamber. Thus we have a line C,, whose tangent vector
at o is given by w. Thus PW is a subvariety of the Chow space of lines through o.

We claim that PW is an irreducible component of the Chow space. It suffices to show that
the dimension of the deformation of a line fixing a point on G/P cannot exceeds the dimension
of PW. The former is bounded by h°(C,, N ® O(—1)) where N is the normal bundle of the
line in G/P. Since the normal bundle is semi-positive, h°(Cy, N @ O(-1)) = C,, - Kg/lp —2. To
calculate the anti-canonical degree of C,,, we use Grothendieck’s splitting theorem for principal
bundles on P; with reductive structure groups and associated vector bundles([Gr]).

Theorem (Grothendieck) Let O(1)* be the C*-principal bundle on P, corresponding to the
line bundle O(1). Let L be a reductive complex Lie group. Up to conjugation, any L-principal
bundle on Py is associated to O(1)* by a group homomorphism from C* to a mazimal torus of
L. If H is the coroot of sly, such a group homomorphism is determined by the image of H in
h, a fized Cartan subalgebra of L. Given a representation of L with weights pi1, ..., € h*, the
associated vector bundle on Py splits as O(u1(H)) @ -+ ® O(w(H)), where p;(H) denotes the
value of u; on the image of H in h.

Note that T,(G/P) can be naturally identified with g/p. So the Chern number of T'(G/P) is
equal to the sum of Chern numbers of the vector bundles associated to the L-principal bundle L
via the representations of L on gy, ..., gm. Hence by Grothendieck’s theorem, the Chern number
of T(G/P) restricted to Cy, 18 Ygea,u.-us,, B(Ha,;). Since a; is a long root,

B(Hy)=4 1 iff#andf-a;€P
—1 ifB#a;and B+ a; € D.




From «; € @4, the Chern number is

Y B(Ha) = 2+#{B€®U---Udy, B+, —a €D}

BED U UD,,
-t{BedU---UD,,,B#a;,f+a € P}
= 2+4+4{f € D:,8—a; € Do}
= 2+8{y€ Pg,a+y € Dy}
= 2+ dim([go, Ha,])-

It follows that h°(Cy, N ® O(—1)) = dim([l, H,,]). But dim([l, H,,]) is exactly the dimension of
PW. This proves that PW is an irreducible component of the Chow space of lines through o.

It remains to show that the Chow space of lines through o is irreducible. A line is determined
by its tangent vector at o. Thus if there exists a line different from C,,, its tangent vector will
be contained in T,(G/P) — PW. From Proposition 5.2 in [HM2], the closure of the P-orbit of
such a vector intersects PW. Since the limit of a family of lines is again a line, this implies that
the component PW is not smooth. However PW is homogeneous and h'(C,, N ® O(-1)) =0
since N is semi-positive, so the Chow component PW is smooth, a contradiction. O

Remark 1 As complex manifolds, the rational homogeneous space associated to a; for g = B;
is biholomorphic to that associated to a; for g = D;,;. Also the rational homogeneous space
associated to a; for g = G is isomorphic to Qs which is associated to o, for g = B;. Thus when
we study complex structure of G/P, these two cases can be regarded as rational homogeneous
spaces associated to long simple roots.

Remark 2 When q; is a short simple root, Proposition 1 does not hold. The Chow space
of lines through o contains, but is strictly bigger than, PW. It is not contained in Pg; and
excepting the cases mentioned in Remark 1, it is not homogeneous.

2 Rigidity of the normalized Chow spaces

Let us recall some basic facts from deformation theory of rational curves (cf. Section 2 of [HM1]
or [Kl]). Let X be a Fano manifold of Picard number 1 and z € X be a generic point. Let K,
be an irreducible component of the normalized Chow space of rational curves of minimal degree
through z. Then K, is a smooth projective variety. If the anti-canonical degree of members of
K; is p+ 2, then K, has dimension p, and for a generic member C of X,

T X)le = OQ)@[O(1)P O™ 17

Define the tangent map 7, : K; — PT,(X) by assigning the tangent vector at z to each member
of K which is smooth at z. This is a generically finite rational map and its strict image is denoted
by C,, called the variety of minimal rational tangents at z. Suppose X is embedded in some
projective space Py and a minimal rational curve through a generic point z is a line in Py. Since
lines through = in Py are determined by their tangent vectors at z, 7, is an embedding. This
is the case for our G/P. In particular, when P is associated to a long simple root, Proposition
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1 implies that K, = C, = PW and 7, is an embedding described in the list of highest weight
varieties in Section 1.

We now go to the situation of the Main Theorem. Let 7 : X — A be a smooth projective
morphism from a complex manifold to the unit disc. Suppose the fiber X; := 77(t) is biholo-
morphic to G/P associated to a long simple root for each ¢ # 0. Let us use the same symbol
L to denote the line bundle on X’ whose restriction to X; is equivalent to the line bundle £ on
G/P. Choose a generic point z € X, and a section o : A — X of 7 satisfying 7(0) = z. Let
p: K; — A be the family of normalized Chow spaces K, of minimal rational curves through
o(t) in X;. Then p is a smooth projective morphism by the same proof as Proposition 4 in [HM1]
or Proposition 8 in [Hw1]. The goal of this section is to prove the following.

Proposition 2 The family p : K, — A is a trivial family, namely, its fiber at t = 0 is also
isomorphic to PW.

Proof. From the list of highest weight varieties in Section 1, we see that PW belongs to (at
least) one of the following.

(i) PW is an irreducible Hermitian symmetric space.

(ii) PW is the product of two projective spaces.

(iii) PW = S; x S5 where S; = Py, and S, is a hyperquadric.

(iv) PW = S; x S where S; = Py and S, is a Hermitian symmetric space of rank 2 with
dim(S;) > k := dim(S,).

For the case (i), Proposition 3 follows from the result of [HM1]. For the case (ii), Proposition
3 was proved in Section 3 of [HM1]. Thus we will only consider the cases (iii) or (iv). In these
case, either Sy is irreducible or the product of two projective spaces. Let ¢; be the hyperplane
line bundle on S; = Py, and ¢, be the ample line bundle on S, which is the generator of Pic(S5)
if Sy is irreducible and is the tensor product of hyperplane bundles of each factor when S; is the
product of two projective spaces. Let ¢ = (; ® (. We say that a curve on C, is a line (resp. a
conic), if it has degree 1 (resp. 2) with respect to (. Let & (resp. &1, resp. & ) be the line bundle
on K, so that its restriction to p=*(¢) is ¢ (resp. (i, resp. (3) for ¢t # 0.

Lemma 1 Let l; C Ky be a family of curves so that l; is a line on Sy X Sy = Koy for all
t #0. Then ly is irreducible and reduced as a cycle in Kq(0).

Proof. For t # 0, a line in K, corresponds to a family of lines in G/ P passing through
a fixed point 0 € G/P, which span a surface of degree 1 with respect to £. Given a family
of rational curves l; C Ky of degree 1 with respect to &, we have a corresponding family of
surfaces R; C X, of degree 1 with respect to £. Since £ is ample on Xp, the limit Ry must be a
reduced irreducible surface. It follows that the limit [y is a reduced irreducible rational curve on
’Ca(o). O

Note that for any polarized projective manifold X and an integer N, there exists a non-empty
Zariski open subset X* C X with the property that for any irreducible rational curve C' of degree
< N with respect to the given polarization, T'(X)|¢ is semipositive if C' contains a point of X*
(e.g. the argument of [KI] I1.3.11).



Lemma 2 Let y € K, (o) be a generic point. Let ¢t C Koy be a family of curves so that ¢, is
a conic on Sy X Sy = K,y for allt # 0 and ¢y contains y. Then cq 1s either irreducible or has
two components of degree 1 with respect to £.

Proof. A conic on S; x Sy can be degenerated to a union of two lines. Thus for ¢ # 0, a conic
on Ky corresponds to a surface of degree 2 in X, with respect to £. By the same argument
as in Lemma 1, ¢y can have at most two components. Suppose it has two components ¢, and
co1- One of them, say cgyg, contains y and we may assume T'(K,())|c, is semipositive from the
genericity of y. From H'(cg, T(Ks())) = 0 and Kodaira’s stability ([Kd]), we have a family of
rational curves Cf C K, so that Cly = cgp. In particular, coo has positive degree with respect
to §. Suppose that coy has degree > 1 with respect to {. Then the surface in X; corresponding
to Cy is of degree > 1 with respect to £. It follows that the surface in Xy corresponding to cgg
has degree > 1 with respect to £ . This is not possible because the total degree of the surfaces
corresponding to cop U ¢o; is 2. Hence ¢y has degree 1 with respect to ¢ and so does ¢y;. O

We have two foliations £ and F on K, so that the leaves of £ |Koiyst 7# 0O (resp. F K, )) are
the Si-factors (resp. Ss-factors ) of Koy = Sy X S5. They define meromorphic foliations on
Ko (0)-

Lemma 3 Let y € Ky be a generic point and 1A — Ky be a section of p with u(0) = y.
Let P be the E-leaf and Q; be the F-leaf through u(t) on Koy, t # 0. Then the limits Py and Qo
are irreducible and reduced as cycles in Ko0)-

Proof. Since P, and Q; has intersection number 1 for all ¢ € A, the reducedness of Py and Q,
are immediate if they are irreducible.

Suppose P is reducible. We can choose two families of distinct points oy, B € P; so that ap
and [y lie on different components of P,. Since By = Py for t # 0, there exists a line I, C P,
joining oy and §;. By Lemma 1, the limit l must be irreducible while o, Bo € ly, a contradiction.
Thus P, is irreducible.

To prove the irreducibility of Qo, we consider the case (iii) and the case (iv) separately.

For the case (iii), we will use the following property of the hyperquadric Sy: given two generic
points A, B € Sy, the union of all conics passing through A and B covers S;. This is because
the tangent bundle of the hyperquadric splits as a direct sum of O(2)’s over a conic. Suppose
Qo is reducible. Choose two generic points Ay, By in one of the component of Qo so that both
Ay and By are very general. Choose two families of points A;, By € Q; converging to Ay and By.
Consider the union of all conics through A4, and B,. By the above mentioned property of S,,
the limits of these conics must cover Q. Since Qo is reducible, this means that for any family
of conics c; passing through A, and B; its limit is reducible and one of the component is a line
passing through A, and By. The union of such lines must cover one component of Q). By Mori’s
bend-and-break ([KI] IL.5), this family of lines through A, and B, must degenerate to a union of
two rational curves. But this gives a contradiction to the degree of corresponding surface in X
as in the proofs of Lemma 1 and Lemma 2.

For the case (iv), we will use the following property of Hermitian symmetric space S, of rank
2: conics through a given point on Sy cover S,. This is a consequence of the polydisc theorem
(Ch. 5 (1.1) in [MKk]). If Qy is reducible, choose 4;, B; € Q: so that Ag and By are generic points
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of distinct components of Qg. We may assume that Aj is a very general point. We can find a
family of conics ¢; C @ containing A; and B;. The limit ¢y cannot be irreducible, and must be
the union of two irreducible curves of degree 1 with respect to £ by Lemma 2. Fixing Ay and
varying By, we get irreducible rational curves of degree 1 through A, which cover a component
of Q. Since Ay is very general, we may assume that these degree 1 curves through Ag are limits
of families of degree 1 curves through A; in K, by Kodaira’s stability ([Kd]) as in the proof
of Lemma 2. Thus on K, ), we get a (dim(Sz) — 1)-dimensional family of lines through a fixed
point, but this is impossible because Ss is not a projective space and k < dim(S;). O

Lemma 4 For a generic point y € Ky(o), the E-leaf P through y and the F-leaf Q through y
inlersects transversally at y.

Proof. Suppose not. From the genericity of y, there exists a positive dimensional component
R of PN Q through y. Let P, (resp. Q) be a family of leaves of £ (resp. F) with Py = P (resp.
Qo = Q). Choose two distinct points on R generically. Then there exist a family of lines /; on
P, so that [y contains these two points on B. We can choose a section of & whose zero section
H is a hypersurface consisting of F-leaves so that Q C H. Since [y has degree 1 with respect to
&1 and contains at least two points of H, we see that lj C H. This implies that {, C . From
the genericity of y, we can assume that [y passes through a generic point of ). We know that &
is big on @ because it is ample on ();. On the other hand, [y - & = 0, a contradiction. O

We are ready to finish the proof of Proposition 2. From above, £ and F define two transversal
foliations at generic points of Ky(g). So we get a direct sum decomposition of the relative tangent
bundle of p outside a codimension 2 set in K,. Then it extends to a direct sum decomposition
everywhere on K., because the set of all possible direct sum decompositions of a given vector
space is an affine variety. It follows that the foliations £ and F on K, have no singularity. Since
Ko(0) is simply connected, Kooy is biholomorphic to the product of smooth deformations of Sy
and S;. This finishes the proof when S is irreducible by the result of [HM1]. When S, is the
product of two projective spaces, we apply the same argument as above to the family of leaves
Qt, as was done in Section 3 of [HM1], to conclude. O

3 Symbol algebra of the differential system

Let us recall some definitions in the theory of differential systems ( [Ya]). Given a distribution
D on a complex manifold X, define the weak derived system D* inductively by

D! = D
D* = DF1'4[D,D*1].

For a generic point z € X in a neighborhood of which D*’s are subbundles of T'(X), we define
the symbol algebra of D at z as the graded nilpotent Lie algebra D! + D?/D}+---+ D% /D7 !
where r is chosen so that D"*! = D,

When X is a Fano manifold of Picard number 1, choose a component K of the Chow spaces of
rational curves of minimal degree covering X. For each generic z € X, let K; be the subscheme



consisting of curves passing through = and C, C PT,(X) be the variety of minimal rational
tangents. Let Vo C Tu(X) be the linear span of C, and V be the meromorphic distribution
defined by V,’s. As an ¢Xample, consider our G/ P associated to a long simple root- We have the
L-principal bundle L on G/P i qyced by the P-principal bundle G — G/P. The L-module g;
induces a vector bundleDon G/p_ By definition, since C, is nondegenerate in g3, the distribution

V for G/ P agrees with D. Moreover, it is easy to see that the symbol algebra of D is isomorphic
t0g1+"'+gm-

. Rem?rk 3 As mentioned iy, Remark 2, if G/P is associated to a short gimple root,‘ the
distribution V need 1ot agree with the distribution defined by g,. For example, V is the trivial

distribution 7'(G/P) when G i of type C' (symplectic group) and P is associated to a short
simple root.

For any Fano manifold X of Picard number 1 and for any choice of K, the distribution V has
the following twoO pProperties,

Proposition 3 Let [] Ay, T.(X)/Vs be the Frobenius bracket tensor at @ generic point

z € X. Then for a generic smooth point v € C, and v' in the tangent space of Cz @t Vs [v,v]=0
when v and V' are regarded as yectors in V), .

Proof. 'This is just a restatement of Proposition 10 of [HM1]. Section 4 of [HM1] was

presented under f;he assumption that C, is irreducible, but the proof of Proposition 10 did not
use this assumption. 0

Proposition 4 4t a generic point z € X, the symbol algebra of V has dimension™ = dim(X).

Proof. By definition, the sy algebra has dimension < n. If it is strictly 16sS than n, ¥

is contained in an integrable distribution. This is a contradiction to the assumption that X is of
Picard number 1 by Proposition 9 i [Hw2]. O

Now let us go to .t}%e situation of the Main Theorem. Let K be a component of the Chow
space of X, parametrizing rational curves covering X, which are limits of lines on X,,t#0. Let
7o+ Ko = Cz € PTu(X) be the tangent map at a generic z € X, Let V, C T, (Xo) be the linear
span of C; and V be the meromorphic distribution defined by 1;:’5.

Proposition 5 At @ generic point x € X, the symbol algebra of V is isomorphic to g1 +
.+« + g as graded nilpotent L algebras.

To prove Proposition 5, we need a characterization of the graded nilpotent Lie algebra g; +
ot Bme We need the following Lemma which follows immediately from the proof _Of Serre’s
Theorem in [Hu, 18.3), using the fact that the subalgebra generated by {z;,1 <1 < [} in the Lie

algebra L, constructed there is free (see also Se, pp.48-4 tter fact is proved in [Bo,
Ch.8, 4.2] or [Ka, Theorem 1.2(b)] ( [Se, pp 9]). The latter fact is P

Lemma 5 Let’{al,. -} be a set of simple roots for g and < ai, o > be the entries of the
Cartan matriz. Let {zi,y;, |1 < ; < [} be the generators of the Serre presentation 0f 8 a5 given

in [Hu, 18.1]. Then the subalgepy, of g generated by {z1,... x,} is the quotient of the free Lie
algebra generated by {z1,.. 541} by the relations ’

(ad x;ﬁ)—<aj,ai>+l(xj) =
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fori+ .
Using Lemma 5, we get the following characterization of the graded Lie algebra go+- - - +gm.

Proposition 6 Let n = -2 n; be a graded Lie algebra generated by ng and n; so that
ny = go and n; is isomorphic to g, as a go-module. Let W C n; be the highest weight cone for
the representation of gy on n;. Assume that for any vector v € W, the Lie bracket of n satisfies
[v, [g0,v]] = 0. Then n is a quotient of the graded Lie algebra go+ -+ - + .

Proof. Let m C gy be the subalgebra generated by {z;,7 # k} where oy is the long simple
root defining p. Consider the subalgebra n’ = m+n; +---+n; of n. As an abstract Lie algebra,
n’ is generated by {z;,1 < i < [}. It satisfies all the relations

(ad z;) <> z;) = 0

for i # j. In fact, if j # k and ¢ # k, this relation is just one of the Serre relations for go. If
j = k, this relation concerns the action of m on n;, which we assumed to be equivalent to the
action of m on g; for which the relation is just one of the Serre relations. When i = k and
< aj, o >= 0, this follows again from the action of m on n;. Since oy is a long root, the only
remaining case is when 7 = k and < a;, o >= —1, for which the relation is just

[xkv{xkvxj” = 0.

But this is satisfied from the assumption that [v,[go,v]] = 0 for any v € W. It follows from
Lemma 5 that n’ is a quotient of the subalgebra of g generated by {zi,---,2;}, which implies
Proposition 6. O

Now we have the following characterization of the graded Lie algebra g1 + - - + gpn.

Proposition 7 Let W C g; be the cone of highest weight vectors as a go-module and F(g;)
be the graded free Lie algebra generated by g,. We consider the ideal I of F(g1) generated by
the relations [v, [go,v]] = 0 for allv € W. Let us denote the quotient graded algebra F(g:)/I by
n;+ng+---. Then ny+ny+ - is isomorphic to the nilpotent graded Lie algebra g + - - + &m.

Proof. go-action on g; induces a gg-action on the tensor algebra of g; as a derivation, making
go + F(g1) into a graded Lie algebra whose 0-degree part is exactly go. Since the ideal [ is
invariant under the action of g, go + n; + ny + --- becomes a graded Lie algebra. Setting
ng = go, we can apply Proposition 6 to identify n; + ng + -+ with g1 + -+ - + gn. O

Now we are ready to finish the proof of Proposition 5.

Proof of Proposition 5. Choose a section 0 : A — X of 7 : X — A so that z = ¢(0) is a
generic point of Xy = 771(0). The family K, of normalized Chow spaces of minimal rational
curves through o is a trivial family of PW by Proposition 2. For ¢t # 0, the tangent map
To(t) : Koty = PT,()(X:) is an embedding into PD,(;) = Pg, given by a complete linear system
of the line bundle £ on K, defined in Section 2. Thus 7,() is a rational map defined by a
subsystem of this complete linear system. Namely, 7, (o) is induced by a projection g — V. Let
W' C V, be the image of the highest weight cone W C g; under the projection. Then PW’ = C,,
the variety of minimal rational tangents at z.
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Consider the free li€ algebra F (Vx) generated by V, and let J be its ideal generated by the
relations given by [v,,’b"] where v is a smoth point of W’ and v’ is a vector in the tangent
space of the cone 1%%4 at v. Then the quotlen.t graded Lie algebra F(V,)/J is a quotient of
g+ +gn by proposition 7 because J contains the image of / under the natural graded Lie
algebra homomorphisSm F(ni) — F(V,). F}"om Proposition 3, the symbol algebra of V at z is
a quotient algebra of F(V;)/J, thus a quotient algebra of g1+ -+ gm. If the symbol algebra

is not isomorphic t0 81 + +** + 8m, it has dimension strictly smaller than n = dim(G/P), a

contradiction to Proposition 4. O

Our Main Theorem follows from Proposition 5 via the works of Tanaka and Yamaguchi ([Ta]
and p.479 of [Ya]. 5¢€¢ also 3'1_0 of [Mo] for a more general treatment). Let us briefly summarize
their works. Let G/ P be a rational homogeneous space associated to a simple root. Assume that
G/P is not a sy mumetric space or a homogeneous contact manifold. Given a differential system
D on a complex manifold whose S)‘rmbol a%gebr a at a generic point is isomorphic to g1+ +gm,
there exists a nattr® holf)morph} ¢ P-principal bundle P over an open neighborhood U of a
generic polnt with 2 Canomc'al e O1f g-valued 1-form w, called the Cartan connection, so that
if the Maurer-Cartan €quation dw + 3lw,w] = 0 holds, then there exists a biholomorphic map
of U to an open subset of G./ & Wthh_ Sen(.is the distribution D to the distribution D on G/P
induced by g;. The Constructh.n W S [T,‘a] or 3.10 of [Mo] can be carried out when we are
given a family of complex manifolds with a family of differential systems whose symbol algebras

are isomorphic to g1 T + Bm.

Proof of Main Theorem: From [HM1] an@ [Hw1], we may assume that G/P is not a sym-
metric space or a homogeneous contact manifold. By Proposition 5, we are given a family of
meromorphic distributions V: on & whose symbol algebra at a generic point of X, is g; +- - - + g
for all £ € A. We can appIy' th.e construction of [Ta] or 3.10 of [Mo] to a family of neighborhoods
U, of z € X, to get @ P-principal bundle P over U := U;eald; with the Cartan connection w on
P. Since the Maurer-Cartan equation holds for ¢ # 0, it holds also for ¢ = 0. Thus there exists
a biholomorphic maP from Up to an open subset of G/P sending V to D. From the upper-semi-
continuity of A%( Xt,T(Xt))v the Lie algebra aut(Xy) of infinitesimal automorphisms of X, has
dimension > dim(g)- By Corgllary 5.4 of [Ya], the Lie algebra of infinitesimal automorphisms of
Uy preserving Vp is isomorphic to g. Thl}S aut(Xy) = g and the isomorphism is induced by the
biholomorphism fro™ Hy 10 AT SPEE 805 I G/ £ In. particular, G acts on X with the isotropy
subgroup at a generic point isomorphic to P, implying X, &~ G /P. O
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