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Projective manifolds dominated by abelian varieties

Jun-Muk Hwang'! and Ngaiming Mok 2

In [La], Lazarsfeld showed that if there exists a surjective morphism from the projective space
P, to a projective manifold X, then X = P,. A natural generalization of this would be the
study of projective manifolds which can be the target of a surjective morphism from homogeneous
spaces.

In [HM2], the authors studied the question for a rational homogeneous space S of Picard
number 1. From the condition on the Picard number, a non-constant morphism f : S — X must
be a finite morphism. The main result of [HM2] says that if f : S — X is a finite morphism
with nonempty ramification onto a projective manifold, then X = P,,.

Debarre studied the question for a simple abelian variety A ([De]). Since A is simple, a
non-constant morphism f : A — X must be a finite morphism. His main result says that if
f:A— X is a finite morphism with nonempty ramification from a simple abelian variety onto
a projective manifold, then X = P,. He used the fact that curves in a simple abelian variety
have ample normal bundles, making it possible to apply Mori’s characterization of P, ([Mo]) as
in the argument in Lazarsfeld’s proof for P, — X.

In this article, we study the same question for an arbitrary abelian variety A. Note that if
f: A — B is a surjective morphism with connected fibers onto a normal variety B, then vector
fields of A descend to B as derivations of f,O4 = Op and B must be a quotient abelian variety.
By Stein factorization, any surjective morphism f : A — X to a projective manifold can be
factored through a finite morphism on some quotient abelian variety of A. So to study target
manifolds X we may restrict to the case of finite morphisms. For X of Picard number 1 we prove

Theorem 1 Let f : A — X be a finite morphism with nonempty ramification from an abelian
variety onto a projective manifold X of Picard number 1. Then, X = P,.

When X is not assumed to be of Picard number 1, and A is not simple, then X may be more
complicated than P,, e.g., X can be a bundle of projective spaces over some abelian variety.
Our Main Theorem says that these are essentially the only possibilities.

Main Theorem Let f : A — X be a finite morphism with nonempty ramification from an
abelian variety onto a projective manifold X. Then X is a holomorphic bundle of projective spaces
over a projective algebraic manifold Y of smaller dimension and there exists a finite morphism
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from an abelian variety onto Y. Thus there ezist a finite sequence of surjective morphisms
between projective manifolds v¥; : X;_1 — X;,1 <1 < N with Xg = X such that each 9; is a
holomorphic Py, -bundle for some integer k;;1 <1 < N and Xy has a finite unramified cover by
an abelian variety.

As is well-knwon, X in the above statement need not be an abelian variety (e.g. [Ue, p.208]).

As opposed to the case of simple abelian varieties, the fundamental difficulty of our problem
arises from the fact that the normal sheaf of an algebraic curve on A need not be ample. (This
difficulty arises even if X is of Picard number 1.) Deformation of minimal rational curves on X
then leads to multi-valued distributions. We combine deformation theory of rational curves on
X with topological considerations to handle multi-valuedness of such distributions. In addition
to providing the key step to our solution of the Main Theorem, our treatment of multi-valued
distributions furnishes an ingredient pertinent to the general theory of distributions defined by
minimal rational curves, a systematic study of which just started in [HM1].

1 Varieties of minimal rational tangents on projective

manifolds dominated by abelian varieties

In this section, we will prove some basic results about the deformation theory of rational curves
on projective manifolds dominated by abelian varieties. To start with,

Proposition 1 Let f : A — X be a finite morphism with nonempty ramification from an
abelian variety onto a projective manifold X. Then X is uniruled.

Proof. By the adjunction formula, K4 = f*Kx + R where R is the ramification divisor.
By assumption, R # 0. Choose a generic curve C C A which meets R. Then f(C) is a curve
through a generic point on X, with Kx - f(C) < 0. By [MM], this implies that X is uniruled. O

Let X be a uniruled projective manifold. Among components of the Hilbert scheme of rational
curves on X whose members cover X, we choose one component K of minimal degree. K will be
called a minimal rational component. A member of K will be called a K-curve. Let K, C K be
the subscheme consisting of K-curves passing through a generic point € X. By the minimality
of the degree, K, is complete. Generic members of K, are smooth at z, defining a rational map
®, : K, — PT,(X) by associating the tangent vector at z to each curve smooth at z. The strict
image of ®, will be denoted by C,, and called the variety of minimal rational tangents. The
closure of the union of C,’s over generic points of X forms a subvariety C C PT(X), called the
bundle of varieties of minimal rational tangetns. C is irreducible, otherwise the collection




of members of K tangent to a component of C will violate the irreducibility of . From Mori’s
bend-and-break trick the following is well-known ([Ko, IV.2.9]).

(*) For a generic K-curve C, the normalization v : P; — C is an immersion and v*T'(X) =
0O(2) ® O(1)? ® O™'~P for some nonnegative integer p which is equal to the dimension of K,
and C, for a generic z € X. It follows that for any positive-dimensional family of rational curves
belonging to K, the members of this family do not share a common point other than z.

We recall three lemmas about abelian varieties. Recall that when S C A is a connected
subvariety (not necessarily irreducible) of the abelian variety A, the smallest abelian subvariety
of A containing all the differences s — s’, where s,s’ € S, is called the toroidal hull of S, and
denoted by < S >. Note that for any s,s’ € S, S is contained in s+ < S >= s+ < § >. For
the proof of the following lemma, see [Za).

Lemma 1 ([Za], p.28, Lemma 3.2) Let S C A = C"/A be a connected subvariety whose
tangent spaces to smooth points are contained in a vector subspace C™ C C™. Then the toroidal
hull of S has dimension < m.

The next lemma is a simple consequence of the fact that we cannot have a positive-dimensional
family of abelian subvarieties.

Lemma 2 Given any irreducible family of subvarieties of an abelian variety, the toroidal hulls
of generic members are identical.

A direct consequence of these two lemmas is

Lemma 3 Let C; C A be a p-dimensional irreducible family of curves on an abelian variety
passing through a common point a € A. If the union of Ci’s covers a (p + 1)-dimensional
constructible subset in A and the subspace of H°(Cy, T*(A)) consisting of elements annihilating
tangent vectors to Cy; has dimension > n — 1 — p for a generic member C, then the closure of
the union of these curves is a translate of a (p + 1)-dimensional abelian subvariety which is the
toroidal hull of a generic Cy.

Lemma 3 shows that the varieties of minimal rational tangents on our X are union of linear
subspaces:

Proposition 2 Let f : A — X be a finite morphism from an abelian variety onto a uniruled
projective manifold. Let K be as above and let C, be the variety of minimal rational tangents at
a generic point x € X, which has dimension p. Then there ezist finitely many distinct (p + 1)-
dimensional abelian subvarieties Ay, ..., Am of A with the following property. Let A* C T(A) be
the distribution defined by the translates of A;. Then for each generic x € X,

C: = dfs,( PA'U---UPA™), 1<j<d

3



= dfs,(PAYU---Udf,,(PA), 1<i<m

where f~1(z) = {a1,...,a4}. In particular, C, is the union of m linear subspaces of dimension
p, defining a multi-valued distribution on a Zariski dense open subset of X. A local integral
submanifold of these distributions at x € X is given by the image of a translate of A;. This local
integral submanifold contains an open subset of the variety obtained by the union of members of

an irreducible component of IC,.

Proof. Choose a generic point a € A outside the ramification locus of f. Let
C;: = CaU---UCm

be the decomposition into irreducible components of the variety of minimal rational tangents at
z = f(a). Each component C,; is the strict image of an irreducible component K ; of K, under
®, : K; — PT,(X). For a rational curve C; C X corresponding to a generic point of K, let
C! C A be an irreducible component of f~1(C;) through a. Note that elements of H°(C;, T*(X))
annihilates the tangent vectors to C; and h°(C;, T*(X)) = n — 1 — p from (*). The pull-back
of elements of H(C;, T*(X)) to H°(C!,T*(A)) gives a subspace of dimension > n — 1 — p,
annihilating tangent vectors of C;. By Lemma 3, the closure of the union of all such choices of
C}is a+ < C] >. It follows that df;(C,;) = PT,(a+ < C| >). Putting A; =< C! >, we get the
first equality of the proposition. As for the second equality, the inclusion

dfo;(PAYU---Udf,(PA) C C,

follows from the first equality. Suppose this inclusion is not an equality for generic z. Then the
closure of the union of df,(P.A") for generic a € A form a subvariety of the bundle of varieties of
minimal rational tangents C, which has the same dimension as C, contradicting the irreducibility
of C. The statement about the integral submanifold of the distribution follows from the way A;
is defined from Lemma 3. O

We have the following regularity of the integral subvarieties of this multi-valued distribution.

Proposition 3 Let a € A be a generic point and A; be as in Proposition 2. Let Z = f(a+ A;)
be the image of the translate of A;. Then the normalization map h : Z — Z is an immersion
outside a set of codimension > 2 on Z.

Proof. Let B C X be the branch divisor of f : A — X. Certainly Z is smooth outside B.
Let D C Z be a component of h~!(B N Z). We want to show that h is unramified at a generic
point z of D.

From Proposition 2, Z is the closure of the union of members of an irreducible component
K:,; of K; for a generic x € Z. We know that K,; for a generic = is a complete family all
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members of which are irreducible. Let If:z,,- be the family obtained by pulling back K, ; by h.
ICI,,» is a complete family consisting of irreducible rational curves on Z. A generic member C of
Iez,,- lies on the smooth part of Z, otherwise we have a 1-dimensional subfamily of curves passing
through two distinct points, h~!(z) and a singular point of Z, a contradiction to (*). Thus we
can think of the tangent bundle T(Z) in a neighborhood of a generic member C. Since I@z,i
gives deformations of C fixing the point h~!(z) covering the whole Z, the tangent bundle T'(Z)
restricted to a generic member C' must be an ample vector bundle ([Ko, 11.3.10.1]). Since C is
of minimal degree among rational curves on Z through z, we have ([Ko, IV.2.9])

T(Z)e = O2)®OQ).

For any point z of D, we can find a member of I@x,i which passes through z, because members
of I@M cover Z. By the irreducibility of the family, all members of I@m intersect D. It follows
that for a generic point z of D, we can find a generic member C of I@z,i passing through z. From
the splitting type of T(Z )|c we have p-dimensional deformations C; of C passing through 2. The
tangent vectors to these deformations cover a p-dimensional open subset in PT: z(Z )-

Suppose h is ramified at z. Then h(C;) is a p-dimensional family of deformations of h(C)
whose tangent vectors at h(z) can span only (p—1)-dimensional subset in PT};)(X). This means
that h(C) has a deformation fixing the point h(z) to second order and its Kodaira-Spencer class
gives a section of the normal bundle of h(C) vanishing to second order, a contradiction to the

splitting type of T'(X) on h(C) in (*). O

2 When the varieties of minimal rational tangents are

nondegenerate

In this section, we will show that if C, is nondegenerate in P7T,(X) then X = P,,.

Proposition 4 In the situation of Proposition 2, suppose C, is nondegenerate in PT (X) for
a generic x € X, namely, it is not contained in any hyperplane of PT,(X). Then m =1 and
p=n-—1.

Proof. First we claim that X is rationally connected. Otherwise, we have the maximal
rational fibration of X over a positive-dimensional variety such that all rational curves through a
very general point of X are contained in the fiber through the point ([Ko, IV.5.2]). This implies
that C, should be contained in the tangent space of the fiber through z, a contradiction to the

nondegeneracy assumption. Since a rationally connected manifold is simply connected, we will .

prove m = 1 by constructing an unramified covering of degree m over X — E for some subvariety-

E of codimension at least 2.




From Proposition 3, in an analytic neighborhood U of a generic point x of the branch divisor
B,

UNn(fla+A)U---Uf(a+An) = Z1U---UZ

for some | > m, where a is any point of f~!(z) contained in the ramification divisor R and
Z;,1 < j <, are submanifolds of dimension p + 1. We want to show that T(Z)U---UT(Z)
has at least m distinct components in T,(X).

Among the m distinct abelian subvarieties Ay, ..., An,, we may assume that a+A,,...,a+ A,
are contained in R while a + A,,1,...,a + A, are not contained in R, for some 0 < r < m.

From the genericity of x € B and a € R, we may assume that f|g is unramified at a
and the kernel of df, is a 1-dimensional complement to T,(R) in T,(A). The tangent spaces
To(a+ Ay),...,To(a + A,) lie in T,(R). We claim that each of T,(a + Art1), ..., Ta(a + Am)
contains the kernel of df,, i.e., f|a,+q is ramified at a for all 7 +1 < j < m. Asin the proof of
Proposition 3, there exists a K-curve C on f(a + A;) which passes through z and is transversal
to B at . Let C’ be an irreducible component of f~!(C) lying on a+ A;. If C’ is not tangent to
the kernel of df,, then the tangent of f(C’) would be contained in the image of df. This means
that C is tangent to B, contradictory to our choice of C. It follows that the kernel of df at a is
contained in Ty(a + A;).

Thus T,(R) N T,(a + A;),7 + 1 < j < m constitute a set of m — r distinct subspaces of
dimension p in T,(R). Since f(a + A;) is immersed at = and df, sends T,(R) isomorphically
to T,(B), we see that T,(f(a + A;)),7 +1 < j < m constitute a set of at least m — r distinct
subspaces of dimension p + 1 in T,(X), which are not contained in T(B). On the other hand,
T.(f(a+ A;)),1 < i < r constitute a set of r distinct subspaces of dimension p + 1 in T;(B). It
follows that T(Z;) U - - - U T,(Z;) has at least m distinct components.

Let GrT(X) be the Grassmann bundle of (p + 1)-dimensional subspaces of T'(X). For a
generic y € X, C, C PT,(X) consists of m linear subspaces of dimension p, defining m distinct
points in GrT,(X). We denote this set of m distinct points by S,. The closure of the union of
the S,’s gives a subvariety S C GrT(X). S is irreducible because C is irreducible. The natural
projection S — X is generically m-to-1. From the above discussion, S has at least m distinct
points over x € B. Thus it is m-to-1 over z, too. Applying the above argument to generic
points of all components of the branch divisor of f, we see that S — X is m-to-1 outside a set
of codimension > 2 in X. Thus m = 1 from the simple connectedness of X. We conclude that
C. = PT,(X) and p =n — 1 from the nondegeneracy of C,. O

Proposition 5 Under the assumption of Proposition 4, X is isomorphic to Py.

Proof. From Proposition 4, X is a uniruled projective manifold with a minimal rational
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component K having p = n — 1. By [Mk] (2.4), if X is different from P,, then there exists a
hypersurface ‘H, C K, for a generic point z € X, so that a generic member of H, is a rational
curve C for which the pull-back of T'(X) to its normalization splits as O(2)2® O(1)" 3@ O. Let
Z! be the hypersurface in X covered by the members of H,. Applying Lemma 3 to the inverse
images of members of H, under f as in the proof of Proposition 2, we see that there exists an
abelian hypersurface H C A so that the Z.’s are just images of translates of H. By the genericity
of z, we can assume that Z, is smooth at z. Since Z, is covered by the members of H,, T(Z,)
corresponds to the positive part O(2)% & O(1)"3 of the splitting of T(X) on the normalization
of C. In particular, elements of H°(C,T*(X)) annihilate T, (Z.).

We may replace A by an unramified finite cover and assume that A = E x H for some elliptic
curve E. Let C,,t € A = {t € C,|t| < 1} be a family of curves belonging to K, so that C,
is generic in K, for t # 0 while Cy is generic in H,. For a € f~!(z) let C; be a component of
f~Y(C}) through a. Then the toroidal hull of C},t # 0 is A, while the toroidal hull of C} is H.
Considering small values of ¢, we may assume that C; form a flat family for ¢ # 0 converging to
CoUCrU---UC" for some irreducible curves C?,1 < j < r in A. Clearly, CoUC'U---UC"
is a connected curve and f(C?) = C for all j. Since C},t # 0 surjects to £ under the natural
projection E x H — E, one of C?’s must surject to E.

Let w € H%(Cy, T*(X)) be a nonzero element. Pulling back by f*|c; : f*(T(X)lc,) —
T*(A)|cy, we get a non-zero element (f*|¢;)w in H°(Cy, T*(A)), which annihilates T'(H) because
w annihilates T(Z). From H°(Cy, T*(A)) = H°(A,T*(A)), (f*|c;)w must be the restriction of a
parallel 1-form 2 € H°(A, T*(X)) annihilating T(H). From the connectedness of C{UC* U - --U
C", there exists some C7, say C*, which intersects C§ at some point b. Then (f*|c1)w is again the
restriction of a parallel 1-form Q; € H°(A,T*(A)). Since  and ; agrees at b, Q; = Q. By the
same argument applied to each component of the connected curve CjUC* U ---UC", (f*|ci)w
must be the restriction of Q for all j. Since f(C?) = Cy, (f*|cs)w annihilates the tangent vectors
to C7. This implies that the toroidal hull of C? lies in H for all j and C? cannot surject to E for
any j, a contradiction. O

3 Structure of the distribution defined by the linear span

of varieties of minimal rational tangents

When the varieties of minimal rational tangents are degenerate, we can use their linear span to
define a distribution on X. We will show that this distribution defines the structure of a bundle of
projective spaces as stated in the Main Theorem. We will say that a meromorphic distribution is
integrable if it is integrable over the open set where it defines a genuine holomorphic distribution. .




Proposition 6 In the situation of Proposition 2, let W, C T,(X) be the linear span of C,
for a generic x € X. Let W be the meromorphic distribution on X defined by W, at generic
z € X. There ezists an abelian subvariety A’ C A so that the images of translates of A’ are
integral subvarieties of the distribution W.

Proof. df 7'W corresponds to the distribution W on A defined by the translates of the linear
span of A; U---UA,,. Since W is integrable, W is integrable because f is unramified at generic
point. By [HM1] Proposition 11, the closure of each leaf of W is a subvariety in X. The inverse
images of these subvarieties in A are the integral subvarieties of W and must be the translates
of an abelian subvariety A’ C A, where A’ is the toroidal hull of A; U---U A,,. Thus integral
subvarieties of W are just images of the translates of A’. O

Proposition 7 In the situation of Proposition 6, there exists a fibration 1 : X — Y over
a normal variety Y such that the underlying reduced variety of each fiber of v is the image of
a translate of the abelian subvariety A’ C A under f. Furthermore, let KY be the subscheme
of K corresponding to curves contained in the fiber X, = ¥ ~1(y) over a generic point y € Y.
Then there exists a unique component K' of KY whose members cover X,. In particular, K' is
a minimal rational component for X, and its variety of minimal rational tangent at a generic

point x € X, coincides with C,.

Proof. Consider an irreducible subscheme Y of the Chow scheme of X whose generic points
parametrizes the integral subvarieties of the distribution W in Proposition 6. Let ¢ : F —
X,9 : F — Y be the universal family morphisms associated to Y ([Ko, 1.3]). By taking reduced
structures of the schemes involved and then taking normalization, we may assume that F and
Y are normal. Since f is finite, there exist only a finite number of subvarieties through each
point of X, which are the images of the translates of A’. It follows that ¢ is a finite morphism.
On the other hand, parametrizing the leaves of a foliation, ¢ must be birational. Thus ¢ is an
isomorphism and we get ¥ : X — Y. The underlying reduced varieties of the fibers of 1) are
set-theoretic images of translates of A’.

From the definition of W, all members of K are contained in the fibers of ¢. Choose a
component X' of K¥ whose members cover X,,. For the uniqueness of X', it suffices to show that
the variety of minimal rational tangents C. associated to K’ coincides with C;. By Proposition
2, Cp = dfa, PA) U - - - Udf,,(PA") where f~}(z) = {a1, ..., aq}, for the toroidal hull A; of any
component of the inverse image of a generic curve in K. By the genericity of y, this holds for the
toroidal hull A; of any component of the inverse image of a generic curve in K’. On the other hand,
applying Proposition 2 to f : a; + A’ — X, and K', we see that C,, = df,, (PA*)U---Udfo,(PA"),
which is exactly C,. O

For the minimal rational component K’ for X, for generic y € Y in the above proposition,
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C. C PT,(X,) is linearly nondegenerate at generic € X,. From Proposition 5, we see that a
generic fiber of ¢ : X — Y is Ppyq. This proves Theorem 1. Now by the next Proposition, we
can see that Y is smooth and v is a P,.;-bundle (using, e.g., [GR, p.212]).

Proposition 8 Let X be a projective algebraic manifold and ¢ : X — Y be a surjective
morphism onto a normal variety. Assume that the underlying reduced variety of each fiber of ¢
is irreducible of dimension k. If a generic fiber is isomorphic to Py, then each fiber is isomorphic
to P and Y is smooth.

Proof. Let o € Y be any point and V be the underlying reduced subvariety of X,. At a
generic point x € V, choose a local submanifold S C X of codimension k transversal to V at z.
Then ¢|s : S — Y is a finite holomorphic map. If it is 1-to-1, it is biholomorphic over its image
from the normality of Y. This implies that o € Y is a smooth point and X, is Cohen-Macaulay.
Moreover considering the intersection number S - X, X, is generically reduced. It follows that
X, is a reduced variety. On the other hand if ¢|s is not 1-to-1 for any choice of S, then X,
cannot be generically reduced and it is a multiple fiber of . We will prove Proposition 8 in
three steps.

Step 1 Generically reduced fiber over a smooth point

Suppose a fiber X, at a smooth point 0 € Y is generically reduced. Then Y is smooth at o and
¥ is flat, because morphisms between smooth varieties having equi-dimensional fibers are flat.
Moreover X, is a reduced Cohen-Macaulay variety. From the reducedness of X,, 9 is a smooth
morphism in a neighborhood of a generic point of X,. Thus there exists an open neighborhood
U C Y of o and an open subset U’ C X in classical topology so that U’ = U x A* where AF is the
polydisc in C* and 9 corresponds to the projection U x A¥ — U. We can find k disjoint sections
o,: U—> U 1<1i<k, of ¥ such that o1(y),...,0x(y) are in general position in X, = Py for
each y € U — {o}. The linear span of the o;(y)’s in X,y # o, determines a unique hyperplane
L, on X, = P;. Taking the closure of the union of L,’s, we get a hypersurface L in ¢~(U)
whose restriction to X,y # o, is a hyperplane. L defines a line bundle on X, with Lk X, =1
and dim(H%(X,, L)) > k + 1 from the flatness of . Thus X, & Py by [Fu, L.1.1].

Step 2 Multiple fibers along a hypersurface of Y

Suppose 1 has multiple fibers along a hypersurface D in Y with generic multiplicity 7 > 1.
Let o be a generic point of D which is a smooth point of Y. Let V' be the underlying variety of
X,. At a generic point z € V, choose a local submanifold S C X of codimension k transversal
to V at z. Then v|g is ramified over D. We can choose a coordinate system (815---,8n-k) OD
S and (y1,...,Yn_k) On a smooth open neighborhood U = %(S) C Y of o, so that ¥|s is given
by y1 = 5,2 = S2,...,Yn—k = Sn—k. There exists a proper subvariety W C V such that at an;
point of V — W, there exists a germ g of holomorphic functions on X satisfying g'= v'n.




Let ¢ : H' — S be the pull-back of (~1(U) — W) — U by 1|s, defined by H' := {(s,2) €
S x (p~HU) —W),9¥(s) = ¥(2)}. H is locally defined by the equations

sST—Y'y =0, -9y =0, ..., Spk—¢PYni =0
Since we are excluding W,
si—Y'y1 = s1—g¢° = Hcr=1(31 - (9).

So the normalization H of H’ is smooth and the natural morphism p: H — (¢ ~*(U) — W) is an
unramified r-to-1 cover of ¥~} (U) — W.

Since W is of codimension > 2 in ¢~1(U), m (v "}(U)) = m (¢~ (U) — W). So there exists a
complex manifold 7 and an unramified r-to-1 covering H — 1% ~!(U) extending p. The morphism
¥ :H — S extends to ¥ : H — S by Hartogs. By construction, % has no multiple fiber and
generic fiber is Py. Thus 4 is a Px-bundle over S by Step 1. But the fiber of ¥ over z € S must
be a finite unramified cover of V' while P}, cannot be a non-trivial unramified cover of a variety,

a contradiction.

Step 3 From Step 1 and Step 2, we may assume that ¢ : X — Y is a Pi-bundle outside a
subvariety F C Y of codimension > 2.

Let o € E and V be the underlying subvariety of X,. At a generic point x € V/, we choose a
local submanifold S C X of codimension k transversal to V' at z. If the morphism ¢|s: S —» Y
is 1-to-1, then X, is generically reduced and o € Y is smooth. So X, = Py, by Step 1. Let ¢|s
be [-to-1 for some | > 1.

S is transversal to the underlying subvariety of any fiber X, for y close to o. Thus S is
transversal to X, for y & E, y close to 0. So ¢|s : § — U = ¥(S) is unramified outside E.
Since ¥ ~}(U — E) — (U — E) is a Py-bundle, we have m(¢y"'(U — E)) = m(U — E). On the
other hand, m; (¥ ~Y(U — E)) = m (v~ (U)) since =} (U) is smooth and ¢~ (E) is of codimension
> 2 in ¢~}(U). Thus the unramified covering ¢|s_y-1(g) : (S — ¥ (E)) — (U — E) induces an
unramified covering p : Q@ — ¥ ~}(U) where Q is a complex manifold and Q' := p~! (¢ }(U — E))
is a Px-bundle over S — 1 1(E). By Hartogs, we have a natural morphism p : Q@ — S. The
underlying reduced variety of each fiber of  is irreducible because p is unramified and each fiber
of 9~1(U) is irreducible. Moreover u admits a section arising from p~*(S). Thus by Step 1, Q is
a P-bundle over S while the fiber over z € S must be an unramified cover of V', a contradiction
as in Step 2. O

By above we have a P,.;-bundle structure ¢ : X — Y so that each fiber is the image of
a translate of an abelian subvariety A’ C A under f. To finish the proof of Main Theorem, it
remains to show that Y is the image of a finite morphism from an abelian variety. By taking
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a finite unramified covering, we may write A = A’ x A” for some abelian subvariety A”. Since
f(A”) intersects any fiber of ¢ at only finitely many points, 1 o f gives a finite morphism from
an abelian variety A” onto Y and we are done.
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