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Abstract. The vehicle routing problems with time windows are challenging delivery problems in which instances 
involving 100 customers or more can be difficult to solve. There were many interesting heuristics proposed to handle 
these problems effectively. In this paper, we examined two well-known meta-heuristics and carefully combined the 
short-term and long-term memory-like mechanisms of both methods to achieve better results. Our prototype was shown 
to compare favorably against the original search methods and other related search hybrids on the Solomon’s test cases. 
More importantly, our proposal of integration opens up many exciting directions for further investigation. 
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1. INTRODUCTION 

Many delivery problems in real-world applications such as the newspaper delivery and courier services can be 

formulated as the (capacitated) vehicle routing problems (VRPs) [10] in which we are interested to route a number of 

vehicles with limited capacity in order to satisfy all the customers' requests with the minimal operational cost as usually 

measured by the number of vehicles used multiplied by the total distance travelled. Often, a customer may specify a time-

window with the earliest and latest time for the delivery to occur, which gives rise to the VRP with time windows (VRP-

TWs). In other words, a vehicle must arrive at a customer within the duration as specified by that customer in a VRP-

TWs. The arrival of a vehicle before the earliest time as specified by a customer in a VRP-TWs will result in idle time. 

On the other hand, a vehicle is not allowed to reach a customer after the specified latest time. Moreover, a service time is 

commonly associated with servicing each customer. A real-life example of the VRP-TWs is the newspaper delivery in 

which each customer often requests the newspaper to be delivery within a given period (time window) of a day. 

Unfortunately, the VRP-TWs are shown to be NP-complete, implying an exponential growth in the time complexity for a 

general algorithm to solve any of these delivery problems in the worst case. In practice, there are many instances of VRP-

TWs involving 100 customers [1, 10] or more [9] which are readily difficult to solve optimally [1, 3, 6]. In the past two 

decades, VRP-TWs, due to its challenging nature and practical values, have continuously attracted many interesting 
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proposals of useful heuristics and search algorithms [1, 3] to effectively solve the problems in the areas of Artificial 

Intelligence [3], Constraint Programming [1] and Operations Research [3].  

Among the heuristics [1, 2] proposed to solve the vehicle routing problems, there are some interesting proposals to 

initialize the search while others are targeted at advancing the search from a given initial state in an effective manner. As 

far as search initialization is concerned, there are two useful heuristics, namely the push-forward insertion heuristic (PFIH) 

[6] and the virtual vehicle heuristic (VVH) [2], proposed to generate more feasible initial states that may lead to better 

results. The PFIH is a simple-yet-efficient method to compute every route by comparing the cost of inserting a new 

customer into the existing route against that of starting a new route in each iteration until all customers are served. 

However, when the capacity of a vehicle is exceeded or the delivery time must be dragged behind the latest time specified 

by the new customer, a new route has to be started. Clearly, the PFIH can only quickly return a feasible solution without 

any guarantee for its global optimality. On the other hand, the VVH works by using virtual vehicles with unlimited 

capacity to hold the deliveries that are not currently serviced by any real vehicle so as to allow a more optimized delivery 

plan to be computed. In other words, the virtual vehicles are used as temporary buffers to which no problem constraints 

(such as time and capacity) can be applied. Furthermore, to ensure all the deliveries will be ultimately be performed by 

real vehicles, the cost incurred by a virtual vehicle for a customer visit is much higher than that incurred by a real vehicle. 

In this paper, we will focus on comparing the influence of the above initialization heuristics on the search meta-heuristics 

which we are interested to study. Section 3 will have a more detailed discussion on the initialization heuristics.      

After the initial routes for the VRPs are generated, we can apply many possible heuristic methods to improve on the 

current solution until a better delivery plan with lower operational cost is obtained. The Tabu search (TS) [1] is a well-

known meta-heuristic possibly used for such improvement, which has also been successfully applied to solve many other 

combinatorial optimization problems [3]. In solving the VRPs, given any initial route(s), there can be many possible 

moves [1] such as the 2-opt operation, which replaces any two links in a route with two different links to reduce the 

operational cost, to generate other possible route(s). The Tabu search works by firstly performing a neighborhood search 

on all possible moves, executing only non-Tabu moves which reduce the total operational cost, and  ‘memorizing’ those 

recently performed moves with a Tabu list, of usually fixed length, to avoid cycling. In this way, TS promotes a 

diversified search from the current solution by continuously updating a short-term memory-like Tabu list until the 

predetermined stopping criterion is reached. In some cases, depending on the application-specific aspiration level 
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criterion, the Tabu status of a move can be changed when it leads to a solution better than the current best. Alternatively, 

the guided local search (GLS) [2, 3] is another interesting meta-heuristic which has also achieved impressive results [2] 

in solving VRP-TWs effectively. Both TS and GLS are based on a local search operator to perform neighborhood search. 

However, each time after the local search is performed, the GLS uses a long-term memory-like penalty scheme to 

penalize all the undesirable features found in the current solution so as to avoid being trapped at the same local minima 

in the future exploration. The resulting penalty information, after multiplied by a regularization parameter λ, is 

incorporated into an augmented objective function to guide the local search to iteratively look for a better solution from 

the current search position until a predefined stopping condition such as the maximum number of iterations is reached. In 

addition to solving VRPs, GLS has been successfully applied to solve many difficult scheduling problems such as the 

traveling salesman problem [12].  

Besides, there was some previous work [1, 2] proposed to combine the possible advantages of different meta-

heuristics for solving constrained optimization problems or in particular VRPs more efficiently or effectively. Wah et al. 

[4] considered the integration of simulated annealing technique into the Discrete Lagrangian search framework, which 

was closely related to the GLS, as constrained simulated annealing (CSA) to solve a set of 10 constrained optimization 

problems (named G1 – G10) [4] with constraints and objective functions of various types. Later, the CSA was further 

improved with a genetic algorithm as CSAGA to achieve a better efficiency in solving the same set of constrained 

optimization problems. Specifically, Genfreau et al. [13] integrated simulated annealing and Tabu search to effectively 

solve VRPs.  Interestingly, Becker et al. [1], after comparing the individual performance of GLS and TS on the 

Solomon’s test cases, tried to combine both TS and GLS as the guided Tabu search (GTS) method which outperformed 

the original meta-heuristics with an average of 1.7% better in the solution quality on the “ long haul”  problems, that are 

problems involving deliveries of long distances. However, Becker et al.’ s work suffered from three major drawbacks. 

First, their original aim, possibly only to obtain better experimental results, for combining both meta-heuristics was 

never explicitly stated. Second, the algorithm of the GTS was not clearly defined. There were only 3 statements to 

describe GTS very briefly. Third, no analytical model or clear explanation about the performance of GTS was given. On 

the other hand, we carefully propose in this paper a different integration of GLS and TS as GLS-TS with a clear 

objective to combine the best possible advantages of applying both short-term and long-term memory mechanism used 

in GLS and TS to solve VRP-TWs more effectively. More importantly, we provide a simple and easy-to-understand 
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analytical model to under the behavior of the resulting GLS-TS when compared to the original meta-heuristics. 

Furthermore, similar to Wah et al.’ s work [4], we propose the integration of simulated annealing technique into the GLS-

TS search framework as GLS-TS-SA. However, it is worth noting that simulated annealing is specially used as a monitor 

in GLS-TS-SA to carefully determine, depending on the relative merit of each meta-heuristic in the previous search, 

which meta-heuristic to apply in each iteration. To demonstrate the effectiveness of our proposals in solving VRP-TWs, 

we implemented the prototypes of both GLS-TS and its variant GLS-TS-SA. Both prototypes have been shown to 

compare very favorably in the solution quality against the original GLS and TS methods, and the search hybrid GTS on 

the well-known Solomon’s test cases. In addition, our proposed GLS-TS improved on one of the best published results, 

which were obtained from a number of advanced search techniques such as the Ant Colony search algorithm [9] and thus 

fairly difficult to break any of these records, in solving the Solomon’s benchmarks on VRP-TWs. Up to our knowledge, 

this work represents the first attempt to systematically study the integration of TS into the GLS search framework.    

This paper is organized as follows. Section 2 describes the general vehicle routing problems and VRP-TWs in detail. 

The various search initialization heuristics such as the PFIH, interesting meta-heuristics such as the Tabu Search and 

combined meta-heuristics such as the Guided Tabu Search (GTS) to effectively solve VRP-TWs will be given in Section 

3. Section 4 details our proposals of adapting the generic MGA to solve the VRP-TWs more effectively. In Section 5, we 

evaluate the performance of our proposal against the original heuristic search methods and the related GTS on the widely 

used Solomon test cases. Lastly, we conclude our work in Section 5.  

2. THE VEHICLE ROUTING PROBLEM S WITH TIM E WINDOWS 

    A general vehicle routing problem (VRP) [1, 10], which is shown to be NP-complete [3], can be formally defined as 

follows. We are given a fixed N or infinite number of vehicles with limited capacity cv (measured in weight or volume) 

and M customers’ requests, in which each request rqj demands a delivery service for Qj quantity of goods/service, to 

different locations. The distance, usually measured in term of minutes or hours required for travel, between any two 

possible delivery points is also provided, usually as a distance matrix. Then, our task is to optimize certain user-defined 

criteria subject to the following basic constraints: 

1. for any customer request rqj, it should only be served by one single vehicle only; 

2. for each vehicle v, the sum Qv of quantity of goods to be delivered by vehicle v must be less than or equal to cv; 
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Besides the above basic constraints, in many real-life applications such as the supermarket delivery, each customer 

may request the items to be delivered in a given duration (time window) of a day. Thus, a vehicle routing problem with 

time windows (VRP-TW) has an additional time-window constraint to be imposed for each delivery as follows. 

3. when a time window with the earliest time Ej and the latest time Lj is specified for each delivery in a VRP-TW, 

the arrival time Tvj of vehicle v to serve customer request rqj must lie within the specified duration, that is Ej  ≤ 

Tvj ≤ Lj. 

One of the most common objectives for minimization in VRPs or VRP-TWs is TV x TD, where TV is the number of 

vehicles used, and TD is the total distance travelled by all vehicles. Clearly, there can be many variants of VRPs or VRP-

TWs with different objectives such as the total travel time of all the vehicles or the total waiting time of all the customers 

for optimization in many real-life applications. In the next section, we are going to examine two common heuristics, 

namely the push-forward insertion heuristic and the virtual vehicle heuristic, useful to obtain an initial and feasible 

solution in solving the VRPs or VRP-TWs. Moreover, we will review two interesting meta-heuristics to solve the difficult 

VRP-TWs optimally. 

3. USEFUL HEURISTICS AND M ETA-HEURISTICS FOR VEHICLE ROUTING 

Since the search space for all the possible (feasible or slightly infeasible) routes in VRPs or VRP-TWs can be fairly 

large even for instances involving 100 customers [1, 10] or more [9], and the time-window constraints in the VRP-TWs 

can be difficult to satisfy, the careful choice of a suitable heuristic to return only feasible, and possibly more optimal, 

solutions can be important for further optimization. The push-forward insertion heuristic [6] and virtual vehicle heuristic 

[2] are two useful heuristics for search initialization in solving difficult VRPs. In addition, we will examine in this section 

two well-known meta-heuristics, namely the guided local search (GLS) and Tabu search (TS), which are based on 

completely different memory-like control mechanism to restrict the local search operator in continuously optimizing the 

current solution, after inputted from the heuristic initialization method, until an optimal solution is obtained to solve the 

VRP-TWs successfully. TS uses a short-term memory-like Tabu list to avoid cycles in search. On the other hand, GLS 

uses a long-term memory-like penalty scheme to “memorize”  all the undesirable features occurred in the previously 

visited local minima. In Section 4, we will examine various proposals to integrate TS into the GLS framework to solve 

VRP-TWs more effectively.   
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3.1 Useful Search Initialization Heur istics 

  The push-forward insertion heuristic (PFIH) [10], introduced by Solomon in 1985, is an efficient method to 

compute a feasible solution for any VRP by assuming an infinite number of vehicles. The PFIH starts a new route by 

selecting an initial customer, usually farthest from the delivery depot, and then iteratively insert any unassigned customer 

into the current route until the capacity of the current vehicle is exceeded or the waiting time for any newly added 

customer will exceed its associated duration constraint. At this moment, a new route will be created. And this process 

repeats until all customers are served. Basically, the algorithm for PFIH can be summarized as follows. 

1. Begin an empty route r0 starting from the depot;  i := 0; 

2. Among all unassigned customers, select the customer farthest from the depot (in case there is a tie, break the tie 

randomly) and insert into the current route ri; 

3. I f all customers are routed, then goto step 6. else : 

I f the capacity cv of  the vehicle v involved in the current route ri is exceeded, then goto step 5. else : 

foreach unassigned customer, find the best position for insertion in ri. Compute the cost of starting a new route 

against that for the best position found. 

4. Pick the customer with the greatest cost difference and insert it into ri. Update the capacity cv of the vehicle v 

involved. goto step 3. 

5. Start a new route ri+1 starting from the depot;  i := i+1; goto step 2. 

6. Return the current solution. 

Clearly when handling VRP-TWs, we have to adapt the last else-part of step 3 as follows. 

foreach unassigned customer, find the best position for insertion in ri without violating any specified time-

window. Compute the cost of starting a new route against that for the best position found. 

Moreover, we have to add the following conditional statement to the beginning of step 4 as follows. 

I f there exists no feasible position for insertion into the current route ri, then goto step 5. else : 

In general, PFIH can be integrated into the search framework of many heuristic search algorithms [3, 6] to efficiently 

handle the VRP-TWs. It should be noted that the initial solution returned by PFIH represents only a feasible and usually 

not optimal solution for further optimization by the different meta-heuristics.   
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On the other hand, the virtual vehicle heuristic (VVH) [2], with the availability of application-specific knowledge such 

as the number of vehicles used in the best published result for a particular VRP-TW, can often return both feasible and 

fairly optimal initial solutions for further processing. Using this approach, a virtual vehicle is used to hold the unassigned 

customers. The virtual vehicle is different from a real vehicle in 3 respects. First, the virtual vehicle cannot visit 2 or more 

customers en-route, but have to visit each customer in turn after it makes a return trip to the depot. Second, it is not 

constrained by any domains. Third, the cost of a customer visit for virtual vehicle is higher than a real vehicle. This is to 

ensure that all customers will ultimately be assigned to a real vehicle. The VVH method for search initialization can be 

specified formally as follows. 

Given  

• an objective function O (often measured in term of the total distance travelled by all vehicles) 

• the cost of delivery by a virtual vehicle = α1 (Ddi + Did) + α2 , where  

o Di j is the distance between customers ci and cj with d as the depot, 

o α1 and α2 are parameters set to increase the cost of a visit by the virtual vehicle,  

the VVH algorithm proceeds as follow.  

1. The virtual vehicle services all the customers’ requests. 

2. For each customer-vehicle combination in the current solution, use 4 heuristic operators, namely the 2-opt, 

relocate, exchange and cross, to try to improve the solution quality by firstly considering only legal moves 

that do not violate any constraint, and then executing the legal move which decreases the objective function 

most. 

3. I f  no more customer-vehicle combination can be improved to reduce the solution quality, goto step 5. 

4. goto step 2. 

5. return the current solution. 

The 4 heuristic operators used in step 2 try to improve the current solution by moving customers’  location in the same 

or different route. These operators can be classified as intra-route or inter-route. Figure 1 shows the 4 heuristic operators. 
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Figure 1: The 4 Heur istic Operators for  Improving Routes in Solving VRPs 

The 2-opt [14] is an intra-route operator which reverses a section of a route by deleting 2 arcs, and replacing them with 

any 2 arcs to reform the route. On the other hand, the relocate, exchange and cross [15] are inter-route operators. The 

relocate operator moves a visit from its position in one route to another position in either the same or a different route. 

Exchange swaps 2 visits from either the same or different route while cross swaps the end portions of 2 routes. 

Besides, from the empirical results obtained in [1], good settings of parameters to calculate the cost of customer visits 

performed by virtual vehicles are α1 = 1.025 and α2 = 0.0005
�

, where 
�

 is the distance between the two most remote sites 

in the problem. Also, to achieve impressive results in solving the VRP with VVH, we should set the maximum number of 

vehicles allowed. This observation is consistent with some previous report [2] in which the maximum number of vehicles 

allowed for VVH should be vp, vp+1 or vp+2, where vp is the number of vehicles used for the best published results. 
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Nevertheless, the stringent demand for this extra parameter vp to improve the quality of the initial solution produced will 

make VVH a more application-specific heuristic, thus less favorable for any general real-life application. 

3.2 Guided Local Search 

The guided local search (GLS) uses a meta-heuristic based on penalties to continuously modify the penalty terms 

associated with an augmented objective function to escape from local minima for efficiently solving a wide range of 

constrained optimization problems [3]. Based the original objective function O(S) for optimization, GLS defines an 

augmented objective function as: O'(S) = O(S) + λ ii
Fi

i cpSf .).(
�

∈
 where λ is a penalty factor representing the relative 

importance of all the penalties, fi(S) is an indicator function returning 1 when the feature i in the set F of features under 

consideration appears in the current solution S, and 0 otherwise;  pi is the number of times which the feature i is penalized, 

and ci represents the cost of feature i.  With all these input parameters properly set for a specific application, the GLS 

algorithm [2, 3] works as follows. 

P := 0� ;              // initialise the penalty vector to be zeros 

S := InitialSolution();    // S is the current solution 

S*  := LocalSearch(S);    // Make sure the best solution S*  found starts from a local minimum 

while not StoppingCondition() do 

  f := ChoosePenaltyFeatures(S, p);-----------------(1) 

  foreach x in f do px := px + 1;------------------------(2) 

  S := LocalSearch(S);          

  I f O(S) < O(S*) then S* := S; 

return S* 

Figure 2: The Pseudo-codes of Guided Local Search 

The function InitialSolution() returns the initial solution to solve the VRPs by PFIH or VVH as previously described. 

LocalSearch(S) performs a local search on the current solution S till no more improvements can be made. The local 

search is executed based on the 4 heuristics operators described in the previous section. Similar to the VVH, the “best 

accept”  approach is used in which the move which reduces the value returned by the objective function O by the largest 
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amount will be executed. StoppingCondition() checks whether the predetermined stopping criterion to terminate the 

search is satisfied in each iteration. In many real-life applications, the stopping criterion can be defined in terms of the 

maximum number of iterations or improving moves. ChoosePenaltyFeatures(S, p) takes the current solution S and the 

penalty vector p, and then returns the set of features fi to be penalised. For general applications, GLS chooses all features 

in S for which the utility ci/(pi+1) is largest amongst the features in S. The statements marked with (1) and (2) are 

important for the subsequent discussion of search hybrids based on GLS.  

It is interesting to note that the penalty vector p serves as a long-term memory to memorize all the undesirable features 

appeared in some previously visited local minima. In solving VRPs, GLS penalizes the longest arc in the current solution, 

weighted by the number of times the features that have been already penalized. Furthermore, there were some empirical 

observations [2, 3] stating that the value of λ might greatly affect the performance of GLS and the quality of the solution 

returned. As for solving VRP-TWs, it was discovered in [2] that GLS worked well when λ was ranged from 0.1 to 0.3, 

giving the best result at 0.2. 

3.3 Tabu Search 

Tabu search is an interesting meta-heuristic which aims to model the human memory process through the use of a Tabu 

list, usually of a fixed length, to prohibit most recent moves possibly leading to some previously visited local optima. In 

solving VRP-TWs [1, 10], moves can be defined in term of the addition or deletion of arcs associated with individual 

nodes (as customers) into or out of all computed routes. Besides the Tabu list, an aspiration criterion is used to change the 

Tabu status of a move so that the move in the Tabu list can still be accepted when it leads to a solution better than the 

current best solution. In general, the performance of a Tabu search algorithm depends largely on effectiveness of the local 

search operators, the length of the Tabu list and the settings used for the aspiration criterion. Nevertheless, Tabu search 

has been extensively used to solve many difficult combinatorial problems with good results [1].  

Figure 3 gives the Tabu search algorithm as described in [1, 2]. 

S := InitialSolution();    // S is the current solution 

S := LocalSearch(S);    // Make sure we start with a local minimum 

S* := S;              // S*  represents the best solution found 
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while not StoppingCondition() do 

  moves := RankMoves(S);  -----------------(* ) 

  moved := false; 

  while not moved do 

    m := head(moves); 

    if IsNotTabu(m) then 

      Perform(m); 

      moved := true; 

     InsertTabuList(m); 

    I f O(S) < O(S*) then S* := S; 

return S* 

Figure 3: The Pseudo-codes of Tabu Search 

The search starts with an initial solution S provided by InitialSolution(). Then, LocalSearch(S) uses the 4 heuristic 

intra-route and inter-route operators to perform local search so as to iteratively improve the current solution S until it 

reaches a local minimum which is then assigned to the current best solution S* . Before a predefined stopping condition is 

met, RankMove(S) firstly returns a ranked list of all possible moves, ordered by decreasing cost difference, from the 

current solution S. While there is no move performed, the first non-Tabu move m, as determined by IsNotTabu(m), from 

the list moves will be executed by Perform(m). Then, the flag moved will be reset to exit the inner loop before 

InsertTabuList(m) adds the most recently performed move m into the Tabu list. Lastly, the current best solution found 

may be updated, for which O(S) is the objective function returning the quality of the current solution S. The whole 

process is repeated until the stopping criterion is reached. For details, refer to [1].  It should be noted that, the above 

discussion mainly focuses on the use of Tabu list as a simple short-term memory to diversify the search for avoiding local 

optima. However, it may also be possible to include some long-term memory structure for explicit intensification and 

diversification phrases as in some sophisticated Tabu search algorithms. In fact, in the guided Tabu search algorithm 

(GTS) [1] or our proposal of integration to be discussed in Section 4, the penalty-based learning scheme [2, 3] can also be 

regarded as one possible type of long-term memory mechanism for avoiding the already visited local optima. The 

statement marked with (* ) is used for the subsequent discussion of GTS. 
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4. COM BINING M ETA-HEURISTICS TO EFFECTIVELY SOLVE VRP-TWS 

As discussed in the previous section, Tabu search employs a Tabu list as the short-term memory to avoid cycles 

whereas the guided local search (GLS) uses a penalty vector as the long-term memory to memorize all undesirable 

features occurred in the previously visited local minima. Therefore, it can be advantageous to combine both meta-

heuristics to complement each other during the search process. In the following paragraphs, we are going to discuss the 

various proposals of combining both TS and GLS to solve VRP-TWs effectively. First, we review the guide Tabu search 

(GTS) as an ad hoc integration of TS and GLS proposed by Backer et al. [1]. Second, we consider our careful proposal of 

combining TS and GLS as the GLS-TS algorithm with an easy-to-understand and interesting analytical model to 

differentiate its expected search behavior from that of GTS. Lastly, we will describe an integration of simulated annealing 

technique into the GLS-TS framework as a variant of GLS-TS to demonstrate the numerous opportunities opened up by 

our proposal of integration. 

 
4.1 Guided Tabu Search 

Originally, Backer et al. [1] aimed at comparing the performance of GLS and TS in solving the Solomon’s test cases of 

VRP-TWs. Later in the experimentation stage, after observing the simplicity and impressive results produced by GLS, 

Backer et al. proposed a fairly ad hoc integration of the GLS penalty scheme into the Tabu search algorithm as the guide 

Tabu search (GTS) to possibly improve on the performance of the original search methods. It should be noted that GTS 

was only briefly mentioned in [1] without showing any explicit pseudo-code. To facilitate our subsequent discussion, we 

explicitly define the GTS algorithm as follows. 

S := InitialSolution();    // S is the current solution 

S := LocalSearch(S);    // Make sure we start with a local minimum 

S* := S;              // S*  represents the best solution found 

while not StoppingCondition() do 

  f := ChoosePenaltyFeatures(S, p); // to select and then penalize the concerned features 

  foreach x in f do px := px + 1;         // so as to avoid re-visiting the same local minima 

  moves := RankMoves(S); 

  moved := false; 

  while not moved do 
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    m := head(moves); 

    if IsNotTabu(m) then 

      Perform(m); 

      moved := true; 

     InsertTabuList(m); 

    I f O(S) < O(S*) then S* := S; 

return S* 

Figure 4: The Pseudo-codes of Guided Tabu Search 

Figure 4 gives the pseudo-codes of the GTS algorithm. Syntactically, the GTS algorithm is obviously obtained by 

inserting lines (1) and (2) of the GLS algorithm as shown in Figure 2 before the line (* ) of the TS algorithm as described 

in Figure 3. The semantic meaning of this addition is revealed in Backer et al.’ s original work [1] which clearly stated 

that after each move, a GLS-type procedure was called to update the weight in the cost matrix (used in the penalty 

scheme). However, we consider this frequent invocation of the GLS-type procedure may collect “ immature and 

hazardous” penalty information after every single diversifying move of TS. The collected penalty information can be 

“hazardous”  in two senses. First, it can mislead the current search direction by biasing towards some unimportant features 

found in the previous solutions. Second, the vast amount of possibly useless penalty information generated may simply 

cause information or memory overflow during program execution. Besides, it may slow down the performance of GTS. In 

the next subsection, we will provide an interesting and simple model to carefully consider the possible influence of this 

frequent penalty mechanism on the search behavior of GTS. After all, from Backer et al.’s empirical experience [1], GTS 

showed some benefits by outperforming the TS and GLS with an average of 1.7% on the long-haul problems, including 

C2, R2 and RC2, of the Solomon's test cases. However, for the remaining problem classes, GTS did not show any 

convincing result when compared to GLS. 

 
4.2 Our  Proposed Guided Local Search - Tabu Search (GLS-TS) 

As previously discussed, the guided Tabu search (GTS) did not seem to be an attractive proposal of integrating GLS 

and TS since the short-term memory nature of the TS may not be able to effectively use the long-term memory-like 

penalty information frequently provided by the GLS scheme to diversify the search from its current status. In other words, 

the GLS scheme may penalize some features which will be totally irrelevant to the current state of TS. Therefore, we 
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carefully propose an alternative proposal of integration: instead of performing a single non-Tabu move for every update 

of the cost matrix used in the penalty scheme, we propose to update the penalties only when the TS reaches a stable state. 

In other words, the penalties are updated only when all the non-Tabu moves cannot further improve the current solution 

any more. For clarity of presentation, the GLS-TS algorithm is formally defined as follows. 

P := 0� ;              // initialise the penalty vector to be zeros 

S := InitialSolution();    // S is the current solution 

S*  := LocalSearch(S);    // Make sure the best solution S*  found starts from a local minimum 

while not StoppingCondition() do 

  f := ChoosePenaltyFeatures(S, p); 

  foreach x in f do px := px + 1; 

  improved := true;     -----------------------------------------------(** ) 
 

    while improved do // Start of TS Local Search   

   prevO := O(S); 

           moves := RankMoves(S); 

   moved := false; 

   while not  moved do 

    m := head(moves); 

     if IsNotTabu(m) then 

                   Perform(m); 

                            moved := true; 

                   InsertTabuList(m); 

  if O(S) < O(S*) then 

  S*:=S; 

 I f prevO <= O(S) then 

  improved := false; // End of TS Local Search -------------(*** ) 

return S* 

Figure 5: The Pseudo-codes of Guided Local Search – Tabu Search (GLS-TS) 
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Figure 5 shows the GLS-TS algorithm. The definitions for the function InitialSolution(), LocalSearch(), 

StoppingCondition(), RankMoves(S), head(moves), IsNotTabu(m), InsertTabuList(m) and ChoosePenaltyFeatures(S,p) 

follow those previously described for the GLS and TS algorithms. The boolean improved is used to detect whether the TS 

has reached a stable state where no improvement on the current solution can be made by any non-Tabu move. Although 

our proposed GLS-TS may be misleadingly seen as a slight modification from the GTS syntactically, the semantic 

implication is in fact very significant. By appropriately integrating the penalty information of GLS only when the Tabu 

search is stable, our proposed GLS-TS algorithm is trying to maximize the best advantages of information gained from 

GLS to improve the original Tabu search. This competitive advantage of GLS-TS when compared to GTS is illustrated 

clearly in the following simplified Markov chain diagrams to analyse their different search behaviour in successfully 

finding a solution for general and solvable VRPs.  
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 Figure 6: The simplified Markov models for  the or iginal TS, GTS and GLS-TS algor ithms 

Figure 6 shows the simplified Markov models for the original TS, GTS and GLS-TS algorithms to successfully find a 

solution for a general and solvable VRP. Each circle in the diagram denotes a (search) state. Each arrow, usually attached 

with the corresponding probability, represents a state transition from one state to another. The arrows with dotted lines 

represents the transition to any non-X state, where X is the targeted state for the current state. The thickness of the (solid- 

or dotted-) line of any arrow is proportional to the likeness/probability for that transition to occur. For example, the solid-

line arrow from state A to state B in Figure 6(a) is attached with the probability pab for such transition to occur while the 

dotted-line arrow from state A to any non-B state is attached with the probability (1 - pab ). Presumably, the probability 

pab is higher than (1 - pab) since the solid-line is clearly thicker than the corresponding dotted-line. Suppose we have 
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identified state A, B, C and D as the typical last four states to reach a solution for a particular solvable VRP out of a 

careful empirical observation on all the successful runs, with state B as the last ‘stable’  state representing a local 

minimum before the final ‘solution’/terminal state D. Figure 6(a) shows the state transitions with their attached 

probabilities for these last four states of the original TS as the basis for subsequent comparisons against the GTS and our 

proposed GLS-TS. For instance, the probability of reaching from state A successfully to state D equals to  pab . pbc. pcd + (1 

- pab). 1/ (N - 1) + pab .(1-  pbc ). 1/ (N - 1) by assuming the independence of events for a simple analysis, where N is the 

total number of possible states, and the second term (1 - pab). 1/ (N - 1) gives the probability of reaching from state A to 

non-B states which includes state D as one out of the (N - 1) remaining states. For simplicity of analysis, we also assume 

the probability of reaching from any previous state to state A is greater than 0.5 so that the probability of successfully 

reaching state D largely depends on the decisions made in the last four states. Since the three probabilities pab , pbc and  pcd 

normally range from 0 to 1, and N is at least of the order of 1,000 or more, the first term  pab . pbc. pcd  is usually the most 

important quantity to consider in determining the probability of reaching from state A to state D. To illustrate, let pab , pbc 

and  pcd be 0.4, 0.5 and 0.6 respectively, and N  be 1,000, the probability of reaching from state A to state D equals to 0.4 

x 0.5 x 0.6 + ( 1 – 0.4) x 1/999 + 0.4 x (1 – 0.5) x 1/999 = 0.12 + 0.0006 + 0.0002 = 0.1208 in which the first term is 

clearly the most determining factor. However in the GTS, by including the GLS penalty mechanism in every step of the 

TS, we can assume the probability of a system transition (A → B) being affected by the GLS penalties as gab, and 

conversely the probability of not being affected as eab = 1 - gab. Similarly, all of these e’s  and g’s  will be in the range of 0 

to 1. Moreover, the g’s should be progressively increasing from the initial to the last state since there can be more features 

to be penalized or higher penalty resulted after each iteration which may affect the state transition of the original TS more 

drastically. Overall speaking, applying the GLS penalty scheme in each TS step will substantially lower the first 

important term of the probability of successfully reaching from state A to state D, at least by the order of 10-3, to pab . pbc. 

pcd. eab . ebc. ecd which cannot be offset by the relatively small opposite increase in the second and third terms of the specific 

probability due to the very small increase in the probability of reaching the non-B and non-C states from state A and B. 

This clearly shows the possible pitfalls of the GTS proposal which may simply increase the chance of diverting the 

current search to some unintentional states, that are any states other than the solution state D in the non-B and non-C 

states. On the other hand, by intelligently maintaining the original characteristics of the TS and only affect the TS by the 

GLS penalty mechanism in stable states like state B in our proposed GLS-TS as shown Figure 6(c), the original strength 
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as reflected in the first important term of the probability of reaching from state A to D is largely unaffected by 

multiplying only one ebc as pab . pbc.ebc. pcd.. Meanwhile, the probability of reaching non-C states at the stable state B is 

appropriately increased to open up a risky but possibly favorite opportunity to try to directly reach the solution state D. 

Also, it is worthy noting that since the system already arrives at the stable state B, there is a fair chance of re-entering the 

same stable state B even after it fails to reach the solution state D. In other words, we carefully inject some intended noise 

into the original search model of TS (as shown in Figure 6(a)) to increase the chance of directly reaching the solution 

state(s) only at stable states while not drastically scarifying the original strength, that is a higher probability of following 

the normal transitions from A → B → C → D, of TS in our proposed GLS-TS. After all, Section 5 will give the 

experimental results of the original TS, the GTS and our proposed GLS-TS on the well-known Solomon’s benchmarks 

[10] to justify our discussion here. 

     

4.3 Yet Another  Var iant of GLS-TS 
Both GTS and our proposed GLS-TS are basically fixed strategies to invoke GLS-type penalty scheme within the TS 

framework, it will be interesting to have other variants of GLS-TS which can flexibly invoke different search mechanisms 

depending on the relative merit of the involved mechanisms during the dynamic search process. Basically, we need a kind 

of measures and a monitor as the feedback-and-control mechanism of this flexible invocation scheme. Similar to Wah et 

al.’s work [4], we propose to integrate the simulated annealing technique as a monitor to supervise the performance of 

different search mechanisms and decide which mechanism to invoke in each stage of the search. This forms the basis of 

our proposed GLS-TS-SA algorithm as a variant of GLS-TS integrated with the simulated annealing technique to decide 

whether to invoke the common local search method used in GLS or the unique Tabu search method during the search 

process. For testing, we simply used the number of accumulative improving moves made by each search method as a 

score to measure their relative merit. Obviously, there can be more sophisticated measures defined to carefully evaluate 

their performance. More importantly, our proposal of integration discussed here opens up many potentially interesting 

directions for future investigation.     

P := 0� ;              // initialise the penalty vector to be zeros 

S := InitialSolution();    // S is the current solution 

S*  := LocalSearch(S);    // Make sure the best solution S*  found starts from a local minimum 
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i:=0   // initialise i 

impM:=0  // initialise the counter impM 

while not StoppingCondition() do 

  f := ChoosePenaltyFeatures(S, p); 

  foreach x in f do px := px + 1; 

  temp:= MAX_TEMP * e  -(impM)/i 

    Pcalc := 1 / (1 + e(-d/temp)) 

  Pgen := Random(0,1) 

    if Pgen <= Pcalc then 

    S:=Tabu-LocalSearch(S)  

    i:=i+1 

    if O(S) < O(S*) then 

 impM:=impM+1  

    else 

     S:=LocalSearch(S) 

  if O(S) < O(S*) then 

 S*:=S; 

return S* 

Figure 7: The Pseudo-codes of GLS–Tabu Search integrated with Simulated Annealing (GLS-TS-SA) 

Figure 7 gives the pseudo-codes of the GLS-TA integrated with simulated annealing. InitialSolution(), LocalSearch(), 

StoppingCondition() and ChoosePenaltyFeatures(S,p) are as described in the GLS-TS algorithm in Figure 5. 

Random(0,1) generates a random real number between 0 and 1. The function Tabu-LocalSearch() basically performs a 

Tabu search until no more improvements for the objective function is achieved. The variable i counts number of times the 

variant GLS-TS-SA performs Tabu search while the counter impM measures the number of accumulative improving 

moves affected by Tabu search. The variable d represents the decrease in the total distance traveled, which is either 0 or -

d for any increase. The parameter MAX_TEMP was empirically determined at 0.3. In addition, the formulation for temp 

and Pcalc basically follows the standard logistic function described in [11]. Besides our proposed GLS-TS-SA, we can 
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clearly have many other possible search hybrids integrated with simulated annealing such as an adaptive strategy which 

can flexibly invoke the GLS penalty scheme within the TS framework depending on its performance. Some of these 

proposals form our on-going work. 

5. Experimental Results 

We used the well-known Solomon’s test cases to evaluate the performance of our proposals against the original Tabu 

search [13] and Backer’s et al.’s variant - the Guided Tabu search [1]. There are 56 instances of delivery problems in the 

Solomon’s test set, each with 100 customers, which can be categorized into 6 classes: C1, C2, R1, R2, RC1 and RC2. The 

first letter(s) of the class name denotes the type of customer distribution. For instance, ‘C’  represents the clustered 

customers, ‘R’  denotes the randomly distributed customers, and ‘RC’ involves a mix of customers of both types. After 

that, the number in the class name encodes the types of vehicle capacity and service duration. ‘1’ refers to the test cases 

with small vehicle capacity and short service duration while ‘2’  stands for those with large vehicle capacity and long 

service duration. For all the 6 classes, the demand for each customer within the same class is the same. Refer to 

Appendix A for the full description of each class.  

The original guided local search (GLS) and Tabu search algorithms and their hybrids such as the guide Tabu search 

(GTS), our proposed guide local search – Tabu search (GLS-TS) and its variant GLS-TS integrated with simulated 

annealing (GLS-TS-SA) are all implemented in C/C++ and compiled with g++ (the GNU C++ version egcs-2.91.66 with 

optimised compilation option), running on a machine with Intel Pentium III (450Mhz) processor and 256 megabytes of 

random-access memory (RAM). The operating system is Linux RedHat Version 6.1 (Cartman) Kernel 2.2.12-20 on i686. 

All the implementations are in fact modified from the original PFIH+MGA [6]. Most of the data structures are 

implemented as global array for efficient handling. Moreover, the 4 heuristic operators are modified so that instead of 

performing an actual move, the effects of performing the move are calculated. This is achieved by considering the arcs 

added and deleted for a particular move. For the constraint checking, the new move is only checked against those routes 

that it will affect. Hence, the execution time of the program is greatly reduced by a factor of 10 or more.  

The lemma values used are 0.2 for GLS, and 0.15 for GTS, GLS-TS and GLS-TS-SA. For each approach, the solver is 

executed 10 times with the average and the best results recorded. For all the approaches, the resource limit or stopping 

criterion is set at 1000 iterations. For the following results, we use “PFIH+”  to represent those search methods using the 



 20 

push-forward insertion heuristic for initialisation while “VVH+”  is used to represent those methods using the virtual 

vehicle heuristic as discussed in Section 3. 

 

Figure 8: The Normalized Results of the Averaged TDxTV  (with respect to the Best Published Results) for  All 
the Test Cases of  the GLS, GTS and GLS-TS Methods Initialised with PFIH or VVH 

 
Figure 8 shows the performance of GLS-TS against GLS and GTS after normalized by the best published results from 

6 sources [16]. All the results are measured in term of the averages of the objective values TV x TD , as discussed in 

Section 2, for all the 56 test cases in the Solomon’s benchmark [10]. From these experimental results, GLS-TS 

outperforms against both GTS regardless of the initial search. For instance, GLS-TS remains competitive when 

comparing the PFIH+GLS with PFIH+GLS-TS. Furthermore, VVH+GLS-TS is the most effective search methods among 

the 6 search methods we compare here. Most importantly, VVH+GLS-TS has improved on 1 test case, R205, giving: 

TV=997.385, TD=3 and TV x TD=2992.16 which is 0.13% better than the best result: TV=998.72, TD=3 and TV x 

TD=2996.16 as reported in [2]. It should be noted that it is very difficult to break any of these best-published records 

since they are in fact the best results among the best solvers ever compared. This supports our analysis discussed in 
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Section 4.2 that updating the penalty vector only at local minima rather than after each Tabu move may significantly 

improve the performance of the original search methods. In general, these results demonstrate that our proposal, GLS-TS, 

has competitive advantages over its parents GLS and TS in solving VRP-TWs effectively. 

Besides, VVH+* searches outperform the corresponding PFIH+* searches in 2 out of 3 test cases on the average. This 

improvement can be explained in term of the additional domain knowledge gained from the parameter vp which is the 

number of vehicles used in the best-known results. Nevertheless, VVH+* searches fail to find solutions in some specific 

test cases probably due to the bound vp + 1 or vp + 2 imposed on the initial search, which may hinder the applicability of 

this initialisation heuristic in many real-life applications. After all, our proposed GLS-TS still proves to be effective with 

both PFIH and VVH.  

Approaches TVxTD 
Averaged differences of all 
test case from BEST (%) 

BEST 453997.1 0
PFIH+GLS 503206.1 14.21
PFIH+GTS 507321.2 15.59
PFIH+GLS-TS 504924.3 14.53
PFIH+GLS-TS-SA 556400.3 16.10

VVH+GLS * 486590.1 14.83
VVH+GTS* 455471.0 14.74
VVH+GLS-TS* 480169.8 12.26
VVH+GLS-TS-SA 497175.1 12.96

Table 1: A Compar ison of the Per formance of All the Solvers initialised with the PFIH or  VVH Against the Best 
Results on the Solomon’ s Test Cases  

 
Table 1 shows the performance of different solvers initialised with PFIH or VVH in solving the Solomon’s test set of 

VRP-TWs. The performance of the solvers is measured in terms of two quantities: the sum of TV x TD and the averaged 

deviations from the best published results in percentage for all the test cases. In general, the VVH+* methods give better 

results for the sum of TV x TD when compared to the corresponding PFIH+* methods probably due to the advantage of 

the added domain knowledge. Undoubtedly, in term of the averaged deviations from the best results, VVH+GLS-TS with 

the lowest 12.26% is the winner among the GLS- or TS-based solvers. Again, this demonstrated the competitive 

advantage of invoking the GLS-type penalty scheme only at stable states of TS as illustrated in the analytical model in 

Section 4.2. On the other hand, VVH-GTS scored the lowest sum of TV x TD among the compared solvers probably due 

to the probabilistic nature of the non-targeted states, that are the non-X states as discussed in Section 4.2, which 

accidentally lead the search to the solution states in some specific instances. The actual reason(s) for the overall 
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improvement on the sum of TV x TD in this particular case require a more detailed investigation. Nevertheless, this result 

clearly demonstrates the effectiveness of combining both GLS and TS meta-heuristics in solving real-life VRP-TWs.  

Furthermore, the sum of TV x TD for the VVH+GLS-TS-SA is the largest among the VVH+* solvers while the PFIH-

GLS-TS-SA shows the largest averaged deviations from the best results among all the comparing solvers, clearly 

demonstrating the difficulty in controlling the local search or Tabu search with the integrated simulated annealing 

technique. We will try to explain this difficulty in term of the probabilistic model we have discussed in Section 4.2. 

Roughly, integrating the simulated annealing technique to decide which search method to use in each iteration is similar 

to adding a pre-requisite state before each original state in the state transitions of the TS algorithm as shown in Figure 

6(a). Each pre-requisite state has two out-going arrows as two possible transitions – one leads to the original TS state 

while another leads to the additional local search state as possibly occurred in the GLS algorithm. The overall effect is the 

main component (pab . pbc. pcd) of the probability of successfully reaching the solution state is significantly lowered by a 

factor of hn where h, ranging from 0 to 1, is the probability of still being the most rewarding search method (with respect 

to the normal local search method), and n is the number of TS states involved. Moreover, the newly added pre-requisite 

and local-search states into the original state transition diagram of the TS simply means the resulting GLS-TS-SA 

algorithm more difficult to manage with more possibility to consider. After all, this observation prompts us to carefully 

refine the simple performance measure used in our proposed GLS-TS-SA solver for testing.       

Besides, we also try to identify the best optimiser for each of the 6 classes of Solomon’s test cases. We observe for the 

C1 and C2 classes, where there is no clear winner in term of the sum of TV x TD, PFIH+GLS is the simplest and most 

stable solver. Also, it is worth noting that GLS-TS-SA is marginally better in the C1 class with only 0.14% deviated from 

the best published results. In addition, VVH+GLS-TS performs the best for both R2 and RC2-type problems. For a more 

detailed comparison on the performance of the different solvers in each individual problem class of the Solomon’s test 

set, refer to [16]. 

6.   CONCLUDING REM ARK S 

In this paper, we proposed our 2 interesting search hybrids by integrating the well-known guided local search (GLS) 

and Tabu search (TS) algorithms to effectively solve the VRPs. As opposed to the GTS in [1], we consider a different 

integration of Tabu Search into GLS framework as GLS-TS in which the GLS-type penalty scheme is invoked only at 
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stable states. More interestingly, from GLS-TS, we implement the SA approach to work as the guiding principle to 

intelligently choose which is the right search method to apply in each iteration based on some cooling schedules. The 

cooling schedule is governed by a standard logistic function as defined in [11] together with some performance metric 

such as the reduction in the total distance travelled. There was some previous work which combined simulated annealing 

with Tabu search [11]. However, in our work, the SA mechanism is embedded into the combined GLS and Tabu search 

framework to decide which search method to apply in each search step.  

In the empirical evaluation of our proposals on the Solomon’s benchmarks, we obtained exciting results from our 

proposed GLS-TS algorithm. Generally speaking, GLS-TS is a very efficient algorithm compared to its ancestors, the 

GLS and GTS. Surprisingly, the VV+GLS-TS produces a better-than-best-published result for the R205 problem of the 

Solomon’s test set. In addition, from our empirical results, we made some careful observations that improving on TV 

through any heuristic search operator can be more rewarding than the improvement on TD through the GLS-type penalty 

scheme on the long arcs since the objective function is TV x TD. This will definitely provide one exciting direction of our 

on-going research work. More importantly, we provide in this paper a simple and interesting probabilistic model for 

analysing the search behaviour of our proposed hybrids. This readily forms the basis for our future investigation.   

Our new approach in the hybridisation of GLS and TS algorithms with simulated annealing truly opens up many new 

directions for future exploration. Here, we suggest to use the simulated annealing as a more sophisticated guiding 

principle, or namely meta-meta-heuristic, to monitor the underlying meta-heuristics such as GLS which in turn controls 

the search on the initial solution returned by the initialisation heuristics such as the PFIH or VVH. As for future work, we 

will look into other types of initialisation method to be integrated into our search hybrids to improve their performance. 

Another interesting direction is to investigate other possible logistic functions and performance metrics to particularly 

improve the performance of our proposed GLS-TS-SA solver. Lastly, it should be interesting to investigate other TS-

related variants integrated with simulated annealing such as an adaptive strategy which can flexibly invoke the GLS 

penalty scheme within the TS framework depending on its relative merit. 
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Appendix A: Descr iptions of the 6 Classes of Problems in Solomon’s Test Set 

Type No. Of 
Cases 

Description 

C1 9 Vehicle capacity is small 
Spatial distribution of customers is clustered 
Width of servicing time window varies 
Service duration is large 

C2 8 Vehicle capacity is large 
Spatial distribution of customers is clustered 
Width of servicing time window varies 
Service duration is large 

R1 12 Vehicle capacity is small 
Spatial distribution of customers is uniformly distributed 
Width of servicing time window varies 
Service duration is small 

R2 11 Vehicle capacity is large 
Spatial distribution of customers is uniformly distributed  
Width of servicing time window varies 
Service duration is small 

RC1 8 Vehicle capacity is small 
Spatial distribution of customers is clustered 
Width of servicing time window varies 
Service duration is small 

RC2 8 Vehicle capacity is large 
Spatial distribution of customers is clustered 
Width of servicing time window varies 
Service duration is small 

 


