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Abstract 

Leading coefficients of the Williams expansion are evaluated by using the fractal finite 

element method (FFEM). By means of the self-similarity principle, an infinite number of 

elements is generated at the vicinity of the crack tip to model the crack tip singularity. The 

Williams expansion series with higher-degree coefficients is used to capture the singular 
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and non-singular stress behaviour around the crack tip and to condense the large amount of 

nodal displacements at the crack tip to a small set of unknown coefficients. New sets of 

coefficients up to the sixth degree for mode I and the fourth degree for mode II problems 

are solved. The important fracture parameters such as stress intensity factors and T-stress 

can be obtained directly from the coefficients without employing any path independent 

integrals. Convergence study reveals that the present method is simple and very coarse 

finite element meshes with 12 leading terms in the William expansion can yield very 

accurate solutions. The effects of the influence of crack length on the higher-degree 

coefficients of some common plane crack problems are studied in detail.  

 

Keywords:  fractal finite element, stress intensity factor, T-stress, higher-degree 

coefficients, Williams expansion 

 

1. Introduction 

 

Assuming plane crack with traction-free faces subjected to arbitrary remote loading, the 

linear elastic displacement and stress fields at the crack tip obtained by the Williams 

eigenfunction expansion technique [1] can be expressed as,  
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where  r and θ are the polar coordinates, µ is the shear modulus, ν is Poisson’s ratio, κ = 

( )ν43−  for plane strain condition and ( ) ( )νν +− 13  for plane stress condition and n is the 

degree of term in the infinite series. It is well known that the first degree coefficients (a1 

and b1) in the series is directly associated with the singular stress behaviour and can be 

related to stress intensity factors which are primarily important in prediction of crack 

initiation and propagation in brittle materials. The first non-singular stress term (n=2) 

which acts parallel to the crack at its tip, of the Williams eigenfunction expansion series [1] 

is known as T-stress which can be related to the coefficient a2. The experimental results on 
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mixed mode loads [2 & 3] showed that the inclusion of this term of the stress distribution 

could produce an improved correlation with fracture predictions for the angle of fracture 

and the critical stress intensity factor. Furthermore, T-stress was found to have significant 

effects on fracture toughness [4], size and shape of the crack-tip plastic zone [5 & 6] and 

stability of the crack path direction [7-10]. The application of both the stress intensity 

factor and the T-stress to include the constraint effect in failure investigations is becoming 

increasingly popular [11]. Further investigations on the second non-singular term (n=3) 

found that it has significant effect on the centre-cracked and single-edge specimens with 

short crack lengths [12] and it has smaller effect than that of the T-stress on the variation of 

apparent fracture toughness in brittle materials [13].  

 

It is therefore important to obtain the leading coefficients of the Williams expansion for the 

cracked geometries under consideration. Several analytical and numerical methods have 

been developed to evaluate the stress intensity factor and T-stress for the cracked 

configurations [14-22] but not the higher-degree coefficients. While only Karihaloo and 

Xiao [14] recently developed a higher order hybrid crack element to evaluate the higher-

degree solutions. They found that accurate determination of the higher-degree coefficients 

was more difficult than that of the stress intensity factors; and it requires higher order 

hybrid crack elements together with a finer subdivision of the remainder of the body by 

regular elements. The hybrid crack element method had been applied to determine the 

higher-degree coefficients for the standard compact tension specimen [23] and wedge 

splitting specimens [24]. So far only mode I solutions, up to n=5, have been evaluated. 
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In this paper, an alternative technique namely the fractal finite element method (FFEM), 

which has been proven to be an accurate and efficient method to solve planar crack 

problems [25-27], is employed to determine the higher-degree coefficients. Numerical 

examples are given and compared with previous results to demonstrate the convergence, 

efficiency and accuracy of the present approach. Accurate leading coefficients for mode I 

and II problems are evaluated. The results indicate that the present method is simple; and 

do not require matrix inversion to formulate the element stiffness matrices or any post-

processing technique to obtain the coefficients. It is also found that relatively coarse finite 

element mesh with 12 terms of the Williams expansion is sufficient to yield very accurate 

leading coefficients. 

 

 

2. Brief Formulation of the Fractal Finite Element Method 

 

The FFEM was originated in 1993 by Leung and Su to handle crack related problems [25]. 

This method was modified from the two-level finite element method (2LFEM) [28] of 

which the principle was that, while the local interpolating shape function could reduce 

infinite number of degrees of freedom (DOF) within a finite element to finite number of 

nodal displacements, the global interpolation function (Williams expansion with higher-

degree terms) could further reduce the nodal displacements to a small set of unknown 

coefficients. The FFEM extends this concept by generating self-similar meshes at the crack 

tip region (see Fig. 1) with infinite number of nodal DOF around the singular point. By 

using the fractal transformation [27], an infinite nodal DOF is condensed expeditiously 
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without increasing the order of the final equations as well as the computational time. The 

stress intensity factors and T-stress can be obtained directly from those coefficients.  

 

The FFEM has been used to determinate stress intensity factors and T-stress, it is the first 

time to extend this method to calculate the leading coefficients of mode I and mode II 

crack problems. For completeness, brief formulation of the FFEM is presented. To 

simplify our discussion, typical 9-node isoparametric elements with two DOF per node 

will be used to illustrate the formulation of the FFEM. However, similar theory can be 

applied to elements with different node numbers and different formulations. 

 

Based on conventional finite element methods [29], the first level interpolation in a finite 

element (say the lth element) is achieved by using the conventional shape function N ,  ˆ

11818212
ˆˆˆ ××× = dNu                (6) 
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th element and 

 is the nodal displacement vector. The symbol ‘∧’ used here is to 

denote the vector or matrix in element level. Furthermore, considering the nodal 

displacement  at the k

Lˆ =d

{ Tk
yv̂ th node of the element, the displacement can be 

represented by the global interpolation. Hence, 

1)1(2)1(2212 ˆˆ ×++×× = NN
kk aTv               (7) 

where { Tbababa L221100=a } is the unknown coefficient vector of the 

Williams eigenfunction series. The superscript ‘-’ denotes the vector or matrix of the 

fractal mesh in inter-element level. The first two coefficients a0 and b0 are associated with 
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the rigid body motions at the crack tip of the fractal mesh. It is not difficult to observe that 

the second-degree stress functions corresponding to b2 in equations (3) to (5) are always 

equal to zero. Therefore the coefficient b2 is arbitrary and may be taken as zero for 

simplicity. The explicit form of the global interpolation function T can be expressed as, kˆ
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It is noted that usually large amount of conventional finite elements is required to simulate 

the singularity at the crack tip. The order of nodal displacement vector in the singular 

region is in general much larger than that of a . When infinite number of self-similar layers 

of elements is generated around the crack tip (as shown in Fig. 1) which leads to infinite 

number of unknown displacements, the transformation equation (7) can be used to 

condense the associated infinite number of DOF to a finite number of unknown 

coefficients a .  

 

To perform the transformation, the elements on the first layer and the inner layers of the 

fractal mesh have to be considered separately. For the first layer of the fractal mesh, let 

there is M number of master nodes on the boundary Γ0 as shown in Fig. 1. The 

displacement vector associated with the master nodes is denoted as{ } 12
ˆ

×Mmd . The 

displacement vector within the boundary Γ0 corresponding to the slave nodes is 
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where the superscript f indicates the first layer of the fractal mesh. Only the displacements 

at the slaves are transformed. The second level (global) interpolation of displacements can 

be written as follows, 
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Where I is the identity matrix and { }Tkf LL TT ˆˆ =  is the transformation matrix that 

can be obtained from equation (8). After transforming the stiffness matrix of the lth element 

on the first layer of the fractal mesh, one has, 
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For the inner elements located in the same sector of the lth element (see Fig. 2), all the DOF 

is transformed to the unknown coefficients. Due to geometric self-similarity between 

successive layers of the fractal mesh, a simple geometric progression relationship known 

as fractal transformation [27] was found for transforming and assembling all the inner 

layer elements, such that,  
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The generalized stiffness matrix  of that sector can then be expressed as, sK̂
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So far, only a sector of the elements along the perimeter Γ, as shown in Fig. 2, is 

transformed. The global generalized stiffness matrix sK for the fractal mesh can be 

calculated by summing up the generalized stiffness matrix  associated with all the 

sectors, hence, 

sK̂
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By means of the master nodes, the singular region can be merged with the regular region 

which is modelled by the conventional finite elements as shown in Fig. 1. All the 

coefficients in equation (16) can be solved after applying the appropriate boundary 

conditions.  

 

Invoking the definitions of the stress intensity factors and the T-stress, those fracture 

parameters can be related to the coefficients as,  

π21aK I = ,  π21bK II −=  and T 24a=            (17) 
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3.0 Test of Convergence 

It has been mentioned [14] that accurate determination of the higher-degree coefficients by 

finite element analysis was more difficult than that of the stress intensity factors; and it 

requires more terms in the Williams expansion together with a finer subdivision of the 

remainder of the body by regular elements. Similar convergence study for the FFEM had 

been performed [30] and suggested using full Gaussian integration scheme to evaluate the 

nine-node Lagrangian element and circular fractal meshes c4 to model a quarter or half of 

the cracked regions. However that study only focused on the accurate determination of the 

stress intensity factors (the first term, n=1 in the series) but not the other higher-degree 

terms. As motivated by the study of Karihaloo and Xiao [14], test of convergence for the 

higher-degree terms is conducted and the influences of the density of fractal mesh and the 

number of terms used in the Williams expansion are studied. 

 

Figure 3 shows two specimens, single edge crack in tension (SECT) and single edge crack 

in shear (SECS). The width (W) and height (2H) of the two specimens are the same and 

both equal to 4 units (H=W=4). The crack length a for SECT and SECS specimens are 

chosen as 1 and 2 units, respectively. The material properties are selected as E=20000 and 

ν=0.3. Due to symmetry, only half of the plate is modelled. Two finite element meshes, c4 

(with 4 fractal elements in each layer of fractal mesh) and c8 (with 8 fractal elements in 

each layer of fractal mesh) as shown in Fig. 4 are constructed to check the accuracy of the 

solutions.  
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The numerical results of the higher-degree coefficients for SECT had been presented in 

reference [14]. The highest term used in the Williams expansion is N=12 in the FFEM. 

Table 1 shows a comparison of the present results with those available from the literatures. 

Fractal mesh c4 can accurately predict up to n=3 of the coefficients for the mode I crack, 

whereas fractal mesh c8 can give accurate results up to n=5. The results obtained from c4 

mesh are consistent with that of c8 up to n=3 and n=2 for mode I and mode II problems 

respectively. This finding also supported by Karihaloo and Xiao [14] that finer subdivision 

of finite element mesh is required to achieve high accuracy in higher-degree term 

calculation. By using c8 mesh, the present results and those available in the literatures are 

generally agreed with less than 2% differences.   

 

The convergence of the higher-degree coefficients with the total number of terms (N) in the 

Williams expansion is studied. By using c8 mesh, the higher-degree coefficients up to n=6 

for the problems of SECT and SECS are calculated and the results are shown in Figure 5. 

It can be seen that all the coefficients converged steadily with increasing value of N for 

SECT. In general N=12 is sufficient for achieving less than 1% discrepancy with the 

converged value for mode I problems. For mode II problems, the 4th- and lower-degree 

coefficients converge rapidly when N >11. However, the 5th and higher-degree coefficients 

do not converge steadily for more than 20 terms in the truncated Williams expansion. The 

higher-degree coefficients for mode II problems are much more difficult to determine than 

that of mode I problems. 

 

4.0 Numerical Examples 
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To demonstrate the efficiency and accuracy of the present method, leading coefficients are 

calculated for five typical problems as shown in Figure 6. In these examples, the models 

are defined as H=W=4, Poisson’s ratio ν=0.3 and Young’s modulus E =20000. The crack 

length to width ratio (a/W) is varied from 0.1 to 0.7. Under symmetry conditions, only half 

or a quarter of the plates is needed in the analyses. By using c8 fractal mesh and 12 terms 

in the truncated Williams expansion series, the results for the leading coefficients up to 

n=6 and n=4 for Mode I and Mode II problems are calculated and shown in Tables 2 and 3 

respectively. The results are compared with the previous available stress intensity factor 

solutions derived by the finite strip approach [31]. For all the cases, excellent agreement 

with less than 1% differences is observed. 

 

5.0 Conclusions 

By using the fractal finite element method, the leading coefficients of the Williams 

expansion of various crack configurations have been evaluated. The present method has 

been shown to be relatively simple to implement, as no new element formulation and no 

post-processing technique are required for determination of the higher-degree coefficients. 

Convergence study reveals that finer fractal meshes have to be used to get accurate higher-

degree coefficients. Fractal mesh c8 together with 12 transformation terms is sufficient to 

yield coefficients with less than 2% discrepancy between the present and the available 

literature results of leading coefficients up to n=6 for mode I crack problems. However, the 

higher-degree coefficients (n≥5) for mode II problems are difficult to accurately determine. 

The effects of the influence of crack length on the higher-degree coefficients, up to n=6 for 

mode I and n=4 for mode II, of some common plane crack problems are presented.  
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Table 1. Comparison of the higher-degree coefficients: H/W=1 and N=12. 

SECT (a/W=0.25) 

Coefficients Ref[14] FFEM-c4 FFEM-c8 

a1 1.0585 1.0592 (0.7%) 1.0593 (0.1%) 

a2 -0.1513 -0.1513 (0%) -0.1506 (-0.5%) 

a3 0.0815 0.0801 (-1.7%) 0.0796 (-2.3%) 

a4 -0.0478 -0.0441* (-7.7%) -0.0476 (-0.4%) 

a5 0.0055 0.0093* (69%) 0.0054 (-1.8%) 

SECS (a/W=0.5) 

Coefficients Ref[31] FFEM-c4 FFEM-c8 

b1 -0.4789 -0.4654(-2.8%) -0.4804(0.3%) 

b2  0.0000 0.0000  

b3  0.0560* 0.0871 

b4  0.0603* -0.0414 

b5  -0.0239* -0.0156* 

value in the bracket represents the percentage differences with the references 
        *  not accurate 
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Table 2. Variations of the higher-degree coefficients for mode I problems  
( H/W=1 and N=12) 

a/W a1 
Ref[31] 

a1 a2 a3 a4 a5 a6 

SECT        
0.1  0.5318 -0.1376 0.1837 -0.1244 0.0613 0.1220
0.2  0.8649 -0.1472 0.1143 -0.0622 0.0156 0.0347
0.3  1.2863 -0.1519 0.0355 -0.0360 -0.0033 0.0180
0.4  1.8892 -0.1427 -0.1087 -0.0136 -0.0258 0.0142
0.5 2.834 2.8247 -0.1025 -0.4117 0.0201 -0.0737 0.0202
0.6  4.4169 0.0127 -1.1260 0.0976 -0.2099 0.0512
0.7  7.5169 0.3425 -3.1306 0.3432 -0.7105 0.1925

CCT        
0.1  0.4533 -0.2547 0.2833 0.0001 -0.0886 -0.0005
0.2  0.6673 -0.2681 0.2061 0.0016 -0.0348 0.0004
0.3  0.8698 -0.2888 0.1713 0.0049 -0.0247 0.0010
0.4  1.0874 -0.3149 0.1438 0.0102 -0.0245 0.0013
0.5 1.338 1.3333 -0.3462 0.1130 0.0163 -0.0289 0.0012
0.6  1.6216 -0.3872 0.0751 0.0202 -0.0378 0.0012
0.7  1.9838 -0.4567 0.0306 0.0146 -0.0599 0.0041

DECT        
0.1  0.5084 -0.1330 0.1821 -0.1214 0.0619 0.1172
0.2  0.7446 -0.1341 0.1269 -0.0581 0.0184 0.0316
0.3  0.9528 -0.1283 0.0922 -0.0312 0.0050 0.0153
0.4  1.1480 -0.1104 0.0594 -0.0121 -0.0008 0.0088
0.5 1.333 1.3326 -0.0793 0.0298 0.0025 -0.0007 0.0046
0.6  1.5167 -0.0384 0.0132 0.0124 0.0063 0.0010
0.7  1.7340 0.0055 0.0277 0.0167 0.0242 -0.0024
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Table 3. Variations of the higher-degree coefficients for mode II problems  
( H/W=1 and N=12) 

 
a/W b1 Ref[31] b1 b3 b4 

SECS     
0.1 -0.9149 1.1861 -0.6876 
0.2 -0.6529 0.4202 -0.1764 
0.3 -0.5464 0.2176 -0.0858 
0.4 -0.4965 0.1352 -0.0505 
0.5 -0.4789 -0.4803 0.0871 -0.0414 
0.6 -0.4936 0.0573 -0.0508 
0.7 -0.5435 0.0349 -0.0774 

CCS     
0.1 -0.3596 0.3649 -0.0132 
0.2 -0.2669 0.1274 -0.0070 
0.3 -0.2348 0.0656 -0.0064 
0.4 -0.2242 0.0412 -0.0081 
0.5 -0.2260 -0.2263 0.0272 -0.0107 
0.6 -0.2401 0.0185 -0.0173 
0.7 -0.2692 0.0128 -0.0334 
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Fig. 1. Regular and singular regions and construction of fractal mesh. 
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Fig. 2. A sector in the fractal mesh. 
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Fig. 3. Example problems for convergence study of the higher-degree coefficients: (a) 
Single Edge Crack Tension (SECT) and (b) Single Edge Crack Shear (SECS). (H=W=4) 
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(a) c4  
number of elements=44 
number of nodes=208 

(b) c8  
number of elements=64 
number of nodes=296 

Fig. 4. Fractal mesh configurations: (a) c4 and (b) c8. (a/W=0.25) 

 22



 

0

1

2

3

1 6 11 16 21
 

M
od

e 
I N

or
m

al
iz

ed
 C

oe
ff

ic
ie

nt
s 

a5 

a1 

a2 

a3 
a4 

a6 

 
Number of Terms N 

(a) SECT 

-2

-1

0

1

2

3

1 6 11 16 21

b5 

b4 

b6 

b3 

b1 

Number of Terms N 

M
od

e 
II

 N
or

m
al

iz
ed

 C
oe

ff
ic

ie
nt

s 

(b) SECS 
Fig. 5. Variations of normalized coefficients against number of terms N, (a) SECT and (b) 

SECS 

 23



 

σ0 σ0 σ0 

W 

a a 

H
 

H
 

2W 

a

2W 

2a 

σ0 σ0 σ0 

(a) SECT (b) CCT (c) DECT 

 
 

Q Q 

2W 

2a 

H
 

H
 

 24

 

Q
a 

W 

(H=W=4) 
Q 

 

(d) SECS (e) CCS 

 
Fig. 6. Example problems for calculation of the higher-degree coefficients: (a) Single Edge 
Crack Tension (SECT), (b) Centred Crack Tension (CCT), (c) Double Edge Crack Tension 

(DECT), (d) Single Edge Crack Shear (SECS) and (e) Centred Crack Shear (CCS).  
 


