
Title Influence of non-structural components on lateral stiffness of
tall buildings

Author(s) Su, RKL; Chandler, AM; Sheikh, MN; Lam, NTK

Citation Structural Design Of Tall And Special Buildings, 2005, v. 14 n. 2,
p. 143-164

Issued Date 2005

URL http://hdl.handle.net/10722/48544

Rights Creative Commons: Attribution 3.0 Hong Kong License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37886052?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


This is a pre-published versionThis is a pre-published version

Journal of Structural Design of Tall and Special Buildings 

 
INFLUENCE OF NON-STRUCTURAL COMPONENTS ON 

LATERAL STIFFNESS OF TALL BUILDINGS 
 

R.K.L. Sua*, A.M. Chandlera, M.N. Sheikha and N.T.K. Lamb 

a Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 
b Department of Civil and Environmental Engineering, The University of Melbourne, Parkville, Victoria 3052, 

Australia 
* Corresponding author. E-mail:  klsu@hkucc.hku.hk         Tel.: +852 2859 2648          Fax +852 2559 5337 

 

SUMMARY 

A building is a complex assemblage of both structural and non-structural components (NSC). Although 

many NSC, such as partition walls, external walls, parapet walls, stairwells, elevator shafts, and so forth, 

are connected directly to the structural system, their behaviour and stiffening effects under lateral loading 

have normally been ignored by design engineers, despite significant advances in computer technology and 

the availability of modern computational resources. The performance of structures can be greatly 

improved by the increase in strength arising from the NSC; on the contrary, this increase in strength also 

accompanies an increase in the initial stiffness of the structure, which may consequently attract additional 

seismically induced lateral inertia forces. This paper is concerned with the estimation of the lateral 

stiffness contributed by the NSC to the total stiffness of three common forms of tall building structures 

constructed in Hong Kong. Both dynamic tests and numerical modelling of the buildings have been 

carried out for this purpose. Natural period estimates from dynamic tests and from analyses using 

calibrated finite element models were found to be in remarkable agreement. Significant stiffness 

contributions from NSC to the total lateral stiffness of tall buildings have been observed in the study. The 

extent of the contributions depends on the structural form and the type of components. Other 

contributions to the additional stiffness have also been analysed for comparison in the study. 

 

Key words: Non-structural components, lateral stiffness, tall building, bare-frame, full-frame, dynamic 

test. 

Abbreviated Title:  Non-structural components in tall buildings. 
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1. INTRODUCTION 

 
Despite significant advances in computer technology and the widespread availability of modern 

computational resources, it is common practice for design engineers to neglect non-structural components 

(NSC), such as partition walls, external walls, parapet walls, stairwells, elevator shafts, and so forth, in 

the mathematical modelling of a building for design purposes. The effect of a single NSC on the stiffness 

of a building may be negligible, but the cumulative effect of several components is expected to be 

significant. Full-scale ambient vibration measurement of tall buildings in Hong Kong shows that 

analytical models do not give frequencies that concur with test results (Su et al., 2003). This may be the 

direct consequence of improper modelling of some of the structural elements, as well as neglecting the 

contribution of NSC to the lateral stiffness. 

 

There is no consensus amongst structural earthquake engineers regarding the influence of the NSC on the 

earthquake resistance and seismic safety of reinforced concrete buildings. The performance of the 

structure can be greatly improved by the increase in strength due to contributions from the NSC. On the 

contrary, this increase in strength would also accompany an increase in the initial lateral stiffness of the 

structure, which may consequently attract an increase in the seismically induced inertia forces. The 

resulting influences on the seismic performance of the building are difficult to generalise as they depend a 

great deal on detailing and load transmission paths within the building. The displacement demand on the 

building would normally be decreased, when displacement controlled actions (eg. storey drifts) are 

mitigated accordingly. However, force controlled actions (eg. column shear and joint shear) could be 

accentuated by the decrease in the natural period, and hence increase in the base shear, of the building. 

 

Conventional construction practice in Hong Kong employs concrete block masonry walls, lightweight 

concrete walls and dry walls placed in the frames and structural walls without any separation. Such walls 

have normally been considered as NSC, and their presence has been ignored by engineers. Even in some 

recent editions of major seismic codes (such as IBC-2000), the influence of NSC walls has been 

neglected. Although they are considered as NSC, they undergo interaction with the structure when it is 

subjected to lateral loads. 
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A literature survey indicates that only a few studies have quantified the contribution to lateral stiffness of 

the NSC. Some researchers have studied the effect of masonry infill panels on the stiffness and strength of 

frames/buildings [refer Table 1]. Significant effect of masonry infill panels has been observed, although 

the variation in stiffness ratio between the bare-frame and the infilled-frame is large.  Shing et al. (1994) 

and Mehrabi et al. (1996) found that the stiffness of a weak frame-strong panel model could be as high as 

50 times that of a bare-frame model. For a 6-storey three bay frame structure, Yong Lu (2002) found that 

the stiffness ratio of the infilled-frame and the bare-frame was in the order of 1.2, which was much lower 

than findings from other studies. However, the building subject to the study was only partially infilled and 

measurements were taken only from the second storey of the building. Consequently, the actual global 

stiffness of the infilled-frame could be even higher than the reported value.  Negro and Verzeletti (1996) 

conducted pseudo dynamic tests on a 4-storey partially infilled RC building and reported the stiffness 

ratio between the bare-frame and the full-frame model of the building as 2.6 (in terms of stiffnesses) and 

1.6 (in terms of strength). Both ratios were significantly lower than those reported in other studies. It 

should be noted that, for the building studied, infill walls were employed only for the two external frames. 

 

Most of the studies considered in the above literature survey [refer Table 1] and also from other studies on 

infilled RC frames/structures (Mehrabi et al., 1996) have been conducted on small-scale RC 

buildings/frames or frame designs that might not truly reflect existing building structures. Masonry infill 

walls, being traditionally non-engineered, have as-built properties which at the design stage are almost 

impossible to estimate reliably and/or to specify, and at the construction stage are hard to control (Fardis 

et al., 1999).  Moreover, the geometry of masonry infill walls may be subject to alteration during the 

service life of the structure.  

 

In obtaining accurate estimates of the stiffness contributions from NSC in existing buildings, these issues 

must be considered in both analytical and experimental modelling. None of the above studies have been 

conducted on a high-rise building, which is the focus of the present study. The scope of this paper is 

limited to the influence of the NSC (partition walls, external walls, parapet walls, and precast-façade 

walls) on the initial in-plane building stiffness at small strains. Effects of NSC on the lateral strength or 

on the stiffness and strength eccentricity of the structure are beyond the scope of the paper. Furthermore, 
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linear elastic behaviour of the building based on the properties of uncracked concrete has been assumed. 

Thus, the deterioration in the structural strength and/or stiffness of the building with increasing strain 

under cyclic conditions has been neglected. Ambient vibration measurements were conducted on three 

high-rise buildings (14, 15 and 41 storey) to determine their natural frequencies in the longitudinal, 

transverse and torsional directions for the calibration of finite element (FE) models. The lateral load 

resistance of the three buildings considered here comprise a moment-resisting frame structure, a frame-

wall structure and a shear wall structure.  These three types of structural systems represent most tall 

buildings existing in Hong Kong and elsewhere. The period estimation of FE model calibration for the 

full frame building and the ambient vibration tests are found to be in remarkable agreement. Lateral 

stiffness of the building has been calculated from the effective mass and the frequency of the building. A 

significant contribution of NSC to the total lateral stiffness of the buildings has been observed, but the 

magnitude of the contribution depends significantly on the structural form and the type of NSC. 

 

2. DESCRIPTION OF THE TESTED BUILDINGS 

a) Swire building (SB) 

SB is a 15-storey RC building located in the main campus of the University of Hong Kong (HKU) and 

completed in 1980. It mainly serves as a student hall. The building is irregular in shape and consists of 

two parts. The lower part of the building, from lower ground floor to ground floor, is rectangular in shape. 

The upper part, from upper ground floor to penthouse floor, is H-shaped. The typical height of lower part 

floors is 3.6m, whereas for the upper part floors it is 2.9m. The plan dimensions of the building are 

47.5m×32.6m with a total height of 51.3m from the base. The lateral force resisting structural system 

consists of RC moment resisting frames attached to the concrete core walls at the centre and four shear 

walls at the edges [refer Figure 1a]. Typical depth of the beams is 700mm, and the thickness of shear 

walls is 300 mm. Internal and external non-structural walls are built of concrete bricks. Steel H-pile and 

pile caps form the foundation of this structure.  As the building is located on sloping ground, part of the 

basement is bounded by 230mm thick RC screen walls to resist the soil pressure. The specific grade 

strength of concrete fcu for all the structural members is 30 MPa.  
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b) TT Tsui Building (TTT) 

TTT is a 14-storey RC building located in the main campus of HKU, and was completed in 1996. It 

serves as an academic building, as well as housing the university art and museum gallery. The plan 

dimensions are 28.4m×23.3m with a height of 52.8m from the base. The lateral force resisting structural 

system consists of RC moment resisting frames attached to the concrete core walls located at one side of 

the building that support the lift lobby and staircases [refer Figure 1b]. Typical depth of the beams is 

650mm, and the thickness of shear walls is 350mm. As the structure is founded on a slope, the thickness 

of some of the walls in the lower storeys ranges between 500 and 550 mm. The interior and exterior walls 

consist of infill concrete walls of 125mm thickness. Bored piles and pile caps form the foundation of this 

structure. The specific grade strength of concrete fcu for all the structural members is 30 MPa.  

 

c) Typical Harmony Blocks (THB) 

Harmony blocks are standard housing towers that were designed to be constructed on a repetitive basis at 

various sites throughout the territory of Hong Kong. The first Harmony Block building contract 

commenced in late 1989 and was completed in late 1992 (Hong Kong Housing Authority, 1993). 

According to statistics obtained from the Housing Authority (Hong Kong Housing Authority and Housing 

Department), there are at present 67 public rental estates having one or more harmony blocks. 

 

The harmony block building selected for this study is located in the New Territories (in Hong Kong) and 

its construction was completed in 1996. It is a 41-storey RC shear wall building having plan dimensions 

of 53m×48m and a height of 112.7m from the base. The structure has four similar wings which are 

symmetrically arranged in the longitudinal and lateral directions with a cruciform configuration and are 

attached to the central core of the building where services, lifts and staircases are located. The building 

core accommodates 6 lift shafts and 2 staircases. Coupled shear walls together with the core walls provide 

the overall lateral stiffness of the building [refer Fig 1c]. The wall thickness varies from 200 mm at the 

higher zone to 300 mm at the lower zone of the building. Some of the internal shear walls are changed to 

columns at the ground floor non-domestic storey to accommodate ancillary facilities. The floor slabs are 

designed as one-way or two-way spanning plates supported by shear walls, and the typical thickness of 

the floor slabs is 170mm in living rooms and 300 mm in corridors. The internal walls forming the 
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kitchens and bathroom areas, along with the external facades, are NSC. The internal non-structural walls 

are constructed of full height pre-cast partition panels of 150mm thickness.  The building is supported on 

piled foundations. The specific grade strength of concrete fcu of all the structural members is 30 MPa. 

 

3. DYNAMIC TESTING OF BUILDINGS 

Dynamic testing has involved components or scale models of the whole structure to correlate 

systematically with FE analysis, in order to improve or update the analytical models from which structural 

parameters can be identified (Memari et al., 1999 and Brownjohn & Xia, 2000). As scale models cannot 

accurately account for the three dimensional interaction of structural and NSC or the quality of 

construction among other parameters, full-scale dynamic testing of existing structures is most appropriate 

in light of new demands for seismic evaluation of existing structures (Memari et al., 1999). One of the 

basic objectives is to obtain dynamic structural properties such as frequencies, mode shapes, and damping 

ratios in order to compare with the results from analytical FE modelling and hence to verify or correct the 

parameters such as mass distribution, stiffness and damping (Foutch, 1977 and Aktan & Ho, 1990). 

Another important application of dynamic testing of civil infrastructure is to check for continuing 

structural integrity, as buildings and bridges age and are subject to ever increasing loads, or after some 

specific damaging event such as an earthquake (Brownjohn, 2003).  

 

The most widely used methods of full-scale dynamic testing include forced vibration tests (FVT) and 

ambient vibration tests (AVT). In some cases, it may be possible to excite the building artificially while at 

the same time measuring the applied load due to an electro-dynamic, hydraulic and machine shakers. For 

buildings, traditionally, rotating eccentric mass (REM) shakers are used for stepped sine-testing (Littler, 

1988), and in rare cases shakers driven by hydraulic or electro-dynamic actuators are used to excite a 

building with a broad band signal (Williams & Tsang, 1988). The motivation for FVT is that traditional 

modal analysis procedures such as circle fit could be used, often with higher accuracy in identifying some 

of the parameters, particularly the damping ratios (Brownjohn, 2003). 

 

Unlike FVT, which requires sophisticated and expensive equipment, ambient vibration tests (AVT) can 

be performed with relative ease and affordable equipment. As the AVT test does not require the facility to 
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be shut down, normal everyday operation can continue while testing is being carried out. Experimental 

investigations have shown close agreement in the mode shapes and frequencies from both FVT and AVT 

(Sparks et al., 1980; Foutch et al., 1974; Mendoza & Reyes, 1991). The response of a structure to ambient 

excitation (wind, traffic or people) is such that it tends to vibrate primarily in its natural modes, and hence 

with spectral analysis its dominant frequencies can be determined. As the purpose of dynamic testing for 

this study is to determine the fundamental frequency of the buildings, only AVT has been carried out. 

 

The ambient responses of the selected buildings were measured with an 8-channel data acquisition system 

using IMV corporation VP-5122 model uni-axial servo type accelerometers, connected by shielded cables 

to a signal conditioner and 12 bit A/D converter. Its range of operation varies from 0.001-1.0g and the 

rated output is 5 volts. The accelerometers convert the kinetic energy of movements of the building into 

usable electric output. This electrical signal is then passed though a signal conditioner. The signal 

conditioner scales the electric signal according to the individual characteristics of each accelerometer, and 

adjusts the analogue output accordingly.  This analogue signal is converted to a series of discrete outputs 

by the A/D converter. A notebook computer was used for acquisition and storage of these outputs. For 

each set up, the data was recorded for duration of 15 minutes at a rate of 256 samples per second. High-

speed data acquisition software GLOBAL LAB was used to analyse the acquired data. It can 

simultaneously scan the accelerograms and display the readings automatically. A schematic diagram of 

the data acquisition system has been shown in Figure 2. 

 

The characteristic frequencies in each vibrational direction were determined from the peak amplitudes of 

the power spectra that were determined from spectral analysis of the recorded time histories by applying 

the Fast Hartley transform (FHT) technique. Cross-spectral analysis has been performed in order to 

identify the transverse, longitudinal and torsional modes of the buildings. In cross spectrum analysis, 

spectral density is estimated by summing up the product of FHT of the two parallel signals. Frequencies 

at which the amplitudes are positive and negative indicate the lateral modes and torsional modes, 

respectively.  Detailed discussion on AVT in identifying the frequency characteristic together with the 

mode shapes and damping of buildings can be found in Ivanovic et al. (2000). 
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Dynamic analysis of the buildings has been carried out using the methodology described above. The 

arrangements of accelerometers in the buildings have been shown in Figure 3. A typical time history 

record (of 4 minutes duration) of the Swire Building (SB) and the corresponding power spectrum have 

been shown in Figure 4(a-c). The fundamental assumption of AVT is that the inputs causing motion have 

white noise characteristics in the frequency range of interest. This assumption implies that the input loads 

are not driving the system at any particular frequency and therefore any identified frequency associated 

with signal strong response reflects structural modal response. In reality, however, some of the ambient 

disturbances may drive the structure at that frequency. In this case it appears that the disturbance is 

dominant in the frequency range 70-100 Hz (refer Figure 4b), as the expected frequency of the building is 

around 1.0 Hz. The typical power spectrum after applying a low-pass filter has been shown in Figure 4c.  

 

The measured periods from the ambient vibration tests have been summarized in Table 2 for the first 

three dynamic modes. It has been observed that the fundamental periods of the buildings are considerably 

smaller than the estimations employing the empirical formulae of the IBC and Australian standards [refer 

Table 3]. It is further noted that buildings in Hong Kong have not been engineered to resist major or even 

moderate earthquakes, although the region has been considered to be a moderate seismicity region 

[Chandler & Lam, 2002; Lam et al., 2002; Chandler et al., 2002].  Traditionally, buildings and structures 

are required to be designed for typhoon wind load ignoring the effect of earthquake. For this reason, 

buildings in Hong Kong are usually considered to be stiff when compared with similar structures from the 

United States, Australia or Europe. This may be due to the fact that tall buildings in Hong Kong are 

normally constructed of stiff structural forms rather than flexible moment resisting frames. Considering 

the average density of the building, Su et al. (2003) remarked that Hong Kong buildings are not only 

stiffer but also more massive than overseas counterparts. As the proportion of added stiffness, due to 

larger member sizes, is usually greater than the added mass, hence the fundamental period is lower for 

Hong Kong buildings. 
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4. FINITE ELEMENT MODEL CALIBRATION 

 

The computer program ETABS Non-linear 7.22 (Computers and Structures Inc., 1999) was used to 

develop finite element (FE) models for the buildings. The program can perform linear and non-linear, 

static and dynamic analyses. In ETABS, buildings are idealized as an assemblage of area, line, and point 

objects. These objects are used to represent different elements such as columns, beams, walls and slabs. 

Three dimensional mode shapes and frequencies, modal participation factors, directional factors, and 

modal effective mass factors can be evaluated by either eigenvector or Ritz-vector analysis. In this study 

the frequencies and modal effective mass factors were evaluated using eigenvector analysis. 

 

A number of assumptions were made in order to build the analytical FE model of the buildings: (i) Linear 

elastic material properties were used for 3-D modal analyses; (ii) the building masses were lumped at the 

floor levels; (iii) self weight of the elements was calculated independently from the program [refer 

below]; (iv) the base was assumed to be fixed and soil-structure interaction was neglected; (v) beam-to-

column connections were fixed (moment resisting frame assumption); (vi) shear walls and floor slabs 

were used as plate bending elements; and (vii) no rigid-offsets were used to model beam-to-beam or 

beam-to-column connections. 

 

Initially, bare frame models were developed; only the major structural elements such as primary beams, 

columns, and walls were modelled. The floor diaphragms were considered rigid in plane and flexible 

normal to the plane. Dead load and live load of each floor were calculated and lumped at the centre of 

mass of the floors. The calculated loadings were obtained from the product of member size specified in 

the drawings and their corresponding densities. As the arrangement of NSC is different in each floor, the 

mass of each floors was calculated separately. The specific grade strength of concrete fcu for all the 

structural members was assumed as 30 MPa, as mentioned above. 

 

Several modifications have been made to the bare frame model for calibration with the full frame models 

[refer Figure 5] and for comparisons with results obtained from dynamic analysis for the numerical 
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modelling of bare-frame and full-frame models. These modifications have been described in the following 

under separate sub-headings: 

 

a) Modification for elastic modulus of concrete: 

Recently Kwan et al. (2001) carried out a series of tests on the elastic modulus of normal- and high-

strength concrete and proposed the following correlation equation, which is valid for concrete strengths 

ranging from 5 to 140 MPa. 

Ec= 3.46 (fcu)1/2 +3.21                                                                                                                                  (1) 

where Ec is the elastic modulus of concrete (in GPa) and fcu is the compressive strength of concrete (in 

MPa). This equation has a correlation coefficient of 0.967 and a standard error of estimate of 2.56. 

 

According to Hong Kong construction regulations [Building (Construction) Regulations, 1996], the 

specific concrete strength has to be 5MPa higher than the design concrete strength (for concrete grade of 

20 or above). Hence the elastic modulus of concrete needs to be increased by considering the increased 

grade strength.  

 

Structural concrete is usually strengthened by the presence of reinforcement that will affect the elastic 

modulus (E) of concrete assumed in dynamic modelling. The E value of reinforced concrete (RC) may be 

estimated by  

Erc=Ec(1-ρ) +Esρ                                                                                                                                         (2) 

where Erc  is the static modulus of RC (in GPa), Es (=200 GPa) is the elastic modulus of RC, and ρ is the 

steel ratio. 

The above considerations in the prediction of the E values in RC have been incorporated into the 

modelling for the bare-frame of the building. 

 

b) Modification for NSC: 

Internal and external non-structural walls are made of concrete bricks or concrete blocks in the SB case 

study; concrete infills are of grade 20 concrete in the TTT case study; and dry walls made of autoclave 

aerated concrete (AAC) in the THB case study.  Properties of concrete bricks and blocks may vary 
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depending on the manufacturer.  Lau (2003) conducted an experimental study for the mechanical 

properties of common types of concrete bricks and blocks and concluded that their average density was 

2000 kg/m3, compressive strength 11.5 MPa, modulus of elasticity 8 GPa and Poisson’s ratio 0.15.  AAC, 

commonly known as drywall, is manufactured from sand, lime, PFA, cement, water and aluminum 

powder. Composed of calcium silicate hydrates, AAC is very porous and has average density in the order 

of 550 kg/m3, compressive strength 5.0 MPa, and modulus of elasticity 2.0 GPa. 

 

All the external and internal non-structural walls, parapet walls, and precast-façade walls have been added 

to the bare frame models. 

 

c) Modification for secondary beams 

Usually in bare-frame models, secondary beams are ignored and hence the contributions of such beams to 

the total building lateral stiffness have been neglected. Although the contributions to stiffness from such 

beams may be small, ignoring such contributions may lead to some underestimation of the building 

stiffness. Secondary beams have been identified from working drawings and incorporated into the 

analytical model of the building. 

 

d) Modification for flexible floor diaphragms 

Building models of high-rise buildings often adopt the rigid-floor diaphragm assumption for the entire 

floor slab. When such an assumption is made, the flexural stiffness of the floor slabs is usually ignored in 

the analysis. This assumption may be reasonable for framed structures consisting of beams and columns, 

but not for shear-wall structures in which the structural walls have a lateral stiffness comparable to that of 

the floor diaphragm (Boppana & Naeim, 1985). Increasing the flexural stiffness of the floor slabs would 

increase the degree of coupling with the shear wall panels, and hence the overall lateral stiffness of the 

structure. This influence from the wall-slab coupling increases with the number of storeys in the building 

(Lee & Kim, 2000; Lee et al., 2002). Ignoring contributions from the floor slabs in flexure could result in 

the lateral stiffness of the building being significantly underestimated. The underestimation in the 

building stiffness could result in the natural period of the building being overstated significantly. To 

 11



account for the stiffness contributions from the floor slabs in flexure, flexible slab elements have been 

incorporated into the analytical model of the building. 

 

To quantify the effects of the above modifications, six analytical models have been developed for each of 

the case study buildings. These analytical models are:  

(a) initial bare frame model;  

(b)  bare frame model which accounts for modifications to the E value;  

(c)  bare-frame model as for (b) but with contributions from the NSC incorporated ;  

(d)  bare-frame model as for (b) but with contributions from the secondary beams incorporated ; 

(e)  bare-frame model as for (b) but with contributions from the floor slabs incorporated ; 

(f)   full-frame model which has accounted for all the modifications. 

 

The resulting periods for the first three modes obtained from eigenvalue analysis have been listed in Table 

4. The distinction between modes was based on the modal direction factors (Computers and Structures 

Inc., 1999). It can be observed that, from Column 7 and Column 8 of Table 4, analytical results for lateral 

periods differ from the experimental investigation results by only 2 to 4%. Hence the numerical modelling 

can be considered as an accurate representation of the actual building. 

 

An important observation from the results of numerical modelling is that the natural periods of the bare 

frame model, for the three tall buildings considered here, are much higher than the full frame model. In all 

cases, except the torsional mode in the THB building, the differences are more than 100%, and for the 

torsional mode in TTT building the difference reaches 342%. Hence it can be concluded that the natural 

period of the building could be grossly over-estimated by analyses using the "initial bare-frame" model 

described above. The over-estimating of the natural period of the building would accordingly result in the 

under-estimation of the design seismically induced inertia forces and base shear. 
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5. DETERMINATION OF EFFECTIVE LATERAL STIFFNESS 

 

The effective lateral stiffness of the building can be determined in accordance with the calculated 

effective mass and the fundamental natural frequency (or natural period) of the building, based on the 

idealisation of a lightly damped single degree of freedom system using Eq.3: 

K=Me(2πf)2                                                                                                                                                  (3) 

where Me is the effective mass (which can be calculated from modal participation mass factor) and f is the 

fundamental natural frequency of the building. Values of the stiffness have been calculated for each 

modification. By comparing the modifications, the contributions from each component has been 

calculated and expressed as the proportion of the total stiffness of the building [refer Table 5]. 

 

It can be observed from Figure 6 that the bare frame model for the Swire building (SB) accounts for only 

22% of the total lateral stiffness of the building in the X-direction, and only 11% in the Y-direction. The 

highest contributions to stiffness are from the NSC, which are built of concrete bricks for this building. 

The contributions from the NSC amount to 61% in the lateral X-direction and 82% in the Y-direction. 

The reason for this directional difference is due to the fact that larger numbers of NSC are contained in 

the direction parallel to the Y-axis. Bertero and Brokken (1983) reported that infill walls made of hollow 

concrete bricks and concrete blocks increase the stiffness of bare frame models between 366% and 994%. 

In the light of these findings, the stiffness contributions by NSC in the SB case study seem plausible. 

 

The bare frame model in the T. T. Tsui (TTT) building case study accounts for only 9% of the total lateral 

stiffness of the building in the X-direction, and 11% in the Y-direction. As this building is mainly a 

framed structure with a core-wall located on one side of the building, the stiffness of the bare frame, 

which is mainly a beam-column frame, is rather low compared with the other two buildings studied. A 

significant increase in stiffness arising from the NSC has been observed, 87% in the lateral X-direction 

and 83% in the lateral Y-direction. The NSC comprises mainly concrete walls of grade 20 located at the 

periphery of the building frame. These non-structural walls basically formed a tubular structure within the 

TTT building and hence resulted in a significant increase in both the lateral and torsional stiffnesses. 
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Chaker & Cherifati (1999) also reported similar contributions from non-structural walls to the framed 

structure, and pointed out the fallacy of treating these infill panels as “non-structural’ components. 

 

The bare frame model in the THB case study accounts for approximately 25% of the total lateral stiffness 

of the building in the two orthogonal directions. Since the lateral stiffness of the THB bare frame model 

was derived mainly from shear walls, stiffness contributions from the bare frame model is the highest of 

all three buildings considered. Contributions from the NSC account for approximately 22% of the total 

lateral stiffness of the building, which is the least amongst all three buildings. In the THB building, the 

NSC mainly comprise dry walls that have been used as partition walls in the kitchen, wash rooms and 

walls at the corridor near the lift lobby. The modulus of elasticity of these dry walls is only 2 GPa. 

Memari et al. (1999) also found that the increase in building stiffness due to dry walls (ACC block walls) 

is substantially smaller than would be for the case of clay brick walls or concrete block walls. Another 

interesting observation is that stiffness contributions from flexible floor slabs account for 40% of the total 

lateral stiffness of the building (which is much higher than the other two case study buildings). The 

thickness of the floor slabs in the THB building is around 170 mm in living areas and 300 mm in 

corridors, which is again much higher than the other case study buildings. Lee et al. (2002) discussed the 

stiffness of floor slabs of the box-system structure composed of only RC walls and slabs and compared it 

with the frame structure. They concluded that the effect of the flexural stiffness of slabs on the lateral 

response of the shear wall structure is relatively significant, especially in taller buildings and in buildings 

with irregular arrangement of shear walls. Ignoring the effect of flexural stiffness of the slabs for this type 

of structure implies that the lateral displacement may be overestimated and the seismic loads given by the 

building code base shear may be significantly underestimated. 

 

6.  DISCUSSION AND CONCLUDING REMARKS 

The results of ambient vibration tests and FE computer analysis provide a basis for a better understanding 

of the dynamic characteristics of buildings. The lateral load resistance of the three tall buildings 

considered herein comprise a frame structure, a frame-wall structure and a shear wall structure.  These 

three types of structural systems represent most of tall buildings existing in Hong Kong and elsewhere.  
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The principal objective of the work presented in this paper is to evaluate the stiffness contributions from 

NSC to the total stiffness of the building. Ambient vibration tests have been carried out to estimate the 

fundamental mode of vibration. Although several modes of vibration have been identified, only the first 

three modes have been presented here, as it has been considered sufficient for the purpose of the study. As 

the ambient vibration tests have been conducted only for the fundamental natural periods, and not for the 

mode shapes, details of the stiffness properties of the building, cannot be inferred from this experimental 

study. 

 

The natural periods estimated by the calibrated FE models of the full frame building and those measured 

from the ambient vibration tests were in remarkable agreement (with discrepancies of only 2-4%). Hence, 

the full frame model can be considered as representative of the true behaviour of the building [refer Table 

4]. Several modifications have been made to the initial bare frame model in developing the respective full 

frame model for each case study building. Computer modelling of the NSC (partition walls, external 

walls, parapet walls, and pre-cast façade walls) have been conducted to estimate the effect of these 

components on the total lateral stiffness of the buildings.  

 

As shown in Table 6, the bare frame model has been found to contribute as little as 9% to the total lateral 

stiffness of a tall building. The highest stiffness contributions from the bare frame has been found in the 

case study of the shear wall structure. Even then, this contribution accounts for only 25% of the total 

lateral stiffness of the building. In addition, other sources of stiffness, such as contributions from the 

modified E-value of the RC, secondary beams and floor slabs, have been considered in the comparative 

study. 

 

The stiffness of full-frame models has been found to be 4-11 times that of bare-frame models [refer 

Table-6], which is consistent with the results shown in Table 1. The directional difference of stiffness 

ratio between bare-frame and full-frame models for SB is due to the fact that NSC are more numerous in 

the direction parallel to the Y-axis. The stiffness ratio has been observed to be the highest for TTT. The 

NSC in this building are mainly concrete walls of grade 20 located at the periphery of the building frame, 

 15



forming a tubular structure which has lateral and torsional stiffnesses much higher than the initial bare 

frame of the building. 

 

The extent of stiffness contributions from the NSC to the total lateral stiffness of the buildings has been 

found to depend on the structural form and the type of NSC (material type). NSC have been found to 

contribute as much as 87% to the total lateral stiffness of the building. Stiffness contributions from NSC 

have been found to be larger in framed structures than in shear wall structures. Drywalls have been found 

to contribute less to lateral stiffnesses than infilled concrete walls or concrete block/brick walls. 

 

Commercial software, such as ETABS (Computers and Structures Inc., 1999), commonly used for FE 

analysis of high-rise buildings, assumes a rigid diaphragm for floor slab implying that their flexural 

stiffness has been ignored. This could lead to a gross underestimation of the total lateral stiffness of the 

building, especially for shear wall structures with thick floor slabs. For the THB building the contribution 

of the flexible floor slabs has been found to be around 40%. 

 

The overall influence of NSC components on the potential seismic performance of a building is difficult 

to generalise as the influence would depend a great deal on detailing and load transmission paths within 

the building. The displacement demand on the building would normally be decreased, and displacement 

controlled actions (eg. storey drifts) mitigated accordingly. However, force controlled actions (eg. column 

shear and joint shear) could be accentuated by the decrease in the natural period, and hence increase in 

base shear, of the building. This study enlightens our appreciation on how poorly the true dynamic 

behaviour of a building could be represented by contemporary analytical modelling. The modelling 

difficulties demonstrated in this paper have not even included the effects of stiffness and strength 

deterioration, which are equally as complex and difficult to predict. 

 

Significantly, seismic hazard is currently expressed in terms of the elastic response spectrum, which is 

under-pinned by the notion that the natural period of a building is well defined and can be determined a 

priori with good accuracy.  Thus, this study not only highlights shortcomings in the current methods of 
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modelling a building, but also prompts a critical review of the current seismic design and risk evaluation 

methodology as a whole. 
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   Table 1: Effect of infill walls on RC buildings/frames 
 
 

Building/Frame model Literature 
Reference 

Type of Investigation 

 No. of 
storeys 

Scale 

Ratio of 
stiffness 
[infilled 

frame/bare 
frame] 

Ratio of 
lateral 

resistance 
(strength) 
[infilled 

frame/bare 
frame] 

Bertero & 
Brokken 
(1983) 

Analytical & 
Experimental (quasi-
static cyclic and 
monotonic load test) 

Lower 3-1/2 stories 
of 3-bay RC frame 
(infilled in the outer 
two bays) 

11 0.33 3.5~11.7 4.8~5.8 

Shing et al. 
(1994) 
 
and  
 
Mehrabi et 
al. (1996)  

Analytical (simple 
analytical and 
inelastic FE analysis) 
and Experimental 
(cyclic and 
monotonic load test) 

 Single bay frame 
(infilled with hollow 
and solid masonry 
panels) 

1 0.5 ~15 (weak 
frame-
weak 
panel) 
 
~50 (weak 
frame-
strong 
panel) 

~1.5 (weak 
frame-
weak 
panel) 
 
~2.3 (weak 
frame-
strong 
panel) 

Negro and 
Verzeletti 
(1996) 

Experimental (pseudo 
dynamic tests) 

RC building (only 
two external frames 
are infilled with 
hollow brick masonry 
panels) 

4 1(full) ~2.6 ~1.6 

Chaker and 
Cherifati 
(1999) 

Analytical & 
Experimental 
(vibration 
measurement) 

Two adjacent RC 
buildings (infilled 
with hollow clay 
brick panels) 

3 1(full) ~7 Not 
evaluated 

Yong Lu 
(2002) 

Analytical  
(Numerical analysis) 
& Experimental 
(earthquake 
simulation tests) 

Four three bay 
framed structures 
(partially infilled with 
masonry panels)  

6 0.18 > 1.2 > 1.2 

Lee and 
Woo 
(2002) 

Experimental 
(earthquake 
simulation test and 
pushover test) 

 2-bay RC frame 
(infilled with 
masonry panels) 

3 0.2 5.6 4.0 
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Table 2: Results of ambient vibration tests 
 
 
Building Mode Number Period (sec) Vibration Direction 

1 0.60 X-Translation 
2 0.57 Y-Translation 

 
Swire Building (SB) 

3 0.42 Torsion 
1 0.58 Y-Translation 
2 0.56 X-translation 

 
T. T. Tsui Building (TTT) 

3 0.38 Torsion 
1 1.54 Torsion 
2 1.39 Y-Translation 

 
Typical Harmonly Block 
Building (THB) 3 1.28 X-Translation 
 
 
 
 
 
 
Table 3: Comparison of fundamental lateral period (sec) with the code-based 
formulations 
 
 
Building Height (m) Experimental Result IBC-2000 

(T=0.073H3/4) 
Australian Standard 
[AS1170.4 (1993)] 

(T=0.0217H) 
SB 51.25 0.60 (Y-Translation) 1.40 1.11 
TTT 52.84 0.58 (Y-Translation) 1.43 1.15 
THB 112.7 1.39 (X-Translation) 2.53 2.45 
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Table 4: Results of numerical FE modelling  
 
 
a) Swire Building (SB) 
 

Vibration period (sec) 
Building Models 

Vibration 
Direction 

(a) Bare 
Frame 

(b) (c) (d) (e) (f) Full 
frame* 

Test 
Result 

X-Translation 
 

1.22 1.06 0.61 1.04 0.94 0.58 
(4%) 

0.60 
 

Y-Translation 
 

1.59 1.37 0.57 1.37 1.23 0.56 
(3%) 

0.57 
 

Torsion 
 

0.97 0.84 0.47 0.84 0.75 0.45 
(6%) 

0.42 
(6%) 

 
 
 
b) T. T. Tsui Building (TTT) 
 

Vibration period (sec) 
Building Models 

Vibration 
Direction 

(a) Bare 
Frame 

(b) (c) (d) (e) (f) Full 
frame* 

Test 
Result 

X-Translation 
 

1.88 1.63 0.57 1.62 1.57 0.55 
(2%) 

0.56 

Y-Translation 
 

1.51 1.32 0.59 1.30 1.25 0.59 
(1%) 

0.58 

Torsion 
 

1.61 1.40 0.37 1.40 1.33 0.36 
(5%) 

0.38 

 
 
 
c) Typical Harmony Block Building (THB) 
 

Vibration period (sec) 
Building Models 

Vibration 
Direction 

(a) Bare 
Frame 

(b) (c) (d) (e) (f) Full 
frame* 

Test 
Result 

X-Translation 
 

2.61 
 

2.33 1.57 2.01 1.52 1.25 
(-2%) 

1.28 

Y-Translation 
 

2.77 2.47 1.67 2.31 1.62 1.38 
(-1%) 

1.39 

Torsion 
 

2.62 2.34 1.92 2.23 1.97 1.55 
(0%) 

1.54 

 
*  Values in () represent the percentage difference between the full frame model and the test result. 
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Table 5: Contributions to lateral stiffness arising from different sources 
 
 
a) Swire Building (SB) 
 
 
Building Model Vibration Direction Period 

(sec) 
Modal 
Participation Mass 
ratio (%) 

Stiffness 
Contributed (% 
of total stiffness) 

X-Translation 1.22 51.2 21.6 Bare Frame 
(Model a) Y-Translation 1.59 53.0 10.5 

X-Translation 1.06 51.0 6.9 Modified E-value 
(Model b-Model a) Y-Translation 1.37 53.0 3.6 

X-Translation 0.61 52.0 61.1 NSC 
(Model c-Model b) Y-Translation 0.57 62.9 81.9 

X-Translation 1.04 51.2 1.6 Secondary Beam 
(Model d- Model b) Y-Translation 1.37 53.1 0.2 

X-Translation 0.94 51.7 8.8 Flexible floor slabs 
(Model e- Model b) Y-Translation 1.23 54.3 3.8 

X-Translation 0.58 52.0 100.0 Full Frame 
(Model f) Y-Translation 0.56 62.8 100.0 

 
 
 
b) T.T. Tsui Building (TTT) 
 
Building Model Vibration Direction Period 

(sec) 
Modal 
Participation Mass 
ratio (%) 

Stiffness 
Contributed    (% 
of total stiffness) 

X-Translation 1.88 68.5 9.0 Bare Frame 
(Model a) Y-Translation 1.51 53.1 11.1 

X-Translation 1.63 67.8 2.8 Modified E-value 
(Model b-Model a) Y-Translation 1.32 49.2 2.4 

X-Translation 0.57 69.4 86.8 NSC 
(Model c-Model b) Y-Translation 0.59 70.8 82.8 

X-Translation 1.49 67.8 0.1 Secondary Beam 
(Model d- Model b) Y-Translation 1.24 48.5 0.2 

X-Translation 1.57 70.2 1.3 Flexible floor slabs 
(Model e- Model b) Y-Translation 1.25 55.6 3.5 

X-Translation 0.55 71.1 100.0 Full Frame 
(Model f) Y-Translation 0.59 70.8 100.0 
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Table 5 (cont’d) 
 
c) Typical Harmony Block Building (THB) 
 
Building  Vibration Direction Period 

(sec) 
Modal 
Participation Mass 
ratio (%) 

Stiffness 
Contributed (% 
of total stiffness) 

X-Translation 2.61 67.7 24.0 Bare Frame 
(Model a) Y-Translation 2.77 66.7 25.0 

X-Translation 2.33 67.8 6.2 Modified E-value 
(Model b-Model a) Y-Translation 2.47 66.8 6.5 

X-Translation 1.57 53.7 22.4 NSC 
(Model c-Model b) Y-Translation 1.67 52.1 22.5 

X-Translation 2.01 63.3 7.7 Secondary Beam 
(Model d- Model b) Y-Translation 2.31 62.3 6.4 

X-Translation 1.52 66.6 39.6 Flexible floor slabs 
(Model e- Model b) Y-Translation 1.62 64.9 39.7 

X-Translation 1.25 58.8 100 Full Frame 
(Model f) Y-Translation 1.55 57.1 100 

 
 
 
 
 
 
 
 
 
Table 6: Comparison of stiffness between bare-frame and full-frame models 
 
 

Building Model Vibration 
Direction 

Ratio of stiffness 
(full-frame/bare-frame) 

X-Translation 4.6 Swire Building (SB) 
Y-Translation 9.5 
X-Translation 11.1 T. T. Tsui Building (TTT) 
Y-Translation 9.0 
X-Translation 4.2 Typical Harmonly Block 

Building (THB) Y-Translation 4.0 
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Figure1: Typical Floor Plans and Elevations of Buildings: (a) Swire Building (SB), (b) 
TT Tsui Building (TTT), and (c) Typical Harmony Block Building (THB) 
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Figure 2: Schematic diagram of data acquisition system for ambient vibration testing   
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Figure 3:  Arrangement of accelerometers in the buildings (a) Swire Building, (SB) (b) 
TTTsui Building (TTT), (c) Typical Harmony block building (THB) 
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Figure 4a: Typical accelerometer time history for Swire Building SB (4 minutes 
duration) 
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Figure 4b: Power spectrum of the time history without low pass filter 
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Figure 4c: Power spectrum of the time history after applying low pass filter of 10 Hz. 
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  Figure 5: Numerical models (bare-frame and full-frame) of the buildings 
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Figure 6: Stiffness contributions arising from different sources 
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