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Transient response of coplanar interfacial cracks between 

two dissimilar piezoelectric strips under anti-plane 

mechanical and in-plane electrical impacts 

 R. K. L. Su∗, W. J. Feng, J. X. Liu, Z.Z. Zou 

Summary The linear piezoelectricity theory is applied to investigate the dynamic 

response of two coplanar interface cracks between two dissimilar piezoelectric strips 

subjected to the mechanical and electrical impacts. Two kinds of electric boundary 

conditions on crack surfaces, i.e. electric impermeable and electric permeable, are 

adopted. Laplace and Fourier transforms and dislocation density functions are 

employed to reduce the mixed boundary value problem to Cauchy singular integral 

equations in Laplace transform domain, which are solved numerically. Numerical 

results show the effects of electrical load, geometry criterion of piezoelectric strips, 

relative crack position and material property parameter on dynamic stress intensity 

factor and/or energy release rate.  

Keywords coplanar interface cracks, dissimilar piezoelectric strips, singular integral 

equations, dynamic stress intensity factor, dynamic energy release rate 

1 Introduction 
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Due to the intrinsic coupling characteristics between electric and elastic behaviors, 

piezoelectric materials have been used widely in technology such as transducers, 

actuators, sensors, etc. Studies on electroelastic problems of a piezoelectric material 

with cracks in the framework of the theory of piezoelectricity were initiated by Parton 

[1] and Deeg [2]. Since their pioneering works, the problem of the determination of 

electroelastic field under different boundary conditions was investigated by a number 

of researchers and has become the topic of intensive research in recent years. 

  The dynamic response problem of mechanical and electrical behaviors in a 

piezoelectric material under various time-dependent loads is of great importance in 

some practical applications such as in the detection of ultrasonic waves and has 

recently received much attention. Great progress in this area has been made, for 

example, fundamental solutions and general solutions of dynamic piezoelectricity 

equations for piezoelectric materials were solved in Khutoryansky and Sosa [3] and 

Ding et al. [4], respectively. The dynamic fracture of piezoelectric materials has been 

investigated in the quasielectrostatic approximation by Dascalu and Maugin [5], who 

obtained asymptotic expressions for crack-tip field by using a complex-variable 

approach and, in particular, determined the crack-tip trajectory by numerically solving 

a resulting differential equation for a mode-III crack of finite length extending 

symmetrically along the crack line. Li and Mataga [6], [7] studied a pair of 

concentrated longitudinal shear loads that suddenly act on the crack surfaces and 

move at constant velocity along the crack surface far away from the crack tip, and 

derived the dependence of the field intensity factors and the energy release rate on the 
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moving velocity for an electrode crack and a vacuum crack, respectively. For a 

piezoelectric medium or a piezoelectric strip containing an impermeable finite crack 

or two coplanar cracks subjected to impact loads, numerical stress intensity factors 

have been determined by the numerical solution of a Fredholm integral equation [8]-

[11]. Wang and Yu [12] studied the mode-III problem of a crack in piezoelectric strip 

subjected to the mechanical and electrical impacts by solving numerically resulting 

Cauchy integral equations. Wang et al. [13] investigated the multiple impermeable 

crack problem for multilayered piezoelectric materials, and gave some numerical 

results under purely mechanical or electrical load, and Kwon and Lee [14] analyzed 

the transient response of a rectangular piezoelectric body with a center crack. 

Recently, Li [15] and Li and Fan [16] investigated the transient response of a 

piezoelectric material with a semi-infinite impermeable mode-III crack under impact 

loads and the problem of a through permeable crack situated in the mid-plane of a 

piezoelectric strip under anti-plane impact loads, respectively. For scattering of 

incident waves from the crack, Shindo et al. [17], and Narita and Shindo [18] 

investigated, respectively, the scattering of Love waves by an edge crack in 

piezoelectric layered media, and the dynamic response of a cracked dielectric medium 

in a uniform electric field. Wang and Yu [19] analyzed the scattering of SH waves by 

an arc-shaped crack between a cylindrical piezoelectric inclusion and matrix, and 

obtained the corresponding scattered far field pattern and scattered cross section. 

 In this paper, we study the transient response of two coplanar interface cracks 

between two dissimilar piezoelectric strips subjected to anti-plane mechanical and 
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electrical impacts under two different crack surface conditions. In the first case, the 

cracks are impermeable for electric fields with the surface condition as [20]  

0== −+
nn DD ,   (1) 

and in the second case, the cracks are permeable for electric fields with the surface 

condition as [1] 

−+ = nn DD ,  ,  (2) −+ = φφ

where  is the electric displacement in the direction normal to the crack surface, and nD

φ  denotes the electric potential. Integral transforms and dislocation density functions 

are used to reduce the problem to singular integral equations that can be solved 

numerically.  

2. Basic equations 

Consider two mode-III Griffith cracks of the same length along the interface between 

two bonded transversely isotropic piezoelectric strips occupying  and 

, respectively, with their basal planes perpendicular to the 

10 hy <<

02 <<− yh z axis, as 

shown in Fig. 1. The cracks are located along the x axis from b−  to  and from  

to b . The antiplane shear impact and the electric displacement impact are imposed on 

the crack surfaces at . In this case, only the out-of-plane elastic displacements 

and the in-plane electric field are non-zero, that is 

a− a

0=t

0)()( == jyjx uu ,    ,    ( )tyxwu jjz ,,)()( = 2,1=j , (3) 

( )tyxEE jxjx ,,)()( = ,    ( )tyxEE jyjy ,,)()( = ,    0)( =jzE ,    2,1=j , (4) 
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where the quantities with the subscript ( )j , 2,1=j  denote the corresponding 

quantities in the upper and lower strips, respectively. ( )zyx uuu ,,  and ( )zyx EEE ,,  are 

the components of the displacement and the electric field vectors, respectively, and 

 are related to the electric potential iE ( zyxi ,,= ) φ  as iiE ,φ−= . The constitutive 

relations are as follows: 

yeywc jjjjjzy ∂∂+∂∂= )()(15)()(44)( φσ  ,   2,1=j , (5) 

yyweD jjjjjy ∂∂−∂∂= )()(11)()(15)( φε ,    2,1=j , (6) 

where )1(φ  and )2(φ  denote the electric potentials in the upper and lower strips, 

respectively, )( jzyσ  and  are the corresponding stress and electric displacements, 

respectively, and , 

)( jyD

)(44 jc )(11 jε ,  are the elastic, the dielectric and the piezoelectric 

constants, respectively. The governing equations of dynamic antiplane piezoelectricity 

are 

)(15 je

2
)(

2

)()(
2

)(15)(
2

)(44 t
w

ewc j
jjjjj ∂

∂
=∇+∇ ρφ  ,   2,1=j ,  (7) 

0)(
2

)(11)(
2

)(15 =∇−∇ jjjj we φε ,    2,1=j ,   (8) 

where  is the two-dimensional Laplace operator, i.e. 2∇ 22222 yx ∂∂+∂∂=∇ .  

 The boundary conditions for the impermeable case are 

( )tHtxtx zyzy 0)2()1( ),0,(),0,( τσσ −== ,    bxa << ,  (9) 

( )tHDtxDtxD yy 0)2()1( ),0,(),0,( −== ,    bxa << , (10) 

),0,(),0,( )2()1( txwtxw = ,            axo ≤≤ ,   bx ≥ , (11) 

),0,(),0,( )2()1( txtx φφ = ,             axo ≤≤ ,   bx ≥ , (12) 

),0,(),0,( )2()1( txtx zyzy σσ = ,    +∞<<∞− x , (13)  

),0,(),0,( )2()1( txDtxD yy = ,    +∞<<∞− x , (14) 
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0),,( 1)1( =thxzyσ ,       +∞<<∞− x ,  (15)  

0),,( 2)2( =− thxzyσ ,    +∞<<∞− x ,  (16)  

0),,( 1)1( =thxDy ,      +∞<<∞− x ,  (17)  

0),,( 2)2( =− thxDy ,    +∞<<∞− x ,  (18)  

where  denotes the Heaviside unit step function. For the electric permeable case , 

the boundary conditions become 

( )tH

( )tHtxtx zyzy 0)2()1( ),0,(),0,( τσσ −== ,    bxa << , (19) 

),0,(),0,( )2()1( txwtxw = ,            axo ≤≤ ,   bx ≥ , (20) 

),0,(),0,( )2()1( txtx zyzy σσ = ,    +∞<<∞− x , (21)  

),0,(),0,( )2()1( txtx φφ = ,          +∞<<∞− x ,  (22) 

),0,(),0,( )2()1( txDtxD yy = ,    +∞<<∞− x , (23)  

0),,( 1)1( =thxzyσ ,       +∞<<∞− x ,  (24)  

0),,( 2)2( =− thxzyσ ,    +∞<<∞− x ,  (25)  

0),,( 1)1( =thxDy ,       +∞<<∞− x ,  (26)  

0),,( 2)2( =− thxDy ,    +∞<<∞− x ,  (27)  

and the electric displacements on the crack surfaces  consist of two parts, 

the imposed  and the unknown caused by 

),0,()( txD jy

( )tHD0− ( )tH0τ− . 

 Introduce Laplace transform as follows: 

( ) ( ) ( )∫
+∞

−=
0 )(

*
)( exp,,,, dtpttyxwpyxw jj ,   (28) 

( ) ( ) ( )∫
+∞

−=
0 )(

*
)( exp,,,, dtpttyxpyx jj φφ ,  (29) 

( ) ( ) ( )∫=
Br jj dpptpyxw

i
tyxw exp,,

2
1,, *

)()( π
, (30) 

( ) ( ) ( )∫=
Br jj dpptpyx

i
tyx exp,,

2
1,, *

)()( φ
π

φ , (31) 
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in which Br denotes the Bromwich path of integration. Noting that both  and )( jw )( jφ  

are even functions with respect to variable x , the Fourier cosine transforms are 

applied to give the solutions as  

( ) ( ) ( ) ( ) ( )[ ] ( )∫
∞+

+−=
0 )()()()(

*
)( cosexp,exp,2,, dssxypsBypsApyxw jjjjj αα

π
, , 2,1=j

    (32) 

( ) ( )

( ) ( ) ( ) ( )[ ] ( )∫
∞+

+−+

=

0 )()(

*
)(

)(11

)(15*
)(

,cosexp,exp,2

,,,,

dssxsypsDsypsC

pyxw
e

pyx

jj

j
j

j
j

π

ε
φ

2,1=j ,   (33) 

where  , ,  and  are the unknowns to be solved and )( jA )( jB )( jC )( jD

2
)(

2
2

)(
jT

j c
ps +=α ,    

)(

)(44
)(

~

j

j
jT

c
c

ρ
= ,    )(11

2
)(15)(44)(44

~
jjjj ecc ε+= .  (34) 

 We proceed with the impermeable case. In Laplace transform domain, defining 

dislocation functions as 

( ) ( ) ( )
⎪⎩

⎪
⎨
⎧

∞<≤≤≤
<<−

=Δ
,,0,0

,,,0,,0,
,

*
)2(

*
)1(*

xbax
bxapxwpxw

pxw  (35) 

( ) ( ) ( )
⎪⎩

⎪
⎨
⎧

∞<≤≤≤
<<−

=Δ
,,0,0

,,,0,,0,
,

*
)2(

*
)1(*

xbax
bxapxpx

px
φφ

φ  (36) 

we obtain from Eqs. (11) and (12)  

),(),0,(),0,( **
)2(

*
)1( pxwpxwpxw Δ=− ,     +∞<<∞− x , (37) 

),(),0,(),0,( **
)2(

*
)1( pxpxpx φφφ Δ=− ,      +∞<<∞− x ,  (38) 

Substituting Eqs. (32) and (33) into Eqs. (5) and (6) and using Eqs. (13)-(18), (37) and 

(38), we have 
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( )
( )⎪

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

Δ
Δ

=

⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

ps
psw

D
C
B
A
D
C
B
A

aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa

,
,

0
0
0
0
0
0

*

*

)2(

)2(

)2(

)2(

)1(

)1(

)1(

)1(

8887868584838281

7877767574737271

6867666564636261

5857565554535251

4847464544434241

3837363534333231

2827262524232221

1817161514131211

φ

, (39) 

where , which are given in  Appendix A, are knowns related to  and , and ija s p *wΔ  

and *φΔ are Fourier cosine transforms of  and , respectively. According to 

the Cramer’s rule, we get 

*wΔ *φΔ

( ) ( ) ( ) ( ) ( )
( )ps

pspspswps
psA

,
,,,,

,
*

81
*

71
)1( Δ

ΔΔ+ΔΔ
=

φ , (40)  

( ) ( ) ( ) ( ) ( )
( )ps

pspspswps
psB

,
,,,,

,
*

82
*

72
)1( Δ

ΔΔ+ΔΔ
=

φ ,   (41) 

( ) ( ) ( ) ( ) ( )
( )ps

pspspswps
psC

,
,,,,

,
*

83
*

73
)1( Δ

ΔΔ+ΔΔ
=

φ , (42)  

( ) ( ) ( ) ( ) ( )
( )ps

pspspswps
psD

,
,,,,

,
*

84
*

74
)1( Δ

ΔΔ+ΔΔ
=

φ ,  (43) 

where  is the determinant of the coefficient matrix of equation system (39), 

and , , , 

( ps,Δ )

( )ps,71Δ ( )ps,72Δ ( )ps,73Δ ( )ps,74Δ , ( )ps,81Δ , ( )ps,82Δ ,  and 

 are respectively the corresponding algebra cofactors when applying the 

Cramer’s rule. 

( ps,83Δ )

)( ps,84Δ

3. Singular integral equations and solutions 

Substituting Eqs. (32) and (33) into Eqs. (5) and (6) in Laplace transform domain and 

using Eqs. (9), (10), (40) to (43), we have 
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( ) ( ) ( ) ( ) ( )
( ) ( )∫

∞+
−=

Δ
Δ+Δ

=
0

0
*

12
*

11* cos
,

,,,,2,0,
p

dssx
ps

pspsPpswpsPpxzy
τφ

π
σ ,  (44) 

( ) ( ) ( ) ( ) ( )
( ) ( )∫

∞+
−=

Δ
Δ+Δ

=
0

0
*

22
*

21* cos
,

,,,,2,0,
p

D
dssx

ps
pspsPpswpsPpxDy

φ
π

, (45) 

where  

( )ps
aaaa

P iiii
i ,

744733722711
1 Δ

Δ+Δ+Δ+Δ
= ,   ( )2,1=i , (46) 

( )ps
aaaa

P iiii
i ,

844833822811
2 Δ

Δ+Δ+Δ+Δ
= ,  ( )2,1=i . (47) 

Substituting ( )psw ,*Δ , ( ps,*φΔ )  for ( )pvw ,*Δ , ( )pv,*φΔ , and using Eqs. (35) and 

(36), we can obtain the following singular integral equations in Laplace transform 

domain by by-part integration. 

( ) ( )

( ) ( ) ( ) ( )[ ] ,,,,,,,,1

,1,1

0
1211

1211

bxa
p

dvpvgpxvQpvfpxvQ

dvpvg
xv

dvpvf
xv

b

a

b

a

b

a

<<−=++

−
+

−

∫

∫∫
τ

π

γ
π

γ
π  (48) 

( ) ( )

( ) ( ) ( ) ( )[ ] ,,,,,,,,1

,1,1

0
2221

2221

bxa
p

D
dvpvgpxvQpvfpxvQ

dvpvg
xv

dvpvf
xv

b

a

b

a

b

a

<<−=++

−
+

−

∫

∫∫

π

γ
π

γ
π  (49) 

where ( ) ( )
dv

pvwdpvf ,,
*Δ

=  and ( ) ( )
dv

pvdpvg ,,
*φΔ

=  are called dislocation density 

functions, and ijγ  and  are, for conciseness, all given in Appendix B.  ( pxvQij ,, )

 Introducing two nondimensional variables η  and ς   

22
ababv +

+
−

= η ,           
22

ababx +
+

−
= ς , (50) 

Eqs. (48) and (49) become 
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( ) ( )

( ) ( ) ( ) ( )[ ] ,1,,,,~,,,~1

,1,1

01

1 1211

1

1
121

1
11

<−=++

−
+

−

∫

∫∫

−

−−

ς
τ

ηηςηηςη
π

ηη
ςη

γ
π

ηη
ςη

γ
π

p
dpGpQpFpQ

dpGdpF
 (51) 

( ) ( )

( ) ( ) ( ) ( )[ ] ,1,,,,~,,,~1

,1,1

01

1 2221

1

1
221

1
21

<−=++

−
+

−

∫

∫∫

−

−−

ςηηςηηςη
π

ηη
ςη

γ
π

ηη
ςη

γ
π

p
D

dpGpQpFpQ

dpGdpF
 (52) 

where ( )pF ,η , ( )pG ,η  and ( pQij ,, )~ ςη  are also given in Appendix B. 

 Recalling that ( )pF ,η  and ( )pG ,η  represent the derivatives of the displacement 

and electric potential differences with respect to v , the single-valued conditions of 

Eqs. (51) and (52) may be expressed as  [21]  

( ) 0,
1

1
=∫− ηη dpF ,  (53) 

( ) 0,
1

1
=∫− ηη dpG .  (54) 

 So far, the Cauchy singular integral Eqs. (51) and (52) and the single-valued 

conditions (53) and (54) have been derived. The general theory of singular integral 

equations shows that ( pF , )η  and ( )pG ,η  have 21−  singularity at  [22]. Letting 1±

( ) ( )
21

,,
η

ηη
−

=
pRpF ,   (55) 

( ) ( )
21

,,
η

ηη
−

=
pVpG ,  (56) 

and expanding ( )pR ,η , ( pV , )η  in forms of Chebyshev polynomials 

( ) ( ) (∑
∞

=

=
0

,
i

ii TpCpR ηη )

)

,  (57) 

( ) ( ) (∑
∞

=

=
0

,
i

ii TpDpV ηη ,  (58) 
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a system of linear algebraic equations can be obtained by using Gauss-Chebyshev 

formula [23]: 

( ) ( ) ( ) ( )
pN

pV
Q

N
pR

Q
N

j

j
ij

ij

N

j

j
ij

ij

0

1
12

12

1
11

11 ,
,~,

,~ τη
ςη

ςη
γη

ςη
ςη

γ
−=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

−
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

− ∑∑
==

, (59) 

 ( ) ( ) ( ) ( )
p

D
N

pV
Q

N
pR

Q
N

j

j
ij

ij

N

j

j
ij

ij

0

1
22

22

1
21

21 ,
,~,

,~
−=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

−
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

− ∑∑
==

η
ςη

ςη
γη

ςη
ςη

γ , (60) 

( )
0

,

1
=∑

=

N

j

j

N
pR η

,   (61) 

( )
0

,

1
=∑

=

N

j

j

N
pV η

,   (62) 

in which 

( )[ ]Njj 212cos πη −= ,    ,  (63) Nj ,,2,1 L=

( )Nii πς cos= ,    ,   (64) 1,,2,1 −= Ni L

and  is the number of the discrete points of N ( )pR ,η  and ( )pV ,η  between  and 

. 

1−

1+

 The dynamic stress intensity factor (DSIF) and the dynamic electric displacement 

intensity factor (DEDIF) in Laplace transform domain are defined as 

( ) ( ) ( pxbxpK zy
bx

b ,0,2lim **
III σπ −=

+→
),  (65) 

( ) ( ) ( pxDbxsbK y
bx

Db ,0,2lim, ** −=
+→

π ) ,  (66) 

( ) ( ) ( )pxxapK zy
ax

a ,0,2lim **
III σπ −−=

−→
,  (67) 

( ) ( ) ( )pxDxasbK y
ax

Da ,0,2lim, ** −−=
−→

π ,  (68) 

By the property of Chebyshev polynomials [23] 

( ) ( ) ( )[ ]
( ) ( )

,1,
11

111
2121

2121

1

212

>
−−

−−
=

−

−
+−

−

∫ ς
ς

ςςη
ςη

ηη
π j

j
j d

T
 (69) 

we obtain 
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( ) ( ) ( )[ ]pVpRabpK b ,1,1
2 1211

*
III γγπ +

−
−= ,  (70) 

( ) ( ) ( )[ pVpRabpK Db ,1,1
2 2221

* γγπ +
−

−= ], (71) 

( ) ( ) ([ pVpRabpK a ,1,1
2 1211

*
III −+−

−
= γγπ )] , (72) 

( ) ( ) ([ pVpRabpK Da ,1,1
2 2221

* −+−
−

= γγπ )] . (73) 

 The Laplace inverse transformations of Eqs. (70) to (73) are carried out by the 

numerical method developed by Miller and Guy [24]. In this paper, numerical results 

were given within a range of ( )( ) 4020 )1( ≤−≤ abtcT . 

 For the impermeable case, as the electrical impact is loaded, the dynamic stress 

intensity factor will not play the same role as in the purely elastic case. Therefore, we 

introduce the dynamic energy release rate (DERR) G  as Pak [20] did. According to 

Eqs. (65), (66), (70) and (71), as , +→ bx ( )tx ,0,zyσ , ( )txDy ,0,  and , ( )txw ,0,Δ

( tx ,0, )φΔ  can be respectively approximated as 

( )
( ) ( )

( )
( )⎭
⎬
⎫

⎩
⎨
⎧

−
=

⎭
⎬
⎫

⎩
⎨
⎧

tK
tK

bxtxD
tx

Db

b

y

zy III

2
1

,0,
,0,

π

σ
,    2,1=j , (74) 

( )
( )

( ) ( )
( )⎭
⎬
⎫

⎩
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡
−

−
−

−
=

⎭
⎬
⎫

⎩
⎨
⎧
Δ
Δ

tK
tKxb

tx
txw

Db

bIII

1121

1222

21122211

12
,0,
,0,

γγ
γγ

γγγγπφ
,    .  (75) 2,1=j

Substituting Eqs. (74) and (75) into the equation of  

( ) ( )[ ] ( ) ( )[ ]∫
+ Τ−Δ−Δ= bdb

b bbyzybb dxtdxtdxwtxDtxdG ,0,,,0,,0,,,0,
2
1 φσ  (76) 

yields 

( ) ( ) ( ) ( ) ( ) ( )[ ]tKtKtKtKG DbDbbbb
2

11III2112
2

III22
211222114

1 γγγγ
γγγγ

++−
−

= . (77) 

Similarly, the dynamic energy release rate as  can also be obtained as follows −→ ax
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( ) ( ) ( ) ( ) ( ) ( )[ ]tKtKtKtKG DaDaaaa
2

11III2112
2

III22
211222114

1 γγγγ
γγγγ

++−
−

= . (78) 

 For electric permeable case, the singular integral equation and the single-valued 

condition can be derived by a similar method as 

( ) ( ) ( )
p

dvpvfpxvQdvpvf
xv

b

a

b

a

0
11

11 ,,,1,1 τ
π

γ
π

−=+
− ∫∫ .    bxa << .  (79) 

( ) 0, =∫
b

a
dvpvf ,  (80) 

and by means of the solution of Eqs. (79) and (80), the electric displacement 

 on crack surfaces can be obtained as ( pxDy ,0,* )

( ) ( ) ( ) ( )
p

D
dvpvfpxvQdvpvf

xv
pxD

b

a

b

ay
0

21
21* ,,,1,1,0, −+
−

= ∫∫ π
γ

π
,  .  (81) bxa <<

The DSIF in Laplace domain and the DERR are 

( ) ( ) ( pRabpK b ,12 11
*

III γπ −−= ),  (82) 

( ) ( ) ( pRabpK a ,12 11
*

III −−= γπ ) ,  (83) 

( )
11

2
III

4γ
tK

G b
b = ,   (84) 

( )
11

2
III

4γ
tK

G a
a = .  (85) 

 The analysis of the electrical permeable case shows that the imposed electric 

displacement impact doesn’t contribute to the DSIF and the DERR. Therefore, the 

DERR and the DSIF are equivalent to the fracture parameters of electric permeable 

boundary case. In the absence of the mechanical impact, in other words, the material 

is in effect seamless as far as the electric field is concerned and the field will not be 

perturbed by the presence of the interface cracks [25]. 
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4. Results and discussion 

In this section, the DSIF and/or the DERR for various electromechanical impact loads 

and different geometry and property parameters with normalized time , where ctcT /)1(

2
abc −

= , are respectively calculated. The numerical results of DSIF is normalized by 

( ) 21
0 cπτ  and DERR is normalized by , where  is defined as [20] 0G 0G

( )2
)1(15)1(11)1(44

2
0)1(110 22 eccG += ετεπ ,  (86) 

which denotes the energy release rate for the unbounded piezoelectric material 

subjected to static shear 0τ− . The loading combination parameter λ  is determined as 

( ))1(110)1(150 ετλ eD= ,   (87) 

which is used to reflect the relation between the shear impact ( )tH0τ−  and the 

electrical impact ( )tHD0− . The upper strip is taken as PZT-4 material constants of 

which are , ,  and 

. As the effects of electric load and geometry of crack 

configuration on dynamic response are investigated, the lower strip is taken as BaTiO

210
44 N/m1056.2 ×=c 2

15 C/m7.12=e C/Vm1063.64 10
11

−×=ε

33 kg/m105.7 ×=ρ

3 

material constants of which are , , 

 and . And as the effects of material 

property parameters are investigated, except for the variation of the material constant 

pointed out in the corresponding figures, all the other material constants of the lower 

strip are respectively set to be equal to that of the upper strip, i.e. PZT-4. Without any 

loss in generality, in all our numerical procedure, we take N/m

210
44 N/m104.4 ×=c 2

15 C/m4.11=e

C/Vm103.128 10
11

−×=ε 33 kg/m107.5 ×=ρ

6
0 102.4 ×=τ 2, and 

determine  by 0D λ  through Eq. (87). 
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The normalized DSIF and DERR in the case of electric impermeable interface 

cracks subjected to the shear impact are presented in Figs. 2(a) and (b), respectively. 

For this loading case, the DEDIF at the crack tip, i.e. ax =  or bx =  is equal to zero. 

Therefore, the DSIF and DERR as indicators for possible crack initiation and growth 

play the same role in the case where only the shear impact is imposed. Figs. 2(a) and 

(b) indicate that both the DSIF and the DERR at ax =  are higher than that at . 

And it is found that for given crack configuration and material pair, this is a common 

phenomenon for the coplanar interface cracks.  

bx =

To illustrate the influence of the dynamic electric load on the interface crack 

extension force, the normalized DSIF and DERR at ax =  verse normalized time as a 

function of λ  for PZT-4/BaTiO3 are plotted in Figs. 3(a) and (b), respectively. As 

shown in Fig.3 (a), at the beginning of the impact process, the higher value of λ  leads 

to lower value of DSIF, then the higher value of λ  leads to higher value of DSIF. 

After three times of oscillating, the value of DSIF finally varies little as a function of 

λ  for the given geometry parameters and material constants. Fig. 3(b) shows λ  has 

different effects on DERR. In particular, at 0=t , the DERR is negative in the 

presence of electric field, and the DERR for a fixed value λ  equals to that for λ− . 

Because the electric fields have contributed to the DERR as the impermeable case is 

considered, the DERR is more appropriate to be taken as fracture parameter than the 

DSIF in the view of fracture mechanics. All these results also imply that, on one hand, 

the electrical load promotes or retards crack growth depending on both the magnitude 

and the direction of electrical load. On the other hand, the negative electric impact is 
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more liable to promote the crack initiation and growth. In addition, numerical results 

show that for given geometry of crack configuration and combination of material 

parameters, the DEDIFs at the crack tips are proportional to λ , and do not vary with 

time.  

 Figs. 4-6 show the effects of the sizes of piezoelectric strips on the DERR of both 

electric impermeable and electric permeable interface cracks. From these figures, it 

can be clearly seen that for the given material pair, PZT-4/BaTiO3, there are no 

distinct differences for the two kinds of electric boundaries in the absence of electric 

impact. However, the peak value corresponding to electric permeable interface cracks 

is higher than that corresponding to electric impermeable case. For two equal 

thickness’ piezoelectric strips, as shown in Figs. 4(a) and (b), with the value of cH1  

increasing, both the number of resonance peak of DERR and the corresponding main 

peak value decrease, thus, the oscillation will become weaker. It should be noted that 

as ∞→cH1 , the results obtained are in fact that of two coplanar cracks between two 

dissimilar half-infinite piezoelectric materials. For a fixed value of cH1 , Figs. 5(a) 

and (b) indicate that the oscillation also becomes weaker with the ratio of strip’s 

thickness increasing. And as the ratio tends to infinity, the corresponding results 

reflect the dynamic properties of interface cracks between a half-infinite piezoelectric 

material and its bonded strip.  From Fig. 6, we can easily know that the peak value of 

DERR decreases with the value of ca  increasing. That is, the larger the distance 

between the two cracks, the weaker the oscillation is. Moreover, the relative crack 
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separation has little effect on normalized time of reaching the corresponding static 

value. 

As shown in Figs. 7-10, material constants have significant influences on DERR 

for both electric impermeable and electric permeable cases. In general, the peak value 

of DERR for electric permeable interface cracks is much higher than that for electric 

impermeable cracks, and the effects of piezoelectric constant and dielectric constant 

on DERR for electric permeable interface cracks have different properties to that for 

electric impermeable cracks. 

5. Conclusions 

In this article, the transient response of two coplanar interface cracks between two 

dissimilar piezoelectric strips under dynamic electromechanical loads is investigated. 

Two kinds of electric boundary conditions are adopted. Laplace and Fourier 

transforms and dislocation density functions are used to reduce the mixed boundary 

value problem to a system of Cauchy singular equations. The DSIF and DERR are 

calculated and discussed. From the numerical results presented in this paper, the 

following conclusions may be drawn. 

For both electric impermeable and electric permeable boundary conditions, the 

DERR and DSIF at the inner crack tip are always larger than the DERR and DSIF at 

the outer tip. In other words, under electromechanical impact, the coplanar cracks tend 

to propagate at first from inner crack tips. For both electric impermeable cracks when 

only shear impact is applied and the electric permeable interface cracks, the DERR 

and DSIF are equivalent in view of fracture mechanics. However, for electric 
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impermeable crack under mechanical and electrical impacts, the DERR as the fracture 

parameter can reflect more accurate properties than the DSIF, and properly adjusting 

electric load can retard the crack initiation and growth. For both electric impermeable 

and permeable cases, geometry criterion of piezoelectric strips, relative crack 

separation and material constants, all have great and different influences on the 

DERR. And the effects of material constants especially piezoelectric and dielectric 

constants are more sensitive than that of crack configuration to the two kinds of 

electric boundary conditions. In addition, the transient responses of interface cracks 

both between two half-infinite piezoelectric materials and between a half-infinite 

piezoelectric material and its bonded strip are the particular cases of the problem 

studied in this paper. 
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Appendix A 

)1()1(441211
~ αcaa −=−= , seaa )1(151413 −=−=  

)2()2(441615
~ αcaa =−= , seaa )2(151817 =−=   

026252221 ==== aaaa , saa )1(112423 ε=−= , saa )2(112827 ε−=−=  

( )1)1()1()1(4431 exp~ hca αα −−= , ( )1)1()1()1(4432 exp~ hca αα=  

( )1)1(1533 exp shsea −−= , ( )1)1(1534 exp shsea = , 038373635 ==== aaaa  

 18



( )2)2()2()2(4441 exp~ hca αα−= , ( )2)2()2()2(4442 exp~ hca αα −=  

( )2)2(1543 exp shsea −= , ( )2)2(1544 exp shsea −= , 048474645 ==== aaaa  

0585756555251 ====== aaaaaa  

( )1)1(1153 exp shsa −= ε , ( )1)1(1154 exp shsa ε−=  

0666564636261 ====== aaaaaa  

( )2)2(1167 exp shsa ε= , ( )2)2(1168 exp shsa −−= ε  

176757271 =−=−== aaaa , 078777473 ==== aaaa  

)1(11)1(158281 εeaa == , )2(11)2(158685 εeaa −== , 188878483 =−=−== aaaa  
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Fig. 1. Two dissimilar piezoelectric strips with two coplanar interface 
cracks under anti-plane mechanical impact and electrical impact 
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Fig. 2. Normalized dynamic stress intensity factors and energy release
rates at x=a and x=b with normalized time for electric impermeable
interface cracks under shear impact, PZT-4/BaTiO3, a/c=1, h2/h1=1, 
h1/c=5 
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electric permeable cracks 
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Fig. 9. Normalized dynamic energy release rates for various ratios of
dielectric constants with normalized time under shear impact, a/c=1, 
h2/h1=1, h1/c=5: (a) electric impermeable cracks; (b) electric 
permeable cracks 
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Fig. 10. Normalized dynamic energy release rates for various ratios of 
material densities with normalized time under shear impact, a/c=1, 
h2/h1=1, h1/c=5: (a) electric impermeable cracks; (b) electric 
permeable cracks 
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