
Title Parametric quadratic programming method for elastic contact
fracture analysis

Author(s) Su, RKL; Zhu, Y; Leung, AYT

Citation International Journal Of Fracture, 2002, v. 117 n. 2, p. 143-157

Issued Date 2002

URL http://hdl.handle.net/10722/48536

Rights The original publication is available at www.springerlink.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37886044?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


This is a pre-published versionThis is a pre-published version

 

Submitted  to International Journal of Fracture in July 2001, revised in June 2002 

 

 

 

PARAMETRIC QUADRATIC PROGRAMMING METHOD FOR 

ELASTIC CONTACT FRACTURE ANALYSIS      

 

 

 

 

R. K. L. SU1,a       Y. ZHU2  

   

 

A.Y.T. Leung3 

 

 

 

 

 

 
1  Department of Civil Engineering, The University of Hong Kong, Pokfulam Road,  

Hong Kong, P.R.China 
2  Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, 

Hong Kong, P.R.China  
3  Department of Building and Construction, City University of Hong Kong,  

Tat Chee Avenue, Kowloon, Hong Kong, P.R.China 
a   Corresponding Author: Fax (852) 2559 5337 

    Email: klsu@hkucc.hku.hk  
 

Total Number of Pages:   25 

Number of Figures:  7 

 1



 

Abstract.   A solution procedure for elastic contact fracture mechanics has been proposed 

in this paper. The procedure is based on the quadratic programming and finite element 

method (FEM). In this paper, parametric quadratic programming method for 

two-dimensional contact mechanics analysis is applied to the crack problems involving the 

crack surfaces in frictional contact. Based on a linear complementary contact condition, the 

parametric variational principle and FEM, a linear complementary method is extended to 

analyze contact fracture mechanics. The near-tip fields are properly modeled in the 

analysis using special crack tip elements with quarter-point nodes. Stress intensity factor 

solutions are presented for some frictional contact fracture problems and are compared 

with known results where available.  

 

 Keywords: Quadratic programming, frictional contact, stress intensity factors, finite 

element method 
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1. Introduction 

 

Problems in contact fracture mechanics about brittle material are very popular in practical 

engineering. Concrete and rocks are mainly subject to compressive loads, when external 

loadings are applied, contact between the crack surfaces may occur and will affect the 

fracture behaviors. The efficient numerical technique which can estimate the influence of 

the contact behaviors of the crack surfaces on the stress intensity factors of contact crack is, 

thus, imperative.  

 

Within the assumption of the linear elastic model for the materials, contact frictional crack 

is a typical nonlinear problem as the boundary conditions of both the location and the 

extension of the contact zone are unknown and are depended on the applied load. This 

problem has received much attention over the years by many authors with different 

approaches. Analytical methods are particularly attractive as general and accurate 

solutions could be obtained, but an explicit analytical solution for contact fracture 

mechanics has yet to be obtained. For these reasons many researchers presented different 

approximate analytical solutions of some particular examples for illustrating their 

proposed methods. Bowie and Freese(1976) proposed to correct certain crack solutions 

that yield overlapping of the crack faces by introducing closure without slip in a segment of 

the crack. Their solutions are expected to be applicable for relatively large values of the 

coefficient of friction. Comninou and Dundurs(1979)  extended the Bowie-Freese analysis 

to include the effect of friction by using a singular integral equation approach. 

Melville(1977) got the analytical formulations by assuming that the whole contact crack 

surfaces slip along each other under compressive loading based on Coulomb’s frictional 

law. Woo et al. (1988) used a boundary collocation method to calculate the length of the 

closed part of the crack and the stress intensity factor  (SIF) value of the other crack tip. 

Beghini and Bertini(1996) applied weight function (WF) method to the problem of a crack 

in bending for which the integrations could be performed analytically, the  SIF and the 

contact stress could be obtained effectively. Numerical solutions obtained either by the 

finite element(FE) or the boundary element(BE) method can be found in literatures. 

Fredriksson(1976) presented a FE solution of contact fracture mechanics. Thiagarajan and 
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Alwar(1986) applied superelement technique to study the crack closure phenomena in the 

case of an inclined crack. Cords and Joseeph(1994) used the line spring model to iteratively 

determine the border of the closed portion of the crack and the SIFs along the open portion. 

Liu and Tan(1992)  and Chen and Chen(1998) used BE methods to solve crack problems 

involving crack surfaces in contact. Those numerical solutions require iterative procedures 

which can be automatically controlled by the program, however, the contact status (stick, 

slip or separation) has to be repeatedly adjusted with a heuristic trial-and-error manner 

until the real contact status is found. 

 

Leung et al. (1998) proposed smoothing Newton method for solving two- and 

three-dimensional frictional contact problems. In the present paper, parametric quadratic 

programming method for two-dimensional contact mechanics (Zhong and Sun, 1989, 

Klarbring, 1986), is extended to solve the crack problems involving crack surfaces in 

frictional contact. It has been noticed that many methods proposed to deal with frictional 

contact problems adopted iterative trial-and-error methods (Chan and Tuba, 1971, 

Okamoto and Nakazawa, 1979), however, quadratic programming method offers an 

effective alternative for the manipulation of contact interface inequalities and has been 

extensively used for the solution of contact problems using the finite FE method. The 

prime advantage of this technique over the iterative trial-and-error method lies in the fact 

that it does not involve a constant tracking of the individual nodes for contact and release. 

For plane elastic contact problems, iteration is unnecessary, only one step arrives the 

solution in the FE method sense. This method, however, has not been received much 

attention in the field of contact fracture mechanics. In this paper, a linear complementary 

contact condition (contact state equations) by Zhong and Sun, 1989 together with the 

parametric variational principle and FE techniques is used to solve the contact fracture 

problems. A quadratic programming method for elastic contact fracture problems with 

friction is proposal. This method can avoid the tiresome iteration procedure used in 

previous work, and if there is no unloading, only one incremental step is sufficient for 

getting the solution. The near-tip fields are properly modeled in the analysis using special 

crack tip elements with quarter-point nodes (Barsoum, 1976). Stress intensity factor 

solutions are presented for some frictional contact fracture problems and are compared 
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with known results where available. 

 

2. Parametric  quadratic programming method for elastic contact analysis 

 

 

The present analysis of contact fracture mechanics considers only the static 

two-dimensional elasticity with small deformations. Based on these assumptions, the 

contact surface may be considered to be a series of points where each point is interpreted as 

a node on each surface. Although in this paper, the contact fracture system consists of 

single crack only in a linear elastic body, the discussions can be easily extended to the 

problems involved multiple cracks.  

 

2.1. The description of contact problems and contact constitutive model  

 

Consider the contact system consisting of a linear elastic body occupying an open set Ω 

which is defined in the global co-ordinate system (o-xy). The possible contact faces of the 

crack in the body are  and . The gap between the contact faces is very small so  

used to express the common possible contact boundary (  and ), as shown in Figure 1. 

1s 2s *δ cs
1s 2s

 

Contact problem is an inherently nonlinear and irreversible problem. It is subjected to the 

unilateral constraints and the contact faces must not penetrate each other. The contact 

conditions between the two faces are described by Coulomb’s law, so that the contact and 

slippery conditions (Zhong and Sun, 1989) can be expressed as: 

 

0~
1 ≤+= nppf μτ                 (1) 

0~
2 ≤+−= nppf μτ                      (2) 

0~
3 ≤= npf                 (3) 

 

where kf~  (k=1,2,3) are called the contact and slip functions,  and  are tangential and 

normal stresses in  a local coordinate system (

τp np

o′ -nτ ) of the candidate contact point with 
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respect to crack surfaces. Here, n(i) and τ(i) denote the unit outward normal boundary vector 

and the tangential boundary vector of crack surface s(i). In particularly, take the nodes on 

surface ‘2’ as master, on surface ‘1’ as slave and the vectors n= ,)2(n τ =  as the local 

system. 

)2(τ

μ  is Coulomb’s frictional coefficient. Different values of fk associate with 

different contact conditions. For example, when 0~
1 =f or 0~

2 =f , contact slip occurs along 

positive or negative tangential directions, respectively, when  or  there is no 

slip, when 

0~
1 <f 0~

2 <f

0~
3 =f , separation occurs along normal direction. 

  

The relative displacements in tangential and normal directions of any pair of candidate 

contact points are defined as,  

                                                            (4) { T
nc εετ ,=ε }

where                 (5) 
⎪⎩

⎪
⎨
⎧

+Δ=+−=

Δ=−=
**21

21

δδε

ε ττττ

nnnn uuu

uuu

cε  is the relative displacements of candidate contact pair points. In this paper capital 

boldface letters are used to denote matrices, lowercase boldface letters denote vectors and 

lowercase letters denote the components of corresponding vectors.  and are the 

tangential and normal nodal displacements respectively, at an arbitrary candidate contact 

point with respect to crack surface , (i=1,2).  is the normal initial gap between the 

potential contact points. 

iuτ
i
nu

is *δ

 

The general case of elastic contact problems with Coulomb’s friction law is characterized 

by the following system of equations and inequalities: 

 

 0≥nε , 0≤np  ,  0. =nn pε               (6) 

 0=τε     when  npp μτ −≤               (7) 

 0≥τε     when npp μτ −=               (8) 
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By the rigid elasticity model that is an analogy from plasticity flow theory, we can express 

 and  in terms of relative displacements by equations (6) to (8) as below:   τp np

            
( )

( ) ( )[ 2/1 nnn

nnn

sign
Ep

εεεβ ]
εβ
−⋅=

⋅=
                          (9) 

( )⎩
⎨
⎧

−=−
−<⋅

=
nn

n

ppsignp
ppE

p
μεμ
με

ττ

τττ
τ ,

,
            (10) 

 

where sign(*) equal –1 when *<0  or 1 when *≥0, and  are the penalty factors. It is 

obviously that the relative displacement vector can be expressed as: 

nE τE

 

                                                    (11) p
c

e
cc εεε +=

 

where  is contact elastic relative displacement vector and is contact slip relative 

displacement vector. Denoting the contact stress vector to be  so that 

e
cε

p
cε

cp

                          (12) { }T
nc ppτ=p

 

by substituting equations (9) to (11) into equation (12), we can have   

 

( )p
cccc εεDεDp −== c

e
c                              (13) 

where                           (14) ⎥
⎦

⎤
⎢
⎣

⎡
=

n
c E

E
0

0τD

equation (13) represents the contact constitutive relation model which is expressed in terms 

of the penalty functions. 

 

 

2.2. The expressions of contact slip conditions by displacements (state equations) 
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By Coulomb’s fractional law of equation (1), contact slippery occurs when 0~
=kf  for k 

equal 1,2 or 3. In more details,  and  are defined as the positive and negative 

tangential slips with movement of  and  respectively. 

0~
1 =f 0~

2 =f

1
~λ 2

~λ− 0~
3 =f  is equivalent to the 

case of normal separation with movement of 3
~λ . It is apparent that all the values of kλ

~ are 

always greater than or equal to zero.  

 

Using an analogy from plasticity flow theory we define the slip potential functions 

kg~ (which are corresponding to the contact and slippery conditions kf~ ) as follows: 

                                                                        (15) 
⎪
⎩

⎪
⎨

⎧

=
+−=

+=

npg
cpg

cpg

3

02

01

~
~
~

τ

τ

Where  is some constant. The contact slip relative displacement vector can be related 

with 

0c

kλ
~  and are expressed as follows: 

T

k c

k
k

p
c

g∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⋅=
3

1

~~
p

ε λ                                                 (16)   

where the partial 
c

kg
p∂
∂~

 define the directions of slip for the displacements vector . 

Equation (16) is called the contact slip law and can be rewritten in matrix form, 

p
cε

λ
p
gε ~~ T

c

p
c ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=                                                (16a)   

 

Where        [ Tggg 321 ]~~~~ =g                                             (17)  

       [ T

321 ]~~~~ λλλ=λ                                              (18)  

                  

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=
∂
∂

n

n

n

c

p
g

p
g

p
g

p
g

p
g

p
g

33

22

11

~~

~~

~~

~

τ

τ

τ

p
g                                              (19) 
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0~
<kf  implies the case of contact adhesive and thus 0~

=kλ .  However, when 0~
=kf  and 

0~
>kλ  which represents the conditions of contact slippery. It is noted that 0~

3 ≥λ  

represents the case of separation that is also considered as a kind of slippery in our study. 

By substituting the constitutive model of equation (13) and the contact slippery laws of 

equation (16a) into the expressions of kf~  in the equation (1) to (3), we have, 

        ( ) 0~~
1

*
1 ≤−+Δ+Δ= λδμ τττ EuEuEf nn           (20) 

 ( ) 0~~
2

*
2 ≤−+Δ+Δ−= λδμ τττ EuEuEf nn             (21) 

 ( ) 0~~
3

*
3 ≤−+Δ= λδ nnn EuEf            (22) 

By introducing the constraint relax variables kυ~ , let  

 

( ) 0~~,,~
=+ΔΔ kknk uuf υλτ , k=1,2,3.                     (23) 

 

When equation (23) subjected to the conditions of contact adhesive and contact slippery 

(their corresponding mathematical expressions are 0~
=kλ and 0~

<kf ; and 0~
>kλ  and 

0~
=kf  respectively), we can show that ,0~~

=⋅ kk υλ  where ,0~,~
≥kk υλ and . 

Hence equation(23) can be expressed in the following matrix form, 

3,2,1=k

 

( )
0λυ0λυ

0υλuf

≥=⋅

=+
~,~,~~

~~,~

T

c                                            (24)   

 where  ( )Tfff 321
~~~~

=f                        (25) 

                          (26) ( T
nc uu ΔΔ= τu~ )

)

)
                          (27) ( T

321
~~~~ υυυ=υ

   ( T

321
~~~~ λλλ=λ                         (28) 
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Equation (24) is the contact state equation denoting a linear complementary contact 

condition with contact relative displacements. In component form, the contact state 

equations can be expressed as: 

 

  

3210~~
0~~

0~~~~~0

,,k,υ,λ

,υλ
υf

kk

kk

kkckk

=≥

=⋅
=+−+ λmεw

                           (29) 

 

where   denotes the beginning value of , 0~
kf kf~

 c
c

k
k

f
D

p
w

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

=
~

~  and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

=
c

c
c

k
k

f
p
gD

p
m

~~
~                       (30) 

 

 

2.3. The parametric quadratic programming method of elastic contact fracture problem 

 

The solution of the boundary value problems of plane elastic contact fracture should satisfy 

both the general elasticity equations and the contact state equations (24) on the contact 

boundary sc. According to the plane elastic contact parametric variable minimum potential 

energy theory (Zhong and Zhang, 1997), the true displacement field corresponds to the 

minima of the total potential energy function (as shown below) subjected to the condition 

of the contact state equations (24) 

 

∫ ∫∫ ∫Ω Ω
⎟
⎠
⎞

⎜
⎝
⎛ −+⎥⎦

⎤
⎢⎣
⎡ +Ω−Ω=∏

cp s c
T

cc
T
cs

TTT dsdsdd εRλεDεupubDεε ~~
2
1

2
1             (31)   

where c
c

D
p
gR ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
~~                   (32)  

p and are the surface traction vector and the body force vector,respectively.       

   

b

By finite element method, the whole contact fracture mechanics system is discretized into 

finite elements. It is noted that the candidate contact boundary of the crack faces must be 
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discretized and connected with contact elements. The region around the crack tip is 

modeled by singularity elements. The cracked body and the surface area of the body are 

represented by 

  and                                           (33) ∑
=

Ω=Ω
eN

e
e

1
∑
=

=
cN

e

e
cc ss

1

 

The state equation (29) of the contact element ‘e’ becomes: 

   

( )∫ =+−+
e
c

e

s

eeee
c

e dsf 0υ~~~~~0
αααα λmεw                         (34) 

                                        (35) 0λ~,υ~0,λ~.υ~ e
α

e
α

e
α

e
α ≥=

 

where  3,2,1=α   e=1,2,3,…, .  is the total number of contact elements. Therefore, 

the contact state equation of the whole system becomes: 

cN cN

 

       (36) { }∑ ∫ ∫ ∫
=

=+−+
c

e
c

e
c

e
c

e
N

e

e

s s s

eeeTee
c

eTe
λ

Te
λ dsdsds

1

0 0~~~~~ υλTmTεwTfT λλ

 where       ce
c

e
e D

p
fw ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

=
~

~                                         (37) 

  [ Teeee fff 321 ]~~~~
=f                                         (38) 

T

e
c

e

ce
c

e
e

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

⎥
⎦

⎤
⎢
⎣

⎡

∂
∂

=
p
gD

p
fm

~~
~                                      (39) 

( )e
c

e
c

e
c

*~ δuNε e
c +=                                         (40) 

                                                    (41) ( )Tee
c

** 0 δ=δ

 

and  is the coordinate transformation matrix and  is the shape function matrix. e
λT e

cN

 

Substitute equations (40) and (41) into equation (36), we can have 
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0υdλUuC =+−− ~~ˆ                                        (42) 

  0λ,υ0,λυT ≥=⋅
~~~~                        (43) 

where:                                             (44) ∑∫
=

×∈=
c

e
c

uf
N

e
s

Nme
c

e
c

eTe
λ Rds

1

~ TNwTC

                                             (45) ∑∫
=

×∈=
c

e
c

ff
N

e
s

mme
λ

eTe
λ Rds

1

~ TmTU

                                                (46) δddd += 0

                                               (47) ∑∫
=

−=
c

e
c

e
N

e
s

0Te
λ ds

1
0

~fTd

                                               (48) ∑∫
=

⋅−=
c

e
c

N

e
s

*
c

e
δ

eTe
λ ds

1

~ δTwTdδ

Here Nu is the total number of degree of freedoms of the system and mf is equal to 3×Nc. 

 

Having established the contact state equation (42) for the discretized system, based on 

equation (31) the total potential energy of the contact  discretized system can be expressed 

as: 

 

dsdsdd
c

c

e

e e
e
p

N

e
s

e
c

eTee
c

e
c

Te
c

N

e
s

eTeeTeeeTe ∑∫∑ ∫ ∫ ∫
==

Ω Ω
⎟
⎠
⎞

⎜
⎝
⎛ −−

⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ +Ω−Ω=∏

11

~~
2
1

2
1 εRλεDεupubεDε

                                                                                                                               (49) 

we can rewrite equation (49) such that, 

( )pλφuuKu ˆ~ˆˆˆ
2
1

+−=∏ TT                                (50) 

where                         (51) ∑ ∑
= =

×∈+=
e c

uu

N

e

N

e

NNe
c

c
e

Te
c

e
ee

Te
e R

1 1

TKTTKTK

                 (52) Ω= ∫Ω d
e

eTe
e

e

BDBK

                 (53) dse
c

e
c

e
cs

c
e e

c

NDNK ∫=

                (54) ∑∫
=

×∈=
c

e
c

fu
N

e
s

mNeTeTe
c

Te
c Rds

1

~
λTRNTφ
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                  (55) δppp ˆˆˆ 0 −=

  ∑ ∫ ∫
=

Ω ⎭
⎬
⎫

⎩
⎨
⎧ +Ω=

Ne

e
s

TeTe
e

TeTe
e

e
e
p

dsd
1

0ˆ pNTbNTp             (56) 

                  (57) 1*

1

ˆ ×

=

∈⎥
⎦

⎤
⎢
⎣

⎡
= ∑ u

c
N

c

N

e

ec
e

Te
c RδTkTp δδ

 

Hence the finite element formulation for plane elastic contact problem by parametric 

quadratic programming can be represented as: 

 

 min: ( pλφuuKu ˆ~ˆˆˆ
2
1

+−=∏ TT )                                            (58) 

 subject to:                          (59) 
0~~,0~~
0~~ˆ

≥=⋅

=+−−

λ,υλυ

υdλUuC
T

 

It is a convex programming problem, by using the Kuhn-Tucker condition (Reklaitis et al 

1983), we can show that equations (58) and (59) can be converted into a linear 

complementary problem (LCP): 

 

 pKuIλφK ˆˆ~ 11 −− =+−              (60) 

 ( ) ( )
0~~,0~~

ˆˆ~~ 1
00

11

≥=⋅
+++−=−− −−−

λ,υλυ
pCKddpCKλφCKUυ

T
δδ         (61) 

 

The near-tip fields are modeled in the analysis using special crack tip elements with 

quarter-point nodes. This enables the stress intensity factors  and  to be obtained 

directly from the nodal displacements, even with relatively coarse mesh discretization 

(Barsoum, 1976). It is noted that in frictional contact fracture mechanics analysis, when the 

crack is closed under compressive loads,  is always zero and the normal stress at the 

crack tip is nonsingular. 

1K 2K

1K

 

3. Techniques of finite element numerical calculation 
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Different kinds of contact elements had been proposed, since linear-elastic static and small 

deformation contact fracture problems are considered in this paper, it is convenient to use 

point to point contact element at the candidate conforming contact faces of the crack. The 

shape function matrix of the contact element for the relative displacements of the candidate 

nodes is . The point to point contact element stiffness becomes ⎥
⎦

⎤
⎢
⎣

⎡
=

10
01e

cN

⎥
⎦

⎤
⎢
⎣

⎡
=

n

τc
e E

E
0

0
K                                   (62) 

 

Based on equation (62), equations (39), (44), (45) and (54) can be simplified to 

             (63) ⎥
⎦

⎤
⎢
⎣

⎡ −
=

n

c
e E

EE
00

0ττφ

  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

n

n

n
c
e

E
EE
EE

0
μ
μτ

τC             (64) 

  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−
==

n

n

n
c
e

e

E
EEE
EEE

00

~ μ
μ

ττ

ττ

Um           (65) 

 

Using the matrix transformation property, equations (48) and (57) can be expressed as: 

               (66) *
cUδd −=δ

               (67) *
cφδp =δˆ

 

It is noted that   corresponds to the vector space of  . Substituting equations (66) and 

(67) into equation (61), we can get   

*
cδ λ~

 

 ( ) )
0λ,υ0λυ

δφCKUdpCKλφCKUυ
≥=⋅

−−+−=−− −−−

~~,~~
(ˆ~~ 1

00
11

T

*
c        (68) 
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If we directly replace the penalty factors and  with large numbers and solve 

equations (60) and (68), serious numerical error will be produced due to ill conditioning. 

By algebraically transformation, and denoting  as the total general nodal displacements 

vector, as the total contact nodal relative displacements vector and  as the total 

contact nodal initial gap corresponding to the vector space of 

τE nE

sû

cû *
cδ

cu~ , we can eliminate the 

penalty factors in the equations (60) and (68) such that, 

 

                                   (69)   
)~(ˆ

)~(ˆˆ
*'

*'
120111

λδ Iφu

λδ φKpuK

−−=

−+=

c

s

            ( ) ( )
0~~,0~~

ˆ~~ *'
0

''

≥=⋅
+−−=−

λ,υλυ
dδKCpCλφKCυ '

T
0crrr           (70) 

 

where 
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The sub-matrices Kij can be determined by 
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            (76) ⎥
⎦

⎤
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⎡
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= cE 222221
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KKK
KK

K

where   E=En=Eτ is penalty factor. 

 

The equation (70) can be solved by Lemke Method (Lemke,1965). By using equation(69), 

we can get  and , and hence evaluate the SIFs.  cû sû

 

4. Numerical examples 

 

The computer program developed on the basis of the proposed method was applied to the 

determination of SIFs. The first example is simple crack subjected to tensile traction, 

although it has no contact under applied loading, it can be considered that candidate contact 

faces of crack is normal separation and we can use this example to test the reliability of the 

theory. Other examples with various contact conditions are also analysis and the results are 

compared with the available results. 

 

4.1 Example 1 (Central crack under tension) 

A rectangular strip with a central crack subjected to uniform tensile traction q=10 MPa is 

shown in Figure 2. The length of crack is 2a perpendicular to the direction of loading. The 

width and the length are 2W and 2L respectively. Since the analytical solution available 

pertains to infinite lengths, 2L was assumed to be 5W so as to simulate this boundary 

condition. The following material properties are assumed for analysis (i) elastic module E 

=524.94MPa, (ii) Poisson’s ratio υ=0.3 and  (iii) 2a=4 unit, 2w=20 unit.  It is noted that the 

SIFs obtained are independent of the chosen material properties. On the possible contact 

surface, the results show that the tangential contact displacements are zero which agree 

well with the actual displacement condition. The stress intensity factor K1 determined by 

the present method is 2390N/cm3/2 which differs from the solution (Murakami, 1987) of K1 

=2510 N/cm3/2 by 4.8%. This inaccuracy is mainly due to the deficiency of the collapsed 

quarter-point isoparametric elements employed in modeling the singularity at the crack tip. 

Similar level of inaccuracy was reported by Barsoum (1976) and Owen & Fawkes (1983) 

in calculating the SIFs using the same element. 
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4.2 Example 2 (Edge crack under bending) 

A rectangular plate with an angled edge crack of length a under bending moment M is 

shown in Figure 3. The corresponding finite element mesh with six-node triangular 

isoparametric elements is shown in Figure 4. This problem has been studied by Liu and 

Tan(1992). The geometry is taken as: L/W=4, a/W=0.6, 0.8, and θ=0o, 45o. When  bending 

moment is applied and θ=0o, the crack tip only has K1. The normalized mode I stress 

intensity factors K1
n=K1/(6M aπ /W2) versus various friction coefficients μ =0.0, 0.2, 0.4, 

0.6 for a/W=0.6 and 0.8 are shown in Figure 5. When θ=45o and a/W=0.6, under the 

bending moment, the whole crack surface is closed. The crack tip only has K2, the 

normalized mode II stress intensity factors K2
n=K2/(6M aπ /W2) versus various friction 

coefficients are shown in Figure 6. When θ=45o and a/W=0.8, under the bending moment, 

the crack tip has both K1 and K2. The normalized mode II and Mode I stress intensity 

factors K2
n and K1

n versus various friction coefficients are shown in Figure 6 and Figure 7 

respectively. Good agreement between the present computed results and referenced 

solutions is also found. 

 

 

5. Conclusions 

 

Parametric quadratic programming contact method was presented for the determined of 

SIFs with crack surfaces involving frictional contact each other. The near-tip fields are 

properly modeled in the analysis using special crack tip elements with quarter-point nodes. 

These methods avoid iterative calculation and can easily be incorporated in general finite 

element program. The numerical examples have been given to demonstrate the accuracy 

and efficiency of the present method. 
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Figures 

 

Figure 1. A body with crack of contact faces 

Figure 2. A crack in a field of tensile tractions 

Figure 3. A plate with an angled edge crack under bending 

Figure 4. The mesh of plate with edge crack 

Figure 5. Variation of K1
n versus the friction coefficient with θ=0o

Figure 6. Variation of K2
n versus the friction coefficient with θ=45o

Figure 7. Variation of K1
n versus the friction coefficient with θ=45o
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Figure 1. A body with crack of contact faces 
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Figure 2. a crack in a field of tensile  tractions 
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Figure 3. A plate with an angled edge crack under bending 
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Figure 4. The mesh of plate with edge crack  
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Figure 5. Variation of K1
n versus the friction coefficient with θ=00
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Figure 6. Variation of K2
n versus the friction coefficient with θ=450
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Figure 7. Variation of K1
n versus the friction coefficient with θ=450, a/w=0.8 
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