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Statistical Models for Time Sequences Data Mining 
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Abstract: In this paper, we present an adaptive modelling 
technique for studying past behaviors of objects and pre- 
dicting the near fUture events. Our approach is to define a 
sliding window (of different window sizes) over a time se- 
quence and build autoregression models from subsequences 
in different windows. The models are representations of past 
behaviors of the sequence objects. We can use the AR coef 
jicients as features to index subsequences to facilitate the 
query of subsequences with similar behaviors. We can use a 
clustering algorithm to group time sequences on their sim- 
ilarity in the feature space. We can also use the AR models 
for prediction within different windows. Our experiments 
show that the adaptive model can give better prediction than 
non-adaptive models. 

Keywords: Autoregression models, prediction, clustering 

1 INTRODUCTION 

A large portion of data in data mining is time dependent. 
Examples are stock prices, customer credit card spending 
and mobile phone calls made overtime. Time dependent 
data is widely used in two important data mining tasks: (1) 
studying past behaviors of objects in question, for instance, 
customer spending behaviors in past ten months, and ( 2 )  
predicting the near future events, for instance, the customers 
who are likely to delay their credit payments. 

A typicaI form of time dependent data is time sequence 
(also known as “time series”) which is a sequence of obser- 
vations ordered by time. They arise in many financial, busi- 
ness and scientific applications. Other sequences also exist, 
for instance spatial sequences and DNA sequences which 
are ordered by other dimensions rather than time. Here, we 
only consider time sequences. We denote the observed time 
sequence by x = ( T I , .  . . ,z,). 

Time sequence data is one of data mining focuses. The 
area is termed as temporal data mining. One research is- 
sue is to create effective indices for large number of time 
sequences so they can be efficiently retrieved according to 
their similarities. For example, given a customer’s one 
month credit card spending sequence, find the customers 
whose spending pattems similar to the the given spending 
pattern or given a company’s stock price sequence in a par- 
ticular time period, find the companies whose stocks per- 
formed similar to the given company. Due to the length of 
real time sequences, indices are usually created in the fea- 

ture space instead of the time space. Similarity search is an 
important topic in the current database research. 

In financial and many other applications, building models 
from past time sequences to predict future events is another 
important objective in temporal data mining. This topic has 
well been studied in statistics and other disciplines. Stan- 
dard modelling techniques are widely available. The ob- 
jective is usually the models of individual time sequences. 
However, data mining concems application of the standard 
techniques to large number of time sequences. Therefore, 
scalability of the model building algorithms and efficiency 
of handling large number of models are important. 

In this paper, we present an adaptive modelling technique 
for time sequence indexing, clustering and prediction. Our 
approach is to define a sliding window (of different win- 
dow sizes) over a time sequence and build autoregression 
models from the subsequences in different windows. The 
models are representations of past behaviors of the sequence 
objects. The coefficients of these AR models can be used as 
features to index subsequences to facilitate the query of sub- 
sequences with similar behaviors. We can apply a clustering 
algorithm to the coefficients to cluster time sequences. We 
can also use the AR models to predict near future values. 

Similarity between two time sequences is usually defined 
based on the similarity of the curve shapes. For example, 
the two subsequences xl and yl in Figure 1 have a high 
similarity even though their magnitudes are different. Data 
mining applications usually involve a large number of time 
sequences. It is too difficult to visually compare similarity 
between time sequences. A way to solve this problem is to 
fit a model to each time sequence and measure the similarity 
of the models to decide the similarity of the time sequences. 

The study on time sequence indexing has been focused 
on Fourier transform technique. Agrawal, Faloutsos, and 
Swami [l] proposed the first indexing method to use discrete 
Fourier transform (DIT, which is a distance-preserving 
transform) to map time sequences to the frequency domain 
and use the magnitudes of the first few frequencies to build 
indices in time sequence databases. The use of DFT as- 
sumes that the data sequences are periodic which is not al- 
ways true in practice. Also, their method can only handle 
“whole matching” (i.e. all sequences and query sequence 
must have the same length) but not “subsequence match- 
ing”. The amplitude scaling and offset translation problem 
was treated in a later paper by Agrawal, Lin, Sawhney, and 
Shim [2 ] .  This work was particularly relevant to the fast 
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Figure 1: Two sequences x and y. 

Fourier transform approach. 
A similar work was reported by Rafiei and Mendelzon 

in [5 ] .  They studied a set of linear transformations on the 
Fourier series representation of a sequence that can be used 
as the basis for similarity queries on time sequences data. 
The transformations were used so that different types of time 
series similarity could be searched for, depending on the 
needs of the user. These transformations could perhaps be 
used to find a better means of comparing similarity between 
time sequences with the fast Fourier transform approach. 

Faloutsos, Ranganathan and Manolopoulos [ 3 ]  modified 
the method in [I] to handle subsequence matching. They 
used a fixed size sliding window on time sequence to extract 
Fourier features. The main reason of using a fixed window 
is that the interpretation of DFT coefficients for different 
lengths of data sequences is different. Therefore, tihe DFT 
coefficients cannot be compared unless the lengths of data 
sequences are equal. 

Ng and Huang [4] used the fast Fourier transform ap- 
proach to classify time sequences of star light in an astro- 
nomical data mining project. The data preprocessing steps 
include removing noise, interpolating missing values, and 
aligning the measurements to the same time stamps. The 
star light time sequences were classified into two general 
classes: periodic and non-periodic. The periodic time se- 
quences were analyzed in the frequency domain, whereas 
the non-periodic time sequences were analyzed in the time 
domain. The periodic time sequences were ana1:yzed by 
calculating the discrete Fourier transform for each time se- 
quence, using the fast Fourier transform (FFT) algorithm. 
The time sequences were then partitioned into subsets us- 
ing a stepwise partitional clustering method based on the 
k-means algorithm. The outcome was a tree of star clusters 
from which some special star light curves can be identified 
through visualization. 

Till now, most of the previous work on indexing. of time 
sequences has focused on the Fourier transform technique. 
This technique favors sinusoidal type time sequences. In 
many application domains, time sequences are gene rated by 
stochastic processes. As such, classical time series analysis 

techniques are more suitable. However, there is little work 
reported. There are a few advantages of using time series 
modelling techniques. It produces short indices. The algo- 
rithms are fast to build models. More importantly, the mod- 
els provide prediction capability which is crucial in many 
business applications. 

This paper is organized as follows. Section 2 gives math- 
ematical preliminary of time series modelling. Section 3 
presents techniques and corresponding algorithms for build- 
ing non-adaptive and adaptive models for time sequence in- 
dices and prediction. In Section 4, we present experimental 
results on time sequence clustering and prediction. We draw 
some concluding remarks on our current work in Section 5. 

2 PRELIMINARIES OF TIME SERIES 
MODELLING 

This section briefly reviews some of the classical time se- 
ries analysis techniques for representing and modelling time 
sequences. We begin our discussion on classical time series 
analysis by giving some definitions. 

Definition 1 (Stochastic Process) A stochastic process is a 
family of time indexed random variables x ( w ,  t),  where w 
belongs to a sample space and t belongs to an index set. 

For a fixed t ,  z ( w ,  t )  is a random variable. For a given 
w ,  x ( w ,  t ) ,  as a function o f t ,  is called a realization or sam- 
ple function. Hence a time sequence is a realization from 
a certain stochastic process. We usually denote the random 
variable at time t by x ( t )  if the time points in the index set 
are continuous, and by xt if they are discrete. Moreover, 
the process is called a real-valued process if it assumes only 
real values. In our discussion, we consider the discrete real- 
valued process only. Also, we assume that the index set is 
Z = { O , = k l ,  f2, . . .} unless mentioned otherwise. 

When dealing with a finite number of random variables, 
it is often useful to compute the covariance matrix in order 
to gain insight into the dependence between them. For a 
time sequence, we need to extend the concept of covariance 
matrix to deal with infinite collections of random variables. 
The autocovariance function provides us with the required 
use. 

Definition 2 (The Autocovariance Function) If {xt} is a 
process such that Var(xt) < CO for each t, then the auto- 
covariancefunction T~ (., -) of {xt} is dejned by 

yz(r, .) = COV(G-, zs) = &[(ZT - r (xr )>(G - €(xs))l, 

for r and s. Here & is the expectation operator: 

An important class of stochastic processes are stationary 
processes. 

Definition 3 (Stationary Processes) The process {xt, t E 
Z} with index set Z = (0, f l ,  52,.  . e} is said to be sta- 
tionary if 

(2) &1ztI2 < 03, (22) &[zt] = a,  & E 22, 

(iii) rz(r, s )  = yz(r  + t ,  s + t ) ,  Vr,  s, t E Z. 
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If {xt} is stationary, then rz(r, s) = yz(r  - s, 0) for 
all r, s E Z. Therefore, we can have the autocovariance 

variable, 

Theorem 2 Assume {xt} is a stationary process with mean 
p. Then {cxt - U }  is also a stationary process with mean 

tions are given by 
function of a stationary process as the function of just one ( C P  - U )  and its autocovariance and autocorrelation func- 

c2yz(r) and pz( r )  b’r=0,1,2;.., 
respectively. 

The function -yz (-) is called the autocovariance function 
of {xi} and yz ( r )  as its value at lag r. The autocorrela- 3 AUTOCOVARIANCE INDEXING 
tion function of {xt} is defined analogously as the function 
whose value at lag r is 

If {xi} is a real-valued. stationary process, then from a 
second-order point of view it is characterized by its mean p 
and its autocovariance function T~ (.). The estimations of p 
and yz (.) play an important role in the problem constructing 
an appropriate model for the data. 

A natural unbiased estimator of the mean p of the station- 
ary process {xi} is the sample mean 

if we only have n data points in the sequence. The estima- 
tors for 7% ( r )  are 

1 n-r 
~ ~ ( r ) =  ;C(xs--X)(xs+r--X), 0 5 r ~ n - 1 ,  (2)  

s=1 

and therefore the estimators for pz ( r )  are 

In time series analysis, there are two useful representa- 
tions to express a time series process. One useful form is to 
write a process xt such that its present value depends on the 
immediate past values together with a random error. 

Definition 4 (The Autoregressive (AR) Processes) The pro- 
cess {xt, t E Z} is said to be an AR(p) process if { x t }  is 
stationary and iffor every t, 

xt - alzt-1 - - a&-p = a, (3) 

where { zt}  is white noise with mean zero and variance g2 .  

The process { xt } is an AR(p) process with mean p if (xt - 
p }  is an AR(p) process. 

The autoregression (AR) models have some nice proper- 
ties. One of those properties is that AR models are invariant 
with respect to amplitude scaling and vertical shift. 

Theorem 1 Assume {xt} is an AR(p) process with mean p. 
L.et a l ,  a2, . . . , up be its AR coeflcients. Then { a t  - v }  is 
also an AR(p) process with mean (cp - U )  and with the same 
set of AR coeflcients. 

Another nice property is that the autocorrelation function 
is also invariant with respect to amplitude scaling and verti- 
cal shift up. 

The autocovariance function values are important infor- 
mation to the construction of an appropriate model for the 
data. In this research, we use the autocovariance function 
as the extracted features from time sequences. The reason 
is that, if two sequences have similar shapes, then the de- 
pendencies between the data (separated by same time lag) 
will be similar. And hence they have similar autocovari- 
ance function values. However, this idea is not sufficient to 
support that the autocovariance function indexing method 
is sufficiently good for extracting features from time se- 
quences. 

Therefore, now we need to show this indexing method 
guarantees no “false dismissals”. i.e. if we use this method 
to extract the features from time sequences and the query 
sequences in similarity queries, it should retum all the qual- 
ifying sequences without missing any. It has been proven 
that if the distance in the feature space satisfies 

doriginal space (x, Y) 2 d i n d e z  space (x’, Y’) (4) 

where x’ and y’ are the representations of x and y in the 
index space respectively, then the method can guarantee no 
“false dismissals’’ [3]. Let’s see the following theorems. 
Theorem3 Let x = (x1,x2,-.-,zn) and y = 
( y ~  ,y2, - . . , yn) be two data sequences of zeru mean and 
2-norm being equal to I ,  i.e. llxll2 = ((yl(2 = 6. Then 

where 

Tz(0 : k )  = [T~(0),T%(l),...,T~(k)lt 
and TY (0 : k )  is dejined similarly. 

In the above theorem, the data sequences x and y must be 
of exactly the same length. The following theorem general- 
izes it by considering data sequences of similar lengths. 
Theorem4 Let x = (xl,x2,-.*,x,) and y = 
(y1, y2, . . . , ym) be two data sequences of zero mean and 2- 
norm being equal to I .  Here m M n and we assume m 2 n. 
Let vi = ( ~ i , . - - , y i + ~ - ~ )  for 1 5 i 5 m - n + 1. So 
length(vi) = n. Then b’k >_ 1,  

According to the above two theorems, the autocovariance 
function can be used to index time sequences (their lengths 
are not required to be the same, but have to be similar). In 
particular, we consider the following non-adaptive statistical 
model that uses the autocovariance function to index time 
sequences. 
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3.1 Non-adaptive Statistical Model 

We start to index the time sequence x = ( ~ 1 , .  . , s,). 
Firstly we rescale it so that it is of zero mean and 2.-norm 
being equal to 1. The resulting rescaled time sequence is 
s = (SI,. . . , s,), say. Then we fit AR models from the first 
order to higher orders (order less than or equal to L which 
is the maximum AR order) for s until the decreasing rate of 
the modelling error is less than a specified tolerance t:. Cor- 
respondingly, the autocovariance function can be cornputed 
up to the order of this AR model. We repeat the above pro- 
cess for other time sequences. The process is formalized in 
the following procedure: 

0 (Step 1): Rescaling 

Specify E and L. Rescale x = ( 5 1 ,  -.-,s,) 1.0 s = 
(sl,--.,sn) by si = f i ( s i  - X) where N = 
Cyzl (si - and X = A cy=l xi. (S = 0, 11~112 = 
fi, T S ( O )  = 1.) Setp = 1. 

0 (Step 2): AR model fitting 

Calculate TS(p) = 
estimators of AR(p) coefficients [&I , . . . , lip]. 

stst+p and compute the 

0 (Step 3): Termination 

Calculate the modelling error errp which is defined as 
errp = o2 = TS(O)-(&1, 2 2 , .  * .  , & p ) [ ~ s ( l ) ,  . . , TS(p) l t  
If p = 1, set p = p + 1 and go to step 2. 
If eTTep;T:IyTp > E and p 5 L, set p = p + 1 arid go to 
step 2. 
If "'v;,;p;","" > E but p > L, terminate and return 
a warning message. Otherwise terminate by storing 
Ts(O : p - 1) = [ 1 7 T s ( l ) , - - - 7 ~ s ( p  - 1)It as the ex- 
tracting features from s (or x) together with the time 
sequence's identity number. 

For each time sequence, we build an AR model and em- 
ploy the autocovariance function to index these data points. 
We only need to store the autocovariance function and the 
identify number of that time sequence. We note that we 
can derive the autoregression model from the autocovari- 
ance function. Data mining operations can be applied effi- 
ciently by using these stored values. 

3.2 Adaptive Statistical Models 

We have already introduced the non-adaptive statistical 
model which is accurate (guarantees no "false disnussals") 
and efficient. In this subsection, we will introduce the 
adaptive statistical model which is modified from !;he non- 
adaptive model. But why do we need to consider the mod- 
ified model for features extraction? The following (example 
gives us the motivation. 

Figures 2 and 3 show two time sequences x and 
y.  The features of x and y extracted by the 
non-adaptive statistical model are =y3(0 : 4) = 
[l, 0.2616,0.2499,0.3167, -0.0960It and Ty(O : 4) = 

I " 7 " ' '  ' -  

t 

Figure 2: Time sequence x. 

Figure 3: Time sequence y .  

[l, 0.4940,0.3715, 0.5206,0.2511]t respectively. (Note that 
the order of the "best fitted" AR models of the time se- 
quences are not necessary the same. In this example, we 
specified E = 0.025.) Since 11"/3(0 : 4) - Ty(O : 4)1)2 = 
0.4805, the time sequences x and y are not considered to 
be similar. But indeed, both x[1 : 501 = ( X I ,  . . . , s50) and 
y[1 : 501 = (y1 , . . . , y50) are generated by AR(2) model 
with AR coefficients a1 = -0.8 and a2 = -0.5. And in 
Figures 4 and 5, we find that these two subsequences are 
similar. 

From this example, we find that it's a good idea to extract 
features from subsequences by the adaptive statistical model 
since we can notice the change of model in the whole time 
sequence. The idea of adaptive statistical model is easy to 
be understood and it's similar to the idea of non-adaptive 
model. 

Let us consider the time sequence y = (91, . . , ym). We 
assume that the minimum window size is w, where w is 
specified by the user and depends on the applications. We 
index the subsequence y[1 : w] = (yl,-.-,y,) by the 
non-adaptive statistical model. i.e. we fit the rescaled sub- 
sequence by the AR model. Next we consider the subse- 
quence y[1 : w + d] = (y l , .  . . , yw+d) with a new set of 
data points (Y,+~, . . . , yw+d). Here d is the adjusted win- 
dow size which is the number of data points added in each 
test. We index y[1 : w + d] by the non-adaptive model. 
If the order of AR model is the same and the distance be- 
tween the features are not large (up to tolerance), then we 
can still use the AR model and the autocovariance function 
for the new data subsequence, and then we continue to add 
data point to test the AFt model. Otherwise we restart the 
process again and index the subsequence (yw+l , . . . , y2,) 
by the non-adaptive model. The process continues until all 
data points in the sequence are scanned. We repeat the above 
process for other time sequences. The process is formalized 
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Figure 4: x[l : 501 in Example 2. 

breq. 
nf 

"6-m 

Figure 5: y[1 : 501 in Example 2. 

Noise n A  
0.00 0.025 0.050 0.100 

in the following procedure: 

0 (Step 1): Setting Parameters 

Input the minimum window size w, the adjusted win- 
dow size d, the specified tolerance €1 which is used in 
the AR fitting process, another specified tolerance €2 

which is used in the model updating process, and the 
maximum AR order L. 
Set i=l, j=w. Go to Step 2. 

0 (Step 2): Model Fitting 

If i 2 m, quit. Otherwise, index y [ i  : j ]  = (yi, . . . , yj) 
by the non-adaptive statistical model. (i.e. let x = 
y[i : j ] ,  E = €1 and execute the process stated in the 
non-adaptive procedure.) 

If there is a warning message (i.e. p 2 L where p is 
the AR order), then set i = i + 1, j = min{j f 1, m} 
and repeat Step 2 again. Else if j = m, store i, j ,  211 
(which is the features of x = y[i : j ]  obtained from the 
process) and the time sequence's identity number as a 
new row in the indexing table and quit. Otherwise, go 
to Step 3. 

0 (Step 3): Model Updating 

Set j' = min{j + d ,  m}. Index y[i, j ' ]  by the non- 
adaptive statistical model. (i.e. let x = y[i : j ' ] ,  ex- 
ecute the process stated in the non-adaptive procedure 
and get w2 which is the features of x = y [ i  : j ' ] . )  

If the AR order does not change and (IQ - 212 ( ( 2  I € 2 ,  

then set j = j' and w1 = v2. If j = m, store i ,  j ,  VI 

and the time sequence's identity number as a new row 
in the indexing table and quit. Otherwise (i.e. j # m), 
repeat Step 3 again. 

Table 1: Synthetic Data Set 

(5 ,  i, 1) (O.h,O.l, 0.'15) I/ a 1 (5. 1. 1. 1) (0.5.0.55.0.7.0.9) 

Table 2: Classification accuracy, with varying noise level 
and frequency perturbation 

0.02 93n6 77/67 83/70 77/80 
0.03 I 63/70 83/87 77/67 80170 
0.04 67/63 70167 70193 87/83 
0.05 70163 77/70 80163 63/77 

However, if the AR order changes or ( [ V I  - 212112 > 
e2,  then store i, j ,  v1 and the time sequence's identity 
number as a new row in the indexing table. Set i = 
j + 1, j = min{i + w - 1, m} and go to Step 2. 

4 EXPERIMENTAL RESULTS 

In this section, some experimental results are shown to 
demonstrate the effectiveness of statistical models for data 
mining operations. 

4.1 Statistical Models versus Fourier Transforms 

In the first test, we compare the performance of statisti- 
cal models and Fourier Transforms in clustering operations. 
The methodology consists of four steps. The first step is to 
generate several sets of time sequences of known classes. 
The second step is to calculate the autocovariance function 
values and Fourier coefficients for each time sequence. The 
third step is to use the autocovariance function value and 
the magnitude of Fourier coefficients as feature vectors for 
classification with a clustering algorithm. The final step is 
to compare the clustering results with the originally known 
classes, and calculate the classification accuracy. To under- 
stand how noise and frequency perturbation affect the classi- 
fication, several different datasets with different noise levels 
and frequency perturbations were generated. 

In real applications, many time sequences look like cosine 
curves (or sinusoidal curves). Therefore the synthetic data 
were modeled as the sum of a number of cosine curves with 
a noise function. Their formulation is 

M 

xt = Ai cos(&it) + nt 
i=l 

( 5 )  

where M is the number of cosine curves, each &, is the ad- 
justed frequency component, Ai is the associated amplitude 
of each frequency component and nt is a noise function. 
Given the frequency perturbation level nf and the frequency 
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Table 3: Setting for adaptive and non-adaptive models. 

1 Non-adaptive Model 
Maximum AR order L = 10 
Specified Tolerance for AR fitting process E = 0.025 - 
Adaptive Model 
Minimum window size w = 20 
Adjusted window size d = 1 
Maximum AR order L = 10 
Specified Tolerance for AR fitting process €1 = 0.025 
Soecified Tolerance for model uodating orocess €2 = 0.1 

component &, the adjusted frequency component is formu- 
lated by 

(6) 

where 2: is a uniformly distributed random variable. on the 
interval [-1,1]. And the noise function nt is found by 

di = ei + nfz:r 

where Zt is a normally distributed random variable with 
mean p = 0 and standard deviation CJ = 1. In this research, 
we generated three batches of ten time sequences. Each of 
them has length 200. And the time sequences in thle same 
batch have the same Ai and Bi. Table 1 shows the details of 
the batches of time sequences. 

Here we set the maximum AR order L to be 10 and the 
specified tolerance E for AR fitting process to be 0.1025. In 
our experiment, we found that this maximum AR order is 
sufficiently large for all those synthetic data. And this set- 
ting of E is supported by the experiment in [6,7]. Table 2 
shows the result of classification accuracy. It is clear to show 
that our method is in general more accurate than the Fourier 
transform. Moreover, for the Fourier transform, the mag- 
nitude of first seven Fourier coefficients were used as the 
feature vector. For statistical models, the average order of 
the best fitted AR model is about 3.60 only. Since the num- 
ber of parameters required by our approach is less than that 
required by the Fourier transforms, our proposed method is 
more efficient. 

4.2 Adaptive versus Non-adaptive Models 

In this subsection, we compare adaptive models with non- 
adaptive models by using three Hong Kong stocks: Guang- 
dong Investment Ltd. (called it gdinvest), Great Eagle Hold- 
ings Ltd. (called it geh) and Wheelock Co. Ltd. (called it 
wheelock). In Figures 6 , 7  and 8, we show their stock values 
respectively. All of these time sequences are of length 750, 
which is approximately equal to 3 years trading days. 

We applied the non-adaptive and adaptive models on 
these time sequences. Table 3 shows the setting of these 
models in our experiment. Note that for the adaptive mod- 
els, we set the minimum window size w to be 20 which 
is about one month trading days. Therefore each adaptive 
model is built based on at least one month stock data. In 
this research, we used both the non-adaptive model and the 
last adaptive model to predict five data points ?&I, . . . , 9755. 

Since in our experiment the real values of these data points 

Figure 6: Stock prices of Guangdon,g Investment Ltd. 

0 

Figure 7: Stock prices of Great Eagle Holdings Ltd. 

Figure 8: Stock prices of Wheelock Co. Ltd. 

are known, we can easily calculate the prediction error using 
the following formula: 

where n is the number of predicted data points, gi is the real 
value and jii is the predicted value at the date i. 

Table 4 shows the results of non-adaptive and adaptive 
models for these three stocks. We find that the stock val- 
ues change quite a lot as there are a number of models con- 
structed by the adaptive method. Here, let's use the stock 
data gdinvest as an example. By adaptive method, the sub- 
sequences (975,. . . ,9354) and (9355 , .  . . , 9502) are fitted by 
two models. For the subsequence (y75, . . . , y354), the or- 
der of model is 1 and the AR coefficient is 0.99. And for 
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Table 4: Results for adaptive and non-adaptive models. 

Non-adaptive 

Order 

AR 
Coefficients 

Autocovariance 
Function 

Prediction 
Error 

Adaptive 

No. of models 

Order of 
last model 

AR 
Coefficients 

Autocovariance 
Function 

Prediction 
Error 

gdinvest geh wheelock 

1 2 1 

(1.1659, 
0.9840 -0.1765) 0.9924 

(0.9910, 
0.9840 0.9790) 0.9924 

10.3% 30.4% 11.1% 

14 10 18 

4 1 1 

(0.7200,0.2020, 0.9895 0.9918 

(0.7453,0.4805, 0.9895 0.9918 

-0.2007 -0.2259) 

0.1274,-0.1867) 

5.5% 15.5% 9.6% 

Figure 9: Stock prices of Guangdong Investment Ltd. 

the subsequence (9355,. s e ,  9502), the order of model is 1 
and the AR coefficient is 0.96. It seems that their models 
are almost the same. So why the adaptive method parti- 
tions (975, . . . ,9502) into two subsequences? In Figure 9, 
the subsequences between the crossed lines are the subse- 
quences (975, . , 9354) and (9355, * .  * , 9502). Note that at 
time stamp 354, it’s a great change of value. Therefore, the 
autocorrelation between these data (include the new data) is 
no longer the same (or similar) as before. We can conclude 
that the adaptive model can figure out the great change of 
value of time sequence. By using adaptive method, the last 
subsequence is (9741,.  . . , ?&SO), which is the subsequence 
on the right hand side of the dotted line in Figure 9. It is 
easy to note that there is a great change at time stamp 741. 
Moreover, we can find that using the last adaptive model to 
predict values is more accurate than using the non-adaptive 
model. 

From Table 4, we find that the last adaptive models of the 
stocks gdinvest and geh are different from their non-adaptive 
models. The last adaptive model for wheelock is quite sim- 

Table 5: Details of the predicted values by non-adaptive 
model and adaptive model. 

gdinvest 

1.0200 1.0572 0.9939 0.0365 0.0255 
1.oooO 1.0839 0.9660 0.0839 0.0340 
1.0000 1.1102 0.9405 0.1102 0.0595 
1.0000 1.1361 0.9261 0.1361 0.0739 
1.0100 1.1616 0.9243 0.1501 0.0848 
geh 

0.3800 0.4197 0.4059 0.1045 0.0682 
0.3300 0.4511 0.4167 0.3670 0.2628 
0.3700 0.4834 0.4274 0.3065 0.1551 
0.3750 0.5155 0.4380 0.3747 0.1679 
0.4000 0.5473 0.4484 0.3681 0.1211 

wheelock 

1.6000 1.6518 1.6443 0.0324 0.0277 
1.4700 1.6635 1.6486 0.1316 0.1215 
1.5400 1.6751 1.6528 0.0877 0.0732 
1.4500 1.6866 1.6570 0.1632 0.1428 
1.4900 1.6980 1.6612 0.1396 0.1149 

ilar to its non-adaptive model. However, the autoregression 
coefficients and the autocovariance function values are dif- 
ferent. The results show that the prediction error of the adap- 
tive model is less than that of the non-adaptive model. Table 
5 shows the details of these errors. jjr and jj; denote the 
predicted values by non-adaptive and adaptive models re- 
spectively. It’s easy to find that for both non-adaptive and 
adaptive models, the absolute relative errors of the first few 
predicted points are much less than that of the last few ones. 
The reason is that, the first few data points are calculated by 
the model using the real values, but the last few data points 
are calculated using the previous predicted values. For ex- 
ample, for geh, the order of last adaptive model is 1. So 
we used the real value 9750 and the model to predict @51. 
Then we used the previous predicted value @51 to predict 
jjY52. Hence the errors are accumulated. Figures 10, 11 
and 12 show the predicted values by non-adaptive model 
(i.e. 57nSl, . . . , j$55), the predicted values by adaptive model 
(i.e. jj&, . . . , and the real values (i.e. 9751, . . . ,9755) 
of these three stocks. The symbols “circle”, “square” and 
“cross” represent the real value, the predicted value by non- 
adaptive method and the predicted value by adaptive method 
respectively. We find that the distance between the “cross” 
and “circle” is always less than that between the “square” 
and “circle”. Therefore we can conclude that it’s still prac- 
ticable to apply the adaptive model on the data to predict a 
few data points. 

5 CONCLUDING REMARKS 

In this paper, we have presented statistical modelling 
techniques for time sequence indexing, clustering and pre- 
diction. Unlike statistical study on fine tuning models to 
obtain more accurate prediction, our interests are to ap- 
ply these modelling techniques to large number of time se- 
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Figure 1 0  Real and predicted stock prices of Guangdong 
Investment Ltd. 

Figure 11: Real and predicted stock prices of Great. Eagle 
Holdings Ltd. 

Figure 12: Real and predicted stock prices of Wheelock Co. 
Ltd. 

quences. We have demonstrated that the modelling tech- 
niques can play double roles for indexing and prediction. 
The major advantages are (i) the computational efficiency 
of calculating the autocovariance functions and AR mod- 
els, which are capable to handle very large data volume, (ii) 
short indices, and (iii) prediction capability. 

Our future work is to study a classification scheme of AR 
models built from large number of time sequences using 
our adaptive modelling technique. With the classification 
scheme, we will be able to transform a time sequences to a 
list of AR models in different classes. Then, we cain apply 
an association rule algorithm to discover association rules 
of AR models. If we consider each model represents a be- 
havior of an object in a particular time period, we will be 
able to investigate how behaviors change and how different 
behaviors are related overtime. 
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