
Title Efficient hardware architecture for fast IP address lookup

Author(s) Pao, D; Liu, C; Wu, A; Yeung, L; Chan, KS

Citation Proceedings - IEEE INFOCOM, 2002, v. 2, p. 555-561

Issued Date 2002

URL http://hdl.handle.net/10722/48458

Rights

©2002 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be
obtained from the IEEE.

Efficient Hardware Architecture for Fast IP Address Lookup
Derek Pao1*, Cutson Liu1, Angus Wu2, Lawrence Yeung3 and K. S. Chan3

1Dept. of Computer Engineering & Information Technology, City University of Hong Kong,
Kowloon, Hong Kong

2Dept. of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong
3Dept. of Electrical and Electronic Engineering, University of Hong Kong, Hong Kong

*Corresponding author. Email: d.pao@cityu.edu.hk

Abstract A multigigabit IP router may receive several
millions packets per second from each input link. For each
packet, the router needs to find the longest matching prefix
in the forwarding table in order to determine the packet’s
next-hop. In this paper, we present an efficient hardware
solution for the IP address lookup problem. We model the
address lookup problem as a searching problem on a binary-
trie. The binary-trie is partitioned into four levels of fixed
size 255-node subtrees. We employ a hierarchical indexing
structure to facilitate direct access to subtrees in a given
level. It is estimated that a forwarding table with 40K
prefixes will consume 2.5Mbytes of memory. The searching
is implemented using a hardware pipeline with a minimum
cycle of 12.5ns if the memory modules are implemented
using SRAM. A distinguishing feature of our design is that
forwarding table entries are not replicated in the data
structure. Hence, table updates can be done in constant time
with only a few memory accesses.

1. INTRODUCTION

In IPv4, the destination address of an IP packet is 32
bits long. There are two addressing schemes in use, namely
the classful addressing scheme and the classless interdomain
routing (CIDR) scheme. The classful addressing scheme
uses a simple two-level hierarchy. The 32-bit IP address is
broken down into the network address part and the host
address part. IP routers forward packets based only on the
network address until the packets reach the destined
network. Typically, an entry in the forwarding table stores
the address prefix (e.g. the network address) and the routing
information (i.e. the next-hop router and output interface).
Three different network sizes are defined in the classful
addressing scheme, namely classes A, B, and C. The
addresses of class A networks are 8 bits long and start with
the prefix ‘0’. The addresses of class B networks are 16 bits
long and start with the prefix‘10’. The addresses of class C
networks are 24 bits long and start with the prefix ‘110’. The
length of the network address can be determined based on
the value of the destination address. The address lookup
operation amounts to finding an exact prefix match in the
forwarding table.

In order to allow a more efficient use of the IP address
space and avoid the problem of forwarding table explosion,
arbitrary length prefixes are allowed in the CIDR scheme.
With CIDR, the address lookup operation is more difficult. It
amounts to finding the longest address prefix in the
forwarding table that matches the destination address.
Several software solutions to the IP address lookup problem
have been published in the literature [1-3,7,9-11]. These
methods employ sophisticated data structures and rely
heavily on the on-chip cache memory of the CPU. The
average time to perform one address lookup ranges from 0.5
to 6 micro second when executed on a 200 MHz Pentium-
Pro-based computer [8]. Although the processing time can
be shortened by using a more powerful CPU, the software
approaches may not scale with the explosive growth of the
internet in terms of the data rate and the size of the
forwarding table.

Gupta et al proposed a simple hardware table lookup
approach in [4]. Their design uses 2-level lookup tables. The
first level lookup table (called TBL24) has 224 entries and the
second level lookup table (called TBLlong) is consisted of
32K 256-entry segments. Let A and B be two strings of 0’s
and 1’s, and the length of A is less than or equal to the length
of B. A encloses B, or A is B’s enclosure, if A is a prefix of
B. Let F be the set of prefixes in the forwarding table, and A
∈ F. A is the inner enclosure of B with respect to F if A is
the longest prefix in F that encloses B. Conceptually, the d-
th entry in the lookup table (for both TBL24 and TBLlong)
stores the next-hop of the inner enclosure of d with
respective to F. Let d be a 24-bit address, and p is the inner
enclosure of d with respective to F. If d does not enclose any
prefix q in F (where q has > 24 bits), then the d-th entry in
TBL24 stores the next-hop of p. If d encloses some prefix q
in F (where q has > 24 bits), then the d-th entry in TBL24
stores the address of a 256-entry segment of TBLlong. The
IP address lookup operation is divided into two steps. First,
bits 1 to 24 of the destination address are used to index into
TBL24. If a next-hop identifier is returned, then the lookup
process is done. If the TBL24 entry stores the address of a
TBLlong segment, bits 25 to 32 of the destination address are
then used to index into the TBLlong segment to obtain the
required next-hop identifier. Assume each next-hop

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 555 IEEE INFOCOM 2002

identifier is 8 bits long. The overall memory requirement is
about 33M bytes. Using the pipelined processing technique,
this approach can achieve a throughput of one address
lookup per memory access time. By using an additional
intermediate length table and break down the 32-bit address
into three portions of 21, 3 and 8 bits, respectively, the
amount of memory can be reduced to 9M bytes. The
advantage of this approach is its simplicity. However, it has
two drawbacks. First, the next-hop identifier associated with
a prefix may be replicated many times. For example, the
next-hop identifier associated with a 8-bit prefix may be
stored in up to 216 entries in TBL24 and also in one or more
TBLlong segments. This high degree of replication will
make table updates difficult. Second, this approach is not
applicable to IPv6 with 128 bits destination addresses.

Huang and Zhao proposed an encoding and
compression scheme to reduce the memory requirement [5].
In their design, the 32-bit address space is divided into 64K
segments (called the next hop array, NHA). The size of a
NHA depends on the length of the longest prefix that shares
the same 16-bit prefix. Essentially each entry in the NHA
stores the next-hop of its inner enclosure. An encoding
scheme was proposed to compress the NHAs to save
memory. The amount of memory saved depends on the
distribution of the prefixes. The memory requirement for
Huang and Zhao's approach is very sensitive to the number
of long prefixes in the forwarding table, and is difficult to
estimate. For every 32-bit prefix, a 64K-entry NHA (which
consumes 16K bytes memory) may be required. In a
hardware implementation, provision of a safety margin is
necessary. Today's backbone routers have, on the average,
one to two hundreds long prefixes. Suppose the system is
required to support at least 1K 32-bit prefixes, then the
amount of memory required is at least 16M bytes.
Forwarding table updates are even more difficult in Huang
and Zhao’s design. Insertion and deletion to the forwarding
table may affect the size of the NHA. Hence, the memory
management unit may need to allocate new segment of
larger (or smaller) size and de-allocate the old segment. The
allocation and de-allocation of variable sized segments is
very difficult to implement and periodic memory
compaction is inevitable.

In this paper, we present a novel hardware architecture
for the IP address lookup problem. We limit the discussion
to IPv4. The address lookup problem is modeled as a
searching problem on a binary-trie. The complete binary-trie
is partitioned into non-overlapping subtrees of 255 nodes.
Each subtree is represented using a bit-vector and can be
searched in parallel. We employ both paralleling processing
and pipelining to maximize the throughput. If the data
structures are stored in SRAM, we can achieve a cycle time
of 12.5ns. Since the forwarding table entries are not
replicated, forwarding table updates can be done in constant
time and only involved a few memory accesses. In section 2,

we’ll present the circuit for searching a 8-level 255-nodes
binary-trie in parallel. We’ll use the circuit as a building
block and describe the pipeline architecture in section 3.
Section 4 is the concluding remarks.

2. SEARHING A BINARY-TRIE in PARALLEL

0*

0001

010*

1000

10*

110*

1110

(1)

(2) (3)

(4) (5) (6) (7)

(8) (9) (10) (11) (12) (13) (14) (15)

(16) (17) (18) (19) (21) (22) (24) (25) (26) (27) (28) (29) (30) (31)

Figure 1. A binary-trie for a 4-bit address space.

The problem of finding the longest matching prefix can
be modeled as the searching problem on a binary-trie. In a
binary-trie, a string of 0’s and 1’s is represented by the path
from the root to the corresponding node in the binary tree.
We adopt the convention of taking a left turn for the value 0,
and a right turn for the value 1. Figure 1 depicts a binary-trie
for a 4-bit address space. The presence of a prefix is
represented by a black dot in the Figure. To find the longest
matching prefix for a given input address, we search along a
simple path from the root to the leaf that corresponds to the
input address. The search path for the input address 1000 is
highlighted in the Figure. We label the nodes of the binary-
trie in level order. The root is assigned the label 1. The left
child of node i is assigned the label 2i, and the right child of
node i is assigned the label 2i+1. A k-bit binary-trie can be

represented by a bit-vector with 12 1 −+k bits, called the tree-
vector. We number the bits in the tree-vector from left to
right. Bit i of the tree-vector is equal to 1 if the prefix that
corresponds to node i of the binary-trie is present in the
forwarding table, otherwise bit i is equal to 0. Similarly, the
search path can be represented by a bit-vector called the
mask-vector. In the example of Figure 1, both the tree-vector
and the mask-vector have 31 bits. To search for the longest
matching prefix for the address 1000, we need to perform a
bit-wise AND operation of the tree-vector with a mask-
vector with bits 1, 3, 6, 12, and 24 equal to 1. The longest
matching prefix, if any, is given by the bit number of the
rightmost ‘1’ in the result-vector of the AND operation.
Accompanying the tree-vector is a routing-vector that stores
the next-hop identifier. The next-hop identifier that
corresponds to the rightmost ‘1’ in the result-vector is used
to forward the packet. In the example shown in Figure 2, the
packet with destination address 1000 will be sent according
to the information stored in the next-hop identifier number 9.

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 556 IEEE INFOCOM 2002

tree-vector corresponds to the binary-trie of Figure 1
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

routing-vector for the binary-trie of Figure 1
- 5 - - - 8 - - - 6 - - - 3 - - 4 - - - - - - 9 - - - - - 2 -

mask-vector for the destination address 1000
1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Result vector = tree-vector AND mask-vector
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Figure 2. Example of the parallel search operation on a binary-trie.

To find the best matching prefix in a subtree, we need
to perform the following operations: (i) read the tree-vector
and the mask-vector from memory, (ii) perform a bit-wise
AND operation of the mask-vector and the tree-vector to
obtain the result-vector and find the position of the rightmost
‘1’ in the result-vector, and (iii) read the next-hop identifier
from the routing-vector, if required. The above 3 operations
are carried out using a pipelined architecture. Details will be
given in section 3. Since steps (i) and (iii) only involve
memory accesses, the processing time of step (ii) will be our
major concern in the circuit design. Since the bit-wise AND
operation only involves 1 single gate delay, the most critical
part of the computation will be the task to find the position
of the rightmost ‘1’ in the result-vector. In our design, we
assume the subtree has 8 levels and 255 nodes. With the
current CMOS technology, we are able to implement a
digital circuit called the RMB locator circuit to find the
position of the right most ‘1’ in the result-vector in about
12.5ns. We shall use this as a building block in our pipelined
architecture presented in section 3.

2.1 Design of the RMB locator

We observe that the position of the rightmost ‘1’ can
be determined easily once we know the level of the longest
matching prefix in the subtree. We assume the root is at
level 0. Consider the example in Figure 1, the position of the
rightmost ‘1’ corresponding to the search path “1000” will
be 6 and 24 if the longest matching prefix is found on level 2
and level 4, respectively. The level number of the rightmost
‘1’ in the result-vector can be determined using simple OR-
gates and a 8-to-3 priority encoder as shown in Figure 3.
Once we know the level number of the rightmost ‘1’, the bit
position can be found by a simple table lookup. The lookup
table has 128 rows and 8 columns where each row stores the
indexes of the nodes along the corresponding search path.
When the result-vector is all zeros, a no-match signal will be

generated and the bit position obtained from the table will be
discarded.

.

.

.

.

.

.

.

Figure 3. Organization of the RMB locator.

The circuit is designed using the AMD C5N 0.5 µm
technology device model. All the devices are implemented
with minimum size without device sizing to optimize the
timing of the system. The propagation delay for determining
the level number of the rightmost ‘1’ is found to be 2.5ns by
circuit simulation. The size of the bit position lookup table is
1Kbytes and it is implemented using SRAM. The SRAM
access time is assumed to be 10ns. Hence, if the tree-vectors
and routing-vectors are also implemented using SRAM, then
we can achieve a cycle time of 12.5ns. If the tree-vectors
and routing-vectors are implemented using DRAM, then the
cycle time will be about 50ns.

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 557 IEEE INFOCOM 2002

3. HARDWARE ARCHITECTURE

In IPv4, the destination address of an IP packet has 32
bits. We use a hierarchical approach to find the longest
matching prefix for a 32-bit input address. Figure 4 shows
the typical distribution of prefix lengths in a backbone router
[6]. Because of the hierarchical structure of IP address
allocation, over 99% of the prefixes are shorter than 25 bits.

mae-east, 06/03/2001

1

10

100

1000

10000

100000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

prefix length

n
u

m
b

e
r

o
f

ro
u

te
s

Figure 4. Typical distribution of prefix lengths in a backbone
router

Logically the binary-trie for the complete 32-bit

address space has 33 levels and 1233 − nodes. Each node in
the binary-trie corresponds to a distinct prefix. A node will
be assigned the value ‘1’ if the corresponding prefix is
present in the forwarding table; otherwise, the node is
assigned the value ‘0’. We partition the entire binary-trie
into non-overlapping blocks of 255 nodes as shown in
Figure 5. Each block corresponds to a 255-node subtree in
the binary-trie and is represented using a 255-bit tree-vector.
Physically, we only store the tree-vectors that have at least
one bit equal to 1. The entire binary-trie can be partitioned
into 4 levels of subtrees, namely level 0 to level 3. For each
level of subtrees, we build separate index tables called the
index blocks (IBs) to facilitate direct access to subtrees in a
given level. Based on the distribution of prefix lengths in
real life backbone routers, we may need to store several
thousands level 2 tree-vectors and about a hundred level 3
tree-vectors.

The proposed hardware architecture will incorporate
parallel processing and pipelining to maximize the
throughput. First, we search the level 0 to level 2 subtrees in
parallel as shown in Figure 6, i.e. to find the best matching
prefix with 1 to 8 bits, 9 to16 bits and 17 to 24 bits in
parallel. To match the packet’s destination address with
prefixes of 1-8 bits, we only need to decode the first bit of

the destination address, and then use the circuit described in
section 2.1 to search one of the two level 0 tree-vectors. The
search path is determined by the value of bits 2-8. Since
there are only 128 search paths, the 128 mask-vectors as well
as the two level 0 tree-vectors can be stored in a fast register
file. Similarly, to match the destination address with prefixes
of 9 to 16 bits, we use the first 9 bits of the destination
address to index into the level 1 index block IB1. The entry
in IB1 will give the address of the corresponding level 1
tree-vector if it exists; otherwise the index block entry will
be equal to null. We use another circuit to search the level 1
tree-vector and the search path is determined by the value of
bits 10-16. The same operation is applied to search the level
2 tree-vectors. Since the level 3 index block entries are very
sparsely populated, we divided the IB3 into 128K disjoint
256-entry segments. Only non-empty segments, i.e.
segments with at least one entry not equal to null, will be
stored. The starting address of the IB3 segment is stored in
the corresponding IB2 entry. Hence, each IB2 entry will
have two fields, namely the address of the level 2 tree-
vector, and the address of the IB3 segment, nextIB. When we
look up IB2 using bits 1-17 of the destination address and
find nextIB is not equal to null, we extract bits 18-25 of the
destination address and use them to index into the IB3
segment to locate the level 3 tree-vector.

.

.

.

level 0 subtrees (maximum 2)

level 1 subtrees (maximum 512)

level 2 subtrees (maximum 128K)

level 3 subtrees (maximum 32M)

node level

0

1

8
9

16
17

24
25

32

T0,0 T0,1

T1,0 T1,511

T2,0 T2,128K-1
T2,i

T3,0 T3,j T3,32M-1

Figure 5. Partitioning of the binary-trie into non-overlapping
255-node subtrees.

To allow pipelined processing, the level 1 tree-vectors
and routing-vectors, level 2 tree-vectors and routing-vectors,
level 3 tree-vectors and routing-vectors, level 2 index block
and level 3 index block are placed in separate memory
modules. We assume that all the 512 level 1 tree-vectors are
present, hence, IB1 can be replaced by the address decoder
of the memory module of the level 1 tree-vectors. The
computation can be implemented using a five-stage pipeline
as shown in Figure 7. The computation time of each stage
depends mainly on the access time of the memory modules
of the tree-vectors, routing-vectors and index blocks. If
SRAMs are used, then the pipeline cycle time can be as

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 558 IEEE INFOCOM 2002

small as 12.5ns. If DRAMs are used, the pipeline cycle time
will be about 50ns.

1 82

0 1

T0,1T0,0

1

T1,x

9 1610

.

.

x
512-entriy IB1

T2,y

T3,z

128K-entry IB2

1

1

17 18

y

24

.

2518 26 32

32

32

32

z

IPv4 address

IPv4 address

IPv4 address

IPv4 address

Matching prefixes
with 1 to 8 bits

Matching prefixes
with 9 to 16 bits

Matching prefixes
with 17 to 24 bits

Matching prefixes
with 25 to 32 bits

Level 0 subtree

Level 1 subtree

Level 2 subtree

Level 3 subtree

Figure 6. The hardware indexing structure

3.1 Memory Requirement

In the proposed architecture, the memory required for
the level 2 and level 3 tree-vectors, and the level 3 index
block segments depend on the distribution of the prefixes.

Let’s define 172 buckets labeled from 0 to 1217 − and
distribute the prefixes that have 17 to 24 bits by the value of
bits 1-17. The number of level 2 tree-vectors will be given
by the number of non-empty buckets. Similarly by grouping
prefixes with 25 to 32 bits by the first 17 bits will give us the
number of IB3 segments, and grouping prefixes with 25 to
32 bits by the first 25 bits will give us the number of level 3
tree-vectors. Table 1 shows the grouping of the forwarding
table prefixes of typical backbone routers [6].

Assume 8 bits are sufficient to designate the next-hop,
then the total memory for a pair of tree-vector and routing-
vector will be 255×9 bits. In the classful addressing scheme,
only the Class C addresses are longer than 16 bits. Since

Class C addresses always start with the prefix '110' and we
build the level 2 index block using the first 17 bits, all Class
C network addresses will be included in no more than 16K
distinct level 2 tree-vectors. Suppose the hardware supports
16K level 2 tree-vectors, 4K level 3 tree-vectors and 4K
level 3 index block segments. The total memory for storing
the 4 levels of tree-vectors and routing-vectors is equal to
(512 + 16K + 4K)×255×9 bits = 5.74M bytes. An entry of
the level 2 index block is consisted of an 1-bit empty flag, a
14-bit L2 tree-vector address and a 12-bit level 3 IB segment
address. An entry of the level 3 index block has an 1-bit
empty flag and a 12-bit level 3 tree-vector address. Hence,
the total memory for the level 2 and level 3 index blocks is
equal to 128K × 22 bits + 4K × 256 × 13 bits = 2.05M bytes.
The overall memory required is about 7.8M bytes. In Table
1, we also show the actual amount of memory consumed by
the five forwarding tables.

stage computation
1 • search one of the two level 0 tree-vectors

• read the value of the level 1 tree-vector
• access IB2 to obtain the address of the level 2

tree-vector and the IB3 segment, if exists
2 • read the routing information associated with

the search result of stage 1, if required
• search the level 1 tree-vector obtained in stage

1; and if successful, over-write the search
result of stage 1

• read the value of the level 2 tree-vector, if
exists

• access the IB3 segment, if exists
3 • read the routing information associated with

the search result of stage 2, if required
• search the level 2 tree-vector, if exist; and if

successful, over-write the search result of stage
2

• read the value of the level 3 tree-vector, if
exists

4 • read the routing information associated with
the search result of stage 3, if required

• search the level 3 tree-vector, if exist; and if
successful, over-write the search result of stage
3

5 • read the routing information associated with
the search result of stage 4, if required

• send the final result to the output interface

Figure 7. Organization of the pipeline.

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 559 IEEE INFOCOM 2002

Router total no.
of
prefixes

no. of
prefixes
with ≥
25 bits

no. of
L2 tree-
vectors

no. of
IB3 seg-
ments

no. of
L3 tree-
vectors

memory
consumed
(Mbyte)

aads 29831 102 5690 33 70 2.15
mae-east 23729 103 5110 37 74 1.99
mea-west 34230 94 6060 34 65 2.25
pacbell 41811 139 6847 56 96 2.5
paix 16445 155 3710 61 101 1.63

Table 1. Grouping of prefixes in backbone routers (based on
data collected on March 6, 2001)

3.2 Forwarding Table Updates

In our design, forwarding table entries are not
replicated. Updating of the forwarding table is relatively
easy. We consider three types of update operations, (i)
modifying the next-hop of an existing entry, (ii) inserting a
new entry, and (iii) deleting an existing entry. Since the
costs for searching and memory allocation/de-allocation of
fixed size segments are bounded, we only consider the
number of memory- write operation required in updating the
data structure in the following discussion. To modify the
next-hop of an existing entry is the easiest. It only involves
changing the corresponding routing-vector entry. The
number of memory-write operation required is only one. To
insert a new entry to the forwarding table, there can be two
possibilities. If the pair of tree-vector and routing-vector to
host the new entry already exists, then we only need to set
the corresponding bit in the tree-vector and write the next-
hop identifier to the routing-vector. In this case, the number
of memory- write operations required is two. If the pair of
tree-vector and routing-vector for the new entry does not
exist, then we need to request the memory management unit
to allocate the memory for the corresponding tree-vector,
routing-vector and index segment, if necessary. In the worst
case, the new prefix has 25 bits or more. We may need to
create the IB3 segment in addition to the tree-vector and
routing-vector and update the IB2 entry. In this case, the
number of memory-write operations is four. To delete an
existing entry, we only need to clear the corresponding bit in
the tree-vector that hosts the prefix to be removed. If after
the removal, the tree-vector becomes empty, then we should
de-allocate the tree-vector and routing-vector and update the
index block. In the worst case, the prefix to be removed is in
the level 3 tree-vector and the IB3 segment becomes empty
after the removal. In this case, we need to de-allocate the
IB3 segment and update the corresponding IB2 entry. Three
memory-write operations are required.

4. CONLULDING REMARKS

In this paper, we present a novel hardware architecture

for fast IP address lookup. We model the address lookup
problem as a searching problem on a binary-trie. The binary-
trie can be represented very efficiently. A node in the binary-
trie only requires 9 bits of memory. The complete binary-trie
is partitioned into four levels of fixed size, 255-node, non-
overlapping subtrees. The maximum number of subtrees in
the four levels are 2, 512, 128K and 32M, respectively. The
storage for the level 2 and level 3 subtrees are allocated on
demand, i.e. only non-empty subtrees are included in the
data structure. The total amount of memory required for a
reasonable implementation is about 8M bytes. The whole IP
address lookup engine can be implemented in a single VLSI
chip. The searching time is speeded up by using the parallel
searching approach and a hierarchical indexing structure.
Together with a pipelined architecture, we can achieve a
throughput of 80 millions and 20 millions lookup per second
if the major memory modules are implemented using SRAM
and DRAM, respectively.

Previous hardware designs can also achieve a
throughput of one lookup per memory access [4,5].
However, those designs require high degree of replication of
forwarding table entries. This makes the forwarding table
updates difficult and limits their applicability to IPv4 only.
A distinguishing feature of our design is that the forwarding
table entries are not replicated in the data structure. Hence,
the forwarding table can be updated in constant time.

Currently, we are investigating the application of our
design to IPv6. If this approach is extended to IPv6, we may
have 14 levels of 255-node subtrees. The memory
requirement will be a major concern. With the exponential
growth in the address space from 32-bit to 128-bit, the
density of the prefixes in the binary tire will be reduced
substantially. Most of the subtrees and the IB segments will
be very sparsely populated. Currently, we are looking into
three different approaches to reduce memory requirement:
(i) use the path compression technique to skip the

intermediate levels of single path routes in the binary
trie;

(ii) compact the routing-vectors; and
(iii) compact the IB segments.

In the present design, we use the position of the rightmost bit
in the result-vector to index into the routing-vector. If we
can find the number of 1’s in the tree-vector from the left up
to the position of the rightmost 1 in the result-vector, we can
throw away the null entries in the routing-vector. Given the
fact that we can find the position of the rightmost bit in
12.5ns, we are confident that the all the required
computation can be done within the DRAM access time.

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 560 IEEE INFOCOM 2002

References

1. A. Broder and M. Mitzenmacher, “Using Multiple Hash
Functions to Improve IP Lookups”, IEEE INFOCOM,
pp. 1454-1463, 2001.

2. Tzi-cker Chiueh and P. Pradhan, “High-Performance IP
Routing Table Lookup Using CPU Caching”, IEEE
INFOCOM, pp. 1421-1428, 1999.

3. W. Doeringer, G. Karjoth and M. Nassehi, “Routing on
Longest-Matching Prefixes”, IEEE/ACM Transactions
on Networking, Vol. 4, No. 1, pp. 86-97, Feb. 1996.

4. P. Gupta, S. Lin and N. McKeown, “Routing Lookups
in Hardware at Memory Access Speeds”, IEEE
INFOCOM, pp. 1240-1247, 1998.

5. Nen-Fu Huang and Shi-Ming Zhao, “A Novel IP-
Routing Lookup Scheme and Hardware Architecture for
Multigigabit Switching Routers”, IEEE Journal on
Selected Areas in Communications, Vol. 17, No. 6, pp.
1093-1104, June 1999.

6. Internet Performance Measurement and Analysis
Project, University of Michigan and Merit Network,
URL: http://www.merit.edu/ipma

7. S. Nilsson and G. Karlsson, “IP-Address Lookup Using
LC-Tries”, IEEE Journal on Selected Areas in
Communications, Vol. 17, No. 6, pp. 1083-1092, June
1999.

8. M. A. Ruiz-Sanchez, E. W. Biersack and W. Dabbous,
“Survey and Taxonomy of IP Address Lookup
Algorithms”, IEEE Network, pp. 8-23, March/April
2001.

9. Henry H. Y. Tzeng and Tony Przygienda, “On Fast
Address-Lookup Algorithms”, IEEE Journal on
Selected Areas in Communications, Vol. 17, No. 6, pp.
1067-1082, June 1999.

10. M. Waldvogel, “Multi-Dimensional Prefix Matching
Using Line Search”, IEEE Conf. on Local Computer
Networks, pp. 200-207, 2000.

11. N. Yazdani and P. S. Min, “Fast and Scalable Schemes
for the IP Address Lookup Problem”, IEEE Conf. on
High Performance Switching and Routing, pp. 83-92,
2000.

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 561 IEEE INFOCOM 2002

