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TDMA Scheduling Design of Multihop Packet 
Radio Networks Based on Latin Squares 

Ji-Her Ju Victor OK.  Li 
ZyXEL Communications Corp. Dept. of Electrical & Electronic Engineering 
Science-Based Industrial Park 

Hsinchu, Taiwan 300 

Absrracr-Many transmission scheduling algorithms have been proposed 
to maximize the spatial reuse and minimize the Time Division Multiple Ac- 
cess (TDMA) frame length in multihop packet radio networks. Almost all 
existing algorithms assume exact network topology information and require 
recomputations when the network topology changes. In addition, existing 
work focuses on single channel TDMA systems. In this paper, we propose 
a multichannel topology-transparent algorithm based on latin squares. Our 
algorithm has the flexibility to allow the growth of the network, Le., the net- 
work can add more mobile nodes without recomputation of transmission 
schedules for existing nodes. At the same time, a minimum throughput is 
guaranteed. We analyze the efficiency of our algorithm, and examine the 
topology-transparent characteristics and the sensitivity on design parame- 
ters by simulation. 

I .  INTRODUCTION 

A radio network consists of a number of geographically dis- 
persed radio units which communicate with each other. Due to 
limited transmission power, it may be necessary to relay a packet 
over multiple radio units to reach the destination. One impor- 
tant issue in this multihop mobile radio network is the design of 
transmission schedules [ 11. A proper design not only guaran- 
tees successful information exchanges among radio units in the 
presence of conflicts but also maximizes the system throughput 
and minimizes the packet delay. In this context, we will fo- 
cus on the scheduling problem in a Time Division Multiple Ac- 
cess (TDMA) network with multiple frequency channels called 
a multichannel TDMA network. Each radio unit in a multichan- 
nel TDMA network is equipped with a single transmitter and 
multiple receivers. So each radio unit can only transmit one 
packet but receive multiple packets in one slot simultaneously. 

In such a multichannel TDMA network, the transmission time 
on each channel is divided into time slots, which are in turn 
grouped into frames. The frames on all the channels are syn- 
chronized with each other. The time aligned frames on all of the 
channels are grouped into a multichannel TDMA frame. Each 
slot is designed to accommodate the transmission time of one 
fixed size packet and the guard time, corresponding to the max- 
imum differential propagation delay between any pair of radio 
units in the network. Two types of communication conflicts on 
a single channel may arise [3]. The first type of conflict, called 
a primary conflict, occurs when a radio unit, transmitting in a 
given slot, is receiving a packet in the same slot on the same 
channel. This also implies the converse: a receiving radio unit 
cannot be transmitting on the same channel at the same time. 
The other conflict, referred to as a secondary conflict, happens 
if a radio unit receives more than one packet in a slot on the 
same channel. In both cases, all packets are rendered useless. 
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Previous studies [ l l ,  [5], [6], [7], [9], [lo] on transmission 
scheduling algorithm concentrated on designing fair conflict- 
free algorithms which maximize the system throughput and 
minimize the frame length by using graph theory [6], [ l l ] .  Most 
algorithms are centralized, i.e., they need global network con- 
nectivity information to achieve their goals. Ephremides and 
Truong [5] proposed a distributed algorithm which requires us- 
ing connectivity information up to two hops. The distributed 
algorithm of Ramaswami and Parhi [ lo] only needs one-hop 
connectivity information. As one can expect, however, changes 
of network topology due to the movements of mobile radio units 
may render an optimal design obsolete. Therefore, the efficiency 
and robustness of the above algorithms disappear in mobile net- 
works. By allowing partial contentions, Chlamtac and Farago 
[3] developed an algorithm which is topology transparent. How- 
ever, the throughput of their algorithm is lower than a conven- 
tional TDMA scheme for some cases. Following their approach, 
but with a different design strategy, Ju and Li [8] proposed an- 
other topology transparent algorithm which is optimal in that it 
maximizes the guaranteed throughput. They also showed that 
their algorithm is insensitive to the design parameters. 

The existing work on TDMA scheduling has focused on sin- 
gle channel systems. This paper deals with multichannel sys- 
tems. Multichannel TDMA systems are natural extensions of 
single channel TDMA systems. With a fixed total bandwidth or 
channel resource, a multichannel TDMA system outperforms a 
single channel TDMA system in the following aspects [2]: 

(1) Multichannel TDMA systems usually have better reliabii- 
ity than single channel TDMA systems. 

(2) Individual channels operate at a lower rate, and synchro- 
nization is easier in multichannel TDMA systems. 

(3) Multichannel TDMA systems have more flexibility to al- 
low system growth by adding more channels. 

Since single channel algorithms only attempt to optimize the 
transmission schedules on one channel, they cannot be easily 
extended to multichannel systems. A more efficient design in 
transmission schedules for multichannel systems is to treat all 
the transmission slots on all channels as a two-dimensional (time 
and frequency) transmission scheduling problem. 

In this paper, a scheduling algorithm for multichannel TDMA 
networks based on latin squares is proposed. Using this algo- 
rithm, every radio unit decides its own transmission schedule 
before it participates in network operations. Although this algo- 
rithm does not require central control or information exchanges 
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between neighboring network nodes, it enjoys very good delay 
characteristics. The performance is not seriously degraded by 
dynamic changes of network topology even though transmission 
schedules are not recomputed. 

Some background and definitions related to the algorithm will 
be given in Section 2. In Section 3, the operation concepts are 
presented and some characteristics of the algorithm are analyzed 
to decide the operation parameters for a given network. Then an 
approximate discrete time queuing model is proposed in Sec- 
tion 4. In Section 5 ,  some numerical and simulation results are 
shown to validate our analytical model and to evaluate the per- 
formance of our algorithm. Finally, we conclude in Section 6 .  

11. MODEL AND DEFINITIONS 

The total number of available channels in our multichannel 
TDMA system is assumed to be M .  Each radio unit has M re- 
ceivers such that it can receive packets on all channels. But it 
can transmit at most one packet at a time by tuning its synthe- 
sizer to the appropriate frequency of a chosen channel. On the 
same channel, a radio unit cannot transmit and receive simul- 
taneously. The time axis of each channel is divided into slots 
and is synchronous with other channels. The transmission chan- 
nel is assumed to be error-free and reception failure is due only 
to packet collisions. The acknowledgments are also assumed 
error-free and instantaneous. 

The maximum total number of mobile radio units ( N )  and the 
maximum number of neighbors of any radio unit (Dmaz)  are 
known to the network designer. Based on these two parameters 
and by making use of the special characteristics of Latin squares, 
a topology-transparent scheduling algorithm will be developed 
such that every radio unit can retain a pre-determined minimum 
throughput no matter how the topology changes if the actual 
values of N and D,,, do not deviate significantly from the 
design values. 

The following definitions and theorems [4] are useful in the 
development of our algorithm. 

Definition I :  An m x n rectangular array formed by the sym- 
bols 1 , 2 , .  . . , k, where k 2 m and k 2 n, is called a Latin rect- 
angle if every symbol appears at most once in each row and once 
in each column. 

When the number of rows, columns and symbols are the 
same, we call it a Latin square, defined as follows: 

Definition 2: A Latin square of order n is an n x n square 
array composed of n symbols from 1 to n such that each symbol 
appears once in each row and once in each column. 

The square arrays A and B shown below are examples of Latin 
squares of order 4. 

2 1 4 3  3 2 1 4  

4 3 2 1  
A = I 3  4 1 2 1 ,  B = I 1  2 3 4 1  4 3 2 l  

Definition 3: Two distinct n x n latin squares A = (ai , j )  and 
B = (b i , j ) ,  where ai,j and bi,j E {1 ,2 , .  . . ,n},  are said to be 

orthogonal if the n2 ordered pairs (a,,j, b i , j )  are all different. 
Thus, the two 4 x 4 Latin squares A and B shown above are 

orthogonal. More generally, if A(' ) ,  A ( z ) ,  . . . , A(') are distinct 
latin squares, they are said to form an orthogonal family if every 
pair of them is orthogonal. 

Theorem I :  If there is an orthogonal family of T latin squares 
of order n, then T 5 n - 1. 

U 

Definition 4: If an orthogonal family of latin squares of or- 
der n has size (n  - l ) ,  i.e., the number of latin squares in the 
orthogonal family is (n - l),  it is called complete. 

Theorem 2: If n > 1 and n = p k ,  where p is a prime number 
and IC is a positive integer, then there is a complete orthogonal 
family of latin squares of order n. 

U 

The proofs of Theorems 1 and 2 can be found in [4]. 

111. SCHEDULING ALGORITHM 

Consider a multichannel TDMA network with M channels. 
The multichannel TDMA frames are constructed as an M x p 
table, where p is the number of slots in a frame on each chan- 
nel. During each frame, every radio unit may be assigned M 
slots to transmit its packets according to its unique time slot as- 
signment pattern. These time slot assignment patterns are con- 
structed from a corresponding orthogonal family of p x p Latin 
squares. Basically p radio units share one common p x p latin 
square from this orthogonal family, and the time slot assignment 
pattern of each of these p radio units is represented by one of the 
p distinct symbol patterns in the Latin square. 

Assume two radio units, say radio units U and U ,  are assigned 
symbol a in latin square A and symbol b in latin square B, re- 
spectively. So, the pattern of symbol a in Latin square A corre- 
sponds to the time slot assignment pattern of radio unit U in the 
multichannel TDMA frames. Similarly, the pattern of symbol b 
in Latin square B corresponds to the time slot assignment pat- 
tern of radio unit w. For example, let a = 2 and A is the square 
shown in section 2, then the first slot on channel 2, the second 
slot on channel 1, the third slot on channel 4, and the fourth slot 
on channel 3 will be assigned to radio unit U. Here the chan- 
nels correspond to the rows and the time slots correspond to the 
columns. If b = 3 and B is defined as in section 2, then the first 
slot on channel 2, the second slot on channel 4, the third slot on 
channel 3, and the fourth slot on channel 1 are the transmission 
slots of radio unit U .  In this example, we see that the ordered 
pair (2,3) of squares A and B occurs at the second row, first col- 
umn. This means that if both radio units U and w transmit at the 
first slot on channel 2, then they will collide. 

For generality, we have the following definition and theorem 
to describe the collision and collision-free conditions. 

Definition 5: Assume that the transmission schedule, i.e., the 
time slot assignment pattern, of each radio unit is determined by 
the pattern of a symbol in a latin square. Let two radio units, 
s and d, be assigned symbols a and b in two p x p orthogonal 
latin squares A and B,  respectively. If the ordered pair (a,b) 
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of squares A and B occurs at the i-th row, j-th column, i.e., 
[Ai , j ]  = a and [Bi,j] = b, we say that there is a chance of 
collision at the j-th slot on channel i for radio units s and d, ' 

Theorem 3: If two radio units are assigned two distinct sym- 
bols in a common latin square, these two radio units will be 
collision free with each other all the time. If they are assigned 
symbols from two different orthogonal latin squares, there is at 
most one collision for these two radio units in every multichan- 
nel TDMA frame. 
Proof: The first part of the theorem follows directly from the 
definition of a latin square. Because every symbol only appears 
once in each row and once in each column, any two time slot 
assignment patterns chosen from the same latin square will not 
have any overlap in their patterns, i.e., they do not have any 
chance to collide with each other. The second part follows from 
definition 3. Hence, the ordered pair (a,  b) for any two different 
latin squares, where a and b E { 1,2,  . . . , n}, can only appear 
once. This implies that these two radio units will only have one 
chance for collision. 0 

Theorem 4: In a given network, each radio unit has a trans- 
mission schedule corresponding to a symbol pattern in one of 
the latin squares from an order p orthogonal latin square family. 
Consider any radio unit surrounded by D other radio units, it 
suffers from at most D collisions with the other D radio units. 
And, the minimum number of collision chances that it can have 
is equal to m a ( D  + 1 - p ,  0). 
Proof: From Theorem 3, we know that each neighbor can cause 
at most one collision to a specific radio unit. For a particular 
radio unit, say radio unit s, in the worst case, the other D ra- 
dio units are all neighboring radio units, and their transmissions 
follow latin squares which are different from the Latin square 
chosen by radio unit s. Hence, the maximum number of col- 
lision chances for radio unit s is D .  To calculate the mini- 
mum number of collision chances, we have to count the max- 
imum number of radio units that can determine their transmis- 
sion schedules from a common Latin square, which is p .  For 
these p radio units, no collision will occur among them accord- 
ing to Theorem 3. From the same theorem, we know that there 
is only one collision chance for any two radio units belonging 
to different orthogonal latin squares. So, each of the remaining 
maz(D - ( p  - l), 0) = maz(D + 1 - p ,  0) radio units will 
contribute one collision to the specific radio unit because they 

0 

Consider a multichannel TDMA network with M TDMA 
channels and N mobile radio units. The maximum number of 
neighbors of a radio unit in this network is D,,, . We assume 
that the size of the orthogonal family of p x p latin squares is 
r .  The transmission schedule of each radio unit is determined 
by one of the p distinct symbol patterns in a p x p orthogonal 
latin square. When p > M ,  one p x p latin square can be 
trimmed into an M x p latin rectangle. Each latin square or 
latin rectangle can be used to construct the transmission sched- 
ules for p different radio units. To make sure every radio unit 
has a unique transmission schedule associated with these Latin 
squares or Latin rectangles, the following equation must be sat- 

belong to different orthogonal latin squares. 

isfied: 
p x r 2 N .  (1) 

From Theorem 3, we know that the number of collision 
chances in each multichannel TDMA frame for any two radio 
units is either 0 or 1.  The maximum number of neighbors of a ra- 
dio unit is D,,, and each radio unit will be assigned min(M, p )  
transmission slots in each multichannel TDMA frame. Every ra- 
dio unit will have its non-zero guaranteed throughput when the 
following inequality holds: 

(2) 
where T is the number of successful transmissions in each frame 
for every radio unit; T,,, and Tmin are the upper and the lower 
bounds of T ,  respectively, and 

(3) 

P 2 Tmaz 2 T 1 Tmin > 0. 

T = min(M,p) - (number of collisions in a frame) 

(4) 
p - m a ( D m a , + l - p , O ) ,  i f p 5 M ;  
M - m a ( D m a ,  + 1 - p , O ) ,  if p > M. Tmaz = 

and 

(5 1 

Hence, to ensure that every radio unit has non-zero guaran- 
teed throughput, p has to be greater than D,,, when p 5 M or 
M has to be greater than D,,, when p > M .  In order to evalu- 
ate the performance, we define Gr, as the guaranteed throughput 
(lower bound) of the TDMA scheduling algorithm as follows: 

Dejinition 6: The guaranteed throughput GL is defined as the 
ratio of the number of guaranteed successful transmissions in 
each frame to the frame length L, i.e., 

P - Dmaz, i f p _ < M ;  
M - Dmaz 9 i f p > M .  Tmin = { 

GL = Tmin/L, where L = p .  (6)  
Similarly, we define the best throughput (upper bound) of the 

TDMA scheduling algorithm as follows: 
Dejnition 7: The best throughput Gu is defined as the ra- 

tio of the maximum number of successful transmissions in each 
frame to the frame length L, i.e., 

GU = Tmaz/L, where L = p .  (7) 
Theorem 5: For given D,,,, N and M ,  the maximal non- 

i f p  5 M; (8) 

zero upper and lower bounds of throughput G are as follows: 

1 L G 2 1 - (Dmaz/M)r 
M M - D  

max(M,LN/r]) 2 2 m a x ( M , l m ,  if p > M' (9) 
Proof: When p 5 M ,  from (6)  and (7) we know the upper and 
lower bounds of G are 

GU = Tmaz/L 
= 

= 1 - [ m a ( D m a ,  + 1 - p ,  O) /p ]  (10) 
lp - ma(Dmaz + 1 - P ,  0 ) l lp  

and 
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From the above two equations, we can see that the two bounds 
will increase with p .  To ensure that the minimum throughput 
is greater than zero and every radio unit has its own unique 
transmission schedule, p has to be greater than D,,, and no 
less than [ N I T ] .  We can get m z ( D , , ,  + 1 - p ,  0) = 0 and 
[N/T]  _< p 5 M .  Hence, the maximal upper and lower bounds 
of throughput are 

Gu = 1 (12) 

and 

GL = l - ( D m a z ) / M  (13) 

when p = M .  

G are 
Similarly, if p > M ,  the non-zero upper and lower bounds of 

and 

These two bounds will decrease when p increases. Combin- 
ing p > [ N / T ]  and p > M ,  we can get p > maz(M,  [ N l r ] ) .  
So, the maximal upper and lower bounds are 

G~ = ~ / m = w , r ~ / T i )  (16) 

and 

GL = ( M  - D m a x ) /  m a ( M ,  [ N / T ] )  (17) 

when p = max(M, rN/r]) .  0 

In the above theorem, M 2 p corresponds to the number of 
available channels greater than the number of transmission slots 
assigned to a radio unit in a multichannel TDMA frame for the 
given network architecture ( N  and D,,, are known). In this 
case, the guaranteed throughput (GL)  can be maximized when 
we choose p equal to the maximum number of available chan- 
nels. Since the number of available channels in the network 
must be limited, M < p will occur for some given N and D,,, 
values. In these cases, the upper and lower bounds of the guar- 
anteed throughput may be affected by the size of the orthogonal 
latin squares family. A larger value of T may make both the 
upper and lower bounds of guaranteed throughput larger which 
is preferred from the system designer's point of view. From 
Theorem 1 and Definition 4, we know the size of an orthogo- 
nal latin squares family will be maximized when the orthogonal 
latin squares family is complete. 

Based on the above theorems, the optimal scheduling algo- 
rithm will be constructed as follows. 
Optimal Algorithm: 

Use Theorem 5 to determine the optimal integer of p for 
the given M ,  N and D,,, such that Gu and GL are max- 
imized. 

Randomly assign a symbol in a latin square or latin rectan- 
gle to each radio unit. 
Each radio unit constructs its transmission schedule from 
its unique symbol pattern in its latin square or latin rectan- 
gle and transmits its packets according to its transmission 
schedule. 

Here, we assign the symbols in latin squares to radio units 
randomly, and each radio unit only uses one symbol pattern to 
construct its transmission schedule. If we know that some radio 
units are always adjacent to each other, then we can try to assign 
different symbols in a common latin square or latin rectangle 
to these radio units to reduce the number of collisions among 
them. For some particular radio units with predictably heavy 
traffic, we can also assign multiple different symbols in latin 
squares or latin rectangles to it to increase its throughput. For 
the cases of D,,, > M ,  to ensure each radio unit has non-zero 
guaranteed throughput, the transmission schedules can also be 
constructed by using a similar scheme, but with larger frame 
size (r-1 x p slots). 

IV. ANALYTICAL MODEL 

In this section, an approximate discrete time M/M/l queuing 
model [12] with bulk arrivals is proposed to evaluate the av- 
erage packet delay in a multichannel TDMA system using the 
algorithm introduced in the previous section. We assume that 
arrivals occur just after the beginning of a slot, departures take 
place just before the end of a slot, and each radio unit has infi- 
nite buffer. Each radio unit with a packet to transmit chooses the 
transmission channel randomly. Note that the latter is an approx- 
imation since the radio unit will actually choose its transmission 
channel according to the latin square method. The number of ar- 
rivals in each slot are assumed to be a sequence of independent, 
identically distributed (i.i.d.) random variables with a specific 
distribution. The probability of k arrivals in a slot is given by 

ak = Pr(number of arrivals in a slot = k). (18) 

The state transition diagram of our queuing model is shown in 
Figure 1, where the state index represents the number of packets 
stored in the radio unit and p i j  is the transition probability from 
state i to state j .  The transmission of a packet is successful when 
it is not involved in any collision, i.e., it is successfully received 
by its destination. The probability of successful transmission is 
denoted by p, which corresponds to the service rate of the sys- 
tem for each radio unit. Let the equilibrium probability for the 
number of packets stored in a radio unit be { q k ,  k = 0,1,2,. . .}. 

In general, the transition probabilities can be specified as 

p i j  = Pr( j  packets are queued in slot t + 1 I i 
packets were queued in slot t )  

if i = 0, 
i f i > O a n d j < i - 1 ,  
i f i  > O a n d j  = i - 1, 
otherwise. 

(19) 

aj+l - ip  + aj-i(l - p)  
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The balance equation for this discrete Markov chain is 

k-1 

q k  = 9kPk-k + qk+lpk+l,k + qiPi,k + qOP0.k 
i= 1 

k+l 
= c q z [ a k + l - i p  + ak-i(l - p)]  -k qOak. (20) 

i=l 

Hence the z-transform of the queue length is 

00 

where A ( z )  = CEO U k Z k  and D ( z )  = p + ( l - p ) z .  Substitut- 
ing z = 1 into (21), and noting that A(l)  = 1, an indeterminacy 
of the form O / O ,  can be resolved using L'Hospital's rule, we get 

The average queue length can be obtained from the z-transform 
of the queue length as 

00 

k=O 

= Q ' ( 1 )  
A"(1) + 2A'(1)(1 - p)  

= A'(1) + . (23) 2 [ P  - A' (1)1 

Using Little's result, we can find the average time each packet 
spends in the system as 

(24) 
A"(1) + 2 A ' ( l ) ( l  - p)  = I +  

2A" - A'(1)I 

where A' ( 1 )  = the average number of arrivals per slot at each 
mobile user. 

For a specific radio unit, say radio unit d, it is surrounded by 
D other radio units. The packet transmitted from a neighboring 
radio unit s is successfully received by radio unit d if radio unit 
d and the other D - 1 neighboring radio units of radio unit d do 
not transmit in the same slot on the same channel as radio unit 
s. Suppose X radio units are transmitting packets in the same 
slot as radio unit s. The probability of this event is 

PT(X = i) = Pr(i  simultaneously transmitted packets 
in the same slot as radio unit s) 

i = 0,1,. . . , D (25) 

where p is the utilization factor. 

Let Y out of these X active radio units decide their transmis- 
sion schedules from the same Latin square as radio unit s. 

Pr(j  out of i mobile radio units select symbol patterns 
from the same latin square as radio unit s) 

= PT(Y = jlX = i) 

, i = 0 , 1 , .  . . , D and j = 0 , 1 , .  . . , i  (26) 

where K = p x T is the total number of symbol patterns in the 
orthogonal latin square family, p is the order of the chosen latin 
squares, and T is the size of the orthogonal Latin square family. 

These Y radio units will not cause any collisions at radio unit 
d, but the other X - Y neighbors may collide with the transmis- 
sion from radio unit s to radio unit d on the same channel. 

- - ( P T 1 )  (TI!) 
( K ; l )  

Pr(transmission collisionlY = j and X = i) 
= 1 - Pr(successfu1 transmissionly = j and X = i) 

min(M,p) - 
min(M, P )  

= 1 - (  

where M is the number of channels in the multichannel TDMA 
system, and min(M,p) is the number of transmission slots in 
each multichannel TDMA frame for each radio unit. 

Hence, the probability of a successful packet transmission 
from radio unit s to radio unit d is 

p = P r ( a  succ. pkt. transm. from s to d )  
D i  

PT(SUCC. trans.lX = i, Y = j )  
D i  - .  

= >;: PT(Y = jlX = i ) P r ( X  = i) x 
i = O  j = O  

Pr(succ. trans.lX = i, Y = j )  

Substituting 

90 = Pr(mobi1e radio unit has nothing to send) 
= 1 - p  (29) 

into (22), we can get 

Solving (28) and (30), we can have the probability of success- 
ful transmission p. Obviously, substituting the value of p into 
(24), we can find the average system delay for a packet, W,, 
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which is defined as the number of time slots between the packet 
generation and the completion of its successful transmission. 

For the case of Poisson arrival, the z-transform of the number 
of packets arriving in a slot is 

where X is the average number of arrivals in each slot. From 
(24), the average packet delay will be 

Similarly, for the case of Bernoulli arrivals, the z-transform 
of the number of packets arriving in a slot is 

A ( z )  = (1 - C Y )  + CYZ (33) 

where Q is the probability for a packet arriving in a slot. So, the 
the average packet delay is 

1-CY w, = - 
p-CY' (34) 

V. PERFORMANCE ANALYSIS 

In the previous section, an approximate analytical model for 
evaluating the average packet delay of the multichannel TDMA 
system with bulk arrival traffic is proposed. To validate this an- 
alytical model, some simulation results will be given. In the 
simulation model we again assume that each queue has infinite 
capacity and uses First-Come-First-Served (FCFS) service dis- 
cipline. Every radio unit can only transmit one packet in each 
slot. The destination of a packet is randomly chosen from its 
neighbors but the transmission channel is assigned determinis- 
tically using our algorithm. The acknowledgment is assumed 
instantaneously received and is error free. Two different traffic 
models, Poisson arrivals and Bernoulli arrivals, were chosen for 
comparison. For Poisson arrivals, the number of arrivals in each 
slot are Poisson random variables and its average value is A. In 
Bernoulli arrivals, a packet will arrive in a slot with probability 

First, to show the accuracy of our approximate analytical 
model, we compare the simulation and analytical results for 
Poisson arrivals and Bernoulli arrivals with D = 2, p = 4 
and M = 4 in Figures 2 and 3, respectively. From these fig- 
ures, we find that our approximate analytical results match very 
well with the simulation results for both Poisson arrivals and 
Bernoulli arrivals. To evaluate the effect of topology changes on 
the delay, we generate simulation results for two different types 
of networks, namely, a highly mobile one in which the topology 
changes every 1000 slots, and a low mobility network in which 
the topology changes every 10000 slots. The results in Figures 2 
and 3 show that the delay varies very little with the frequency of 
topology changes. This proves that our algorithm is very robust 
to topology changes. Our algorithm is mainly developed based 
on the system parameter D, which is the number of neighbors 
per radio unit in the network. In real mobile networks, this pa- 
rameter may vary with time. In Figures 4 and 5, we see that the 

CY. 

delay does not increase much at low traffic although the actual 
value of D exceeds the design value of D. So if the network 
is not operating at high traffic conditions, the inaccuracy of the 
estimated value of D is acceptable in our algorithm. 

VI. CONCLUSIONS 

In a multihop TDMA network, scheduling transmission is vi- 
tal. To design a scheduling algorithm which is topology trans- 
parent is particularly important when the network is highly 
mobile. We have designed a topology transparent schedul- 
ing algorithm for multichannel TDMA systems based on Latin 
squares. This algorithm can provide non-zero maximal guaran- 
teed throughput to each radio unit in the network. 

We derived some useful bounds of the throughput of our al- 
gorithm, and the efficiency of our algorithm has been examined 
analytically. In addition, the topology-transparent feature has 
been proven by simulation. The delay is not sensitive to the ac- 
curacy of the estimated value of D at low traffic situation. 
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Fig. 2. The average packet delay in a system with Poisson bulk arrivals. 
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Fig. 3. The average packet delay in a system with Bernoulli arrivals. 
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