
Title One system, two ideologies: integrating the two worlds of
software engineering education

Author(s) Tse, TH

Citation Proceedings - Ieee Computer Society's International Computer
Software And Applications Conference, 1999, p. 246-247

Issued Date 1999

URL http://hdl.handle.net/10722/48435

Rights Creative Commons: Attribution 3.0 Hong Kong License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37885944?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


One System, Two Ideologies: 
Integrating the Two Worlds of Software Engineering Education * 

T. H. Tse 
Department of Computer Science and Information Systems 

The University of Hong Kong 
Pokfulam Road, Hong Kong 

tse@csis.hku.hk 

1. Integratin the two worlds of software 
development 

Moreover, they are primarily reasoning techniques tha 
not support the full development cycle. 

There are two contradicting ideologies in software engi- 
neering education. One ideology emphasizes on the popular 
methods such as object-oriented analysis and design. These 
methods have been developed by internationally renowned 
specialists according to their consulting experience. They 
are generally supported by comprehensive CASE tools with 
a user-friendly graphical front-end. They are well received 
because of the ease of understanding and the flexibility 
of use. Unfortunately, students have to learn the trade as 
a craft rather than an engineering process. There is no 
theoretical foundation enabling software engineers to agree 
on an unambiguous interpretation, to verify the correctness 
of the implementation, or to solve complex problems such 
as concurrency conflicts. The so-called standards are only 
practical guidelines. Unlike civil engineers in structural 
design, no software engineer can provide users with a 
guaranteed degree of confidence on the software designed. 

The other ideology in software engineering education 
advocates formal methods, which help to specify and reason 
with precision the properties of software systems. They 
make use of formal tools including abstract models such 
as Z, algebraic models such as OBJ3, and concurrency 
models such as Petri nets. They can guarantee whether 
the systems have been implemented according to the spec- 
ifications by means of correctness proofs or refinement 
methods. Unfortunately, software engineering students 
seldom have the chance to apply their theoretical knowledge 
after graduation. Although formal methods serve as an 
excellent means of reasoning with target systems, they are 
generally perceived by practicing software engineers to be 
too difficult. They do not have a user-friendly front-end. 

'This research is supported in part by grants of the Hong Kong 
Research Grants Council and the University of Hong Kong Committee on 
Research and Conference Grants. 

+Also with the Vocational Training Council, Hong Kong 

do 

Rather than having to make a difficult choice on one of 
the two ideologies, we would like to approach the problem 
from another perspective. In electrical engineering edu- 
cation, for instance, students are taught not to be satisfied 
with designs that are based purely on circuit diagrams and 
not supported by mathematics. Neither are they taught to 
present complex Fourier transforms to users for validation. 

We advocate that in the future education of software 
developers, the two worlds should be integrated with each 
other. Students should be taught that a specification is 
a model of a real world solution. We must analyze and 
evaluate feasible models with a view to selecting the most 
suitable one. We employ graphical and mathematical 
techniques because they are better reasoning tools than 
narrative text. They cannot, however, supersede each other. 
The graphical notations in popular methodologies have 
proven track records of acceptance and practicality. They 
are very useful for conceiving abstract ideas and hence serve 
very well as blueprints to users. To solve the problem 
of ambiguity and incompleteness, these blueprints must be 
supported by a mathematical foundation, which is essential 
for reasoning and verification. 

2. Integrating the two worlds of software 
verification 

Popular software packages are only renowned for their 
user-friendliness but not their reliability. Effective software 
testing plays a very important role in reducing errors and 
improving the reliability. Partition testing is the most 
popular technique. The input domain is divided into 
subdomains, each of which will be tested separately to 
detect potential failures. Most software testers believe 
that partition testing is of course better than simply testing 
the software with random data. Recent empirical and 
simulation studies show, however, that partition testing is 

246 
0-7695-0368-3/99 $10.00 0 1999 IEEE 



no better than random testing in many cases. This state of 
affairs is disheartening to software testers. 

In spite of the popularity of object-oriented program- 
ming, additional challenges are in fact imposed on software 
testers. Because of abstraction and encapsulation, it is no 
longer a trivial matter to compare an expected outcome 
with the execution result. The observational equivalence 
of objects is very difficult to verify. As a result, object- 
oriented software testing turns out to be more complex than 
the wishful thinking of many programmers. 

On the other hand, formal techniques for proving the 
correctness of programs have been in existence for a long 
time. They are, however, far from popular in the industry 
because the proofs are too demanding for the average 
software engineers and automatic theorem provers cannot 
possibly be constructed. 

Similarly to software development, the future of soft- 
ware verification education lies also in the integration of 
the two worlds. Mathematical techniques should be used to 
analyze the situation to come up with practical guidelines on 
partitioning techniques and test data allocation techniques 
in partition testing, as well as techniques for testing object- 
oriented software. Software engineering students should 
be educated to be proficient with such techniques and 
guidelines. 

3. Methods integration in the Pacific Rim 

Researchers in the Pacific Rim have been recognized as 
pioneers in the integration of formal and practical methods. 
The advocacy was started by a Ph.D. student from Hong 
Kong who published his results in the Australian Computer 
Journal [ 1, 21 and received very favorable comments by 
software engineers from both worlds. It was followed up 
with the work of another Ph. D. student in New Zealand [3]. 
Similarly, the integration of mathematical techniques with 
practical software testing methods has been emphasized 
in the joint projects between Australia and Hong Kong 
[4,5,61. 

Let us keep up with this promising direction and inte- 
grate the two worlds of software engineering education for 
the future. 

4. Towards a comprehensive education 

In order to support the above recommendations, we must 
provide a comprehensive education to software engineering 
students. 
(a) Students should be trained in the formal aspects of software 

development and verification, in order to help them visualize 
complex systems more accurately by constructing abstract 
models and verify the correctness of the implementation. 

(b) They should be trained in the tools and techniques in popular 
analysis and design methodologies, such as UML. 

(c) They should be trained in other aspects of computer soft- 
ware, in order to design, implement, test, and maintain 
software systems. 

(d )  They should be trained to understand hardware technology, 
including the selection and design of hardware support. 

(e)  They should be trained in communication and interpersonal 
skills, so that they can elicit user requirements and present 
their cases. 

cf) They should be trained in psychology and sociology, in order 
to understand real user needs and socio-psychological factors 
in the introduction of new systems. 

(g) They should be trained in business and economics, in order 
to understand the financial and other management objectives 
behind software systems. 

(h) They should be trained in project management, such as in 
software process management techniques. 

5. Conclusion 

There are two contradicting ideologies in software en- 
gineering education. Each of them, however, has its 
own problems. We advocate that the future of software 
engineering education lies in integrating the two worlds. 
SE education should not only be an engineering discipline 
in name, but also an engineering discipline in substance. 
Software engineer students should not be artisans who 
regard their trade as an art and learn only from experience; 
nor should they be mathematics students who are more 
comfortable with theory than practice. They should be 
trained as genuine engineers, who are competent with 
industrial applications as well as the supporting theory. 

References 

[I] T. H. Tse, “Integrating the structured analysis and design 
models: an initial algebra approach”, Australia Computer 
Journal, vol. 18, no. 3, pp. 121-127, 1986. 

[2] T.H. Tse, “Integrating the structured analysis and design 
models: a category-theoretic approach”, Australia Com- 
puter Journal, vol. 19, no. 1, pp. 25-31, 1987. 

[3] R.B. France, T. W.G. Docker, and C. H.E. Phillips, “To- 
wards the integration of formal and informal techniques 
in software development”, in Proceedings of New Zealand 
Computer Conference, New Zealand, pp. R-57-74, 1987. 

[4] T. Y. Chen and Y. T. Yu, “On the relationship between par- 
tition and random testing”, IEEE Transactions on Somare 
Engineering, vol. 20, no. 12, pp. 977-980, 1994. 

[5] T.Y. Chen and Y.T. Yu, “On the expected number of 
failures detected by subdomain testing and random testing”. 
IEEE Transactions on Sojiware Engineering, vol. 22, no. 2, 

[6] H. Y. Chen, T. H. Tse, ET. Chan, and T. Y. Chen, “In black 
and white: an integrated approach to class-level testing of 
object-oriented programs”, ACM Transactions on Sofnvare 
Engineering and Methodology, vol. 7, no. 3, pp. 250-295, 
1998. 

pp. 109-119,1996. 

247 


