
Title A new restructuring algorithm for the classification-tree method

Author(s) Chen, TY; Poon, PL; Tse, TH

Citation
International Workshop on Software Technology and
Engineering Practice Proceedings, Pittsburgh, PA., 30 August-2
September 1999, p. 105-114

Issued Date 1999

URL http://hdl.handle.net/10722/48434

Rights

©1999 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be
obtained from the IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37885943?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A New Restructuring Algorithm for the Classification-Tree Method �

T. Y. Chen
Department of Computer Science and Software Engineering

The University of Melbourne
Parkville 3052, Australia

tyc@cs.mu.oz.au
and

Vocational Training Council, Hong Kong

P. L. Poon†

Department of Accountancy
The Hong Kong Polytechnic University

Hung Hom, Kowloon, Hong Kong
plpoon@cs.mu.oz.au

T. H. Tse‡

Department of Computer Science and Information Systems
The University of Hong Kong
Pokfulam Road, Hong Kong

tse@csis.hku.hk
and

Vocational Training Council, Hong Kong

Abstract

The classification-tree method developed by Grocht-
mann and Grimm facilitates the identification of test cases
from functional specifications via the construction of
classification trees. Their method has been enhanced by
Chen and Poon through the classification-tree construction
and restructuring methodologies. We find, however, that
the restructuring algorithm by Chen and Poon is applicable
only to certain types of classification trees. We introduce a
new tree-restructuring algorithm to supplement their work.

Keywords Black Box Testing, Classification-Tree Method,
Specification-Based Testing, Test Case Selection

�This research is supported in part by grants of the Australian Research
Council and the Hong Kong Research Grants Council.

†Also with the Department of Computer Science and Software Engi-
neering, the University of Melbourne.

‡Contact author.

1. Introduction

Motivated by the importance of test cases on the com-
prehensiveness and hence the quality of software testing
[1, 2, 8, 9, 12, 14], numerous researchers have developed
their own methods for constructing test cases from func-
tional specifications (referred to as “specifications” in this
paper). One of them is the classification-tree method
[10, 11], which helps software testers construct test cases
from specifications via the construction of classification
trees. Although this method can be classified as a black-box
testing approach, it differs from other black-box approaches
in the following aspects:

(a) Most black-box testing techniques construct test
cases from the functions of a program, whereas the
classification-tree method achieves this from the input
domain of a program. In other words, the former are
basically function-oriented, whereas the latter is data-
oriented [7].

(b) Most black-box testing techniques are only effective
when the specification is written in a formal way, such
as in the formal specification language Z. On the other
hand, the classification-tree method can be applied to
both formal and informal specifications.

Since the tree construction approach proposed in [10, 11]
is ratherad hoc, the classification trees constructed from
the same specification may vary according to the personal
experience of software testers. This inspired Chen and Poon
[4, 6] to develop a methodology for constructing a classi-
fication tree from a given set of classifications and asso-
ciated classes via the notion of a classification-hierarchy
table. This table captures the hierarchical relation for each
pair of distinct classifications. An example of a hierarchi-
cal relation is that, when a classificationX takes a particular
class, classificationY can take none of its classes. Further-
more, Chen and Poon observed that

(i) the quality of classification trees depends on the effec-
tiveness of constructing legitimate test cases, and

(ii) a major reason for a poor quality in classification trees
is the occurrence of duplicated subtrees under different
top-level classifications.

For (ii), the duplicated subtrees cause the classification tree
to generate numerous illegitimate test cases. As a result, the
effectiveness with respect to legitimate test cases is reduced.
From these observations, they defined an effectiveness
metric to measure the quality of classification trees, and
developed a tree-restructuring algorithmremove duplicate
for removing duplicated subtrees from classification trees,
thereby improving on the value of the metric [5].

After a close examination, however, we find that
remove duplicate can only be applied to certain
types of classification trees. There are cases where
remove duplicate cannot be applied. Specifically, our
examination ofremove duplicate reveals that:

(a) The algorithm cannot handle subtrees that are dupli-
cated within the same top-level classification.

(b) For classification trees with more than one set of dupli-
cated subtrees under different top-level classifications,
remove duplicate can only be used to removeone of
these sets at any one time. Furthermore, this algorithm
cannot be applied repeatedly.

This paper addresses the above two issues. The rest of
the paper is structured as follows. Section 2 reviews the
previous work on the classification-tree method. Section 3
describes in detail our new restructuring algorithm. Finally,
Section 4 concludes the paper.

2. Previous work on the classification-tree
method

2.1. Grochtmann and Grimm

The classification-tree method [10, 11] was developed
by Grochtmann and Grimm as an extension to the category-
partition method [1, 3, 13, 14]. It helps testers construct test
cases from specifications via the concept of classification
trees.

Classifications are defined as the criteria for partition-
ing the input domain of the program, whereasclasses are
defined as the disjointed subsets of values for each class-
ification. Basically, a classification tree organizes the class-
ifications and classes into a tree structure. The following
describes the major steps of the classification-tree method:

(1) Identify all the classifications and the associated
classes from the specification.

(2) Construct a classification tree from the classifications
and classes.

(3) Construct a test case table from the classification tree.

(4) Identify all possible combinations of classes from the
test case table. Each combination of classes represents
a potential test case.

We shall use Example 1 to illustrate the concept.

Example 1
The software under test is the programbonus being deve-
loped for Number-One Airline. It calculates the bonus
points earned by passengers from their trips. Passengers can
then claim various benefits such as free accommodation in
leading hotels using the bonus points awarded.

The program calculates the bonus points according to the
following specification:

(1) Classes of Seats

There are three classes of seats, namely first, business,
and economy.

(2) Upgrading of Classes

Passengers holding an economy-class ticket are eligi-
ble for upgrading their tickets to a business class free-
of-charge, provided that:

(a) there are vacancies in the business class,

(b) the passengers are holding a frequent-flyer card,
and

(c) the total mileage for the trip is less than 1000.

Under no circumstances can an economy-class or
business-class ticket be upgraded to the first class.

(3) Discounts

Discounts are only available to:

(a) economy-class tickets, and

(b) the total mileage for the trip is not less than 1000.

There are two types of discounts, namely staff discount
and passenger discount.

For (2)(c) and(3)(b), any distance less than one mile will
not be counted. The number of bonus points earned will
be calculated from the combination above. [The detailed
calculations will be beyond the scope of this paper.]

Suppose the classifications and classes forbonus are
identified as in Table 1. As seen from the table, a class may
correspond to a single value such as “First”, or a range of
values such as “� 1000”. Because of the latter, even though
the union of all classes for any classification should cover
the whole input domain, the number of classes for a single
classification is not necessarily large.

After identifying all the classifications and classes, an
obvious approach is to select a class from each classifica-
tion so that each combination of selected classes forms a
test case. For Table 1, for instance, a total of 3� 24 = 48
test cases will be produced. However, some of these test
cases are invalid because of the coexistence of incompat-
ible classes. For example, according to clause(2) of the
specification forbonus, the class “First” in the classifica-
tion “Class of Seat” cannot coexist with the class “Yes” in
the classification “Upgraded Class”.

In order to reduce the number of invalid test cases, a
classification tree is constructed. For instance, a classifi-
cation tree forbonus, denoted byTbonus, is depicted in Fig-
ure 1.

The small circle at the top of the classification tree
is the general root node, representing the whole input
domain. The classifications directly under the general root
node, such as “Class of Seat” and “Total Mileage” in Fig-
ure 1, are called thetop-level classifications.

In general, a classificationX may have a number of
classesxi directly under it.X is known as theparent classi-
fication and eachxi is known as achild class. In Figure 1,
for example, “Price of Ticket” is the parent classification of
“Normal” and “Discounted”, whereas “Normal” and “Dis-
counted” are the child classes of “Price of Ticket”.

Similarly, a classx may have a number of classifications
Yj directly under it. Thenx is known as aparent class and
eachYj is known as achild classification. In Figure 1, for

Classifications Associated Classes

Class of Seat First, Business, Economy

Upgraded Class Yes, No

Price of Ticket Normal, Discounted

Type of Discount Staff, Passenger

Total Mileage < 1000,� 1000

Table 1. Possible classifications and classes

for bonus

example, “Discounted” is the parent class of “Type of Dis-
count”, whereas “Type of Discount” is the child classifica-
tion of “Discounted”.

Test cases can be expressed in a test case table under
the classification tree. The columns of the test case table
correspond to the terminal nodes of the classification tree
and therefore represent classes. Each row corresponds to a
combination of classes and represents a potential test case.
The test case table is constructed by the following steps:

(1) Draw the columns of the test case table by drawing a
vertical line downward from each terminal node of the
classification tree.

(2) Construct a potential test case in the test case table by
selecting a combination of classes in the classification
tree as follows:

(a) Select one and only one child class from each
top-level classification.

(b) For every child classification of each selected
class, recursively select one and only one child
class.

For example, row 3 of the test case table in Figure 1
represents the potential test case such that:

� the “Class of Seat” is “Economy”,

� the “Price of Ticket” is “Discounted”,

� the “Type of Discount” is “Staff”, and

� the “Total Mileage” is “� 1000”.

We usePi to denote a path inTbonus. For example,P2

denotes the path “Class of Seat”� “Business”� “Upgraded
Class”� “Yes”. Thus, the potential test case correspond-
ing to row 3 is formed by selectingP5 andP10. Only part
of the test case table is shown in Figure 1. The complete

table produces a total of 30 potential test cases. Compared
to the 48 test cases that would have been constructed by sim-
ply selecting and combining one class from each classifica-
tion in Table 1, we find that 18 invalid test cases have been
effectively filtered out. This elimination of invalid test cases
has been achieved by capturing the hierarchical constraints
among various classifications inTbonus. �

The classification-tree method has been used for testing
various real-life systems, such as a control system for the
airfield lighting of an international airport, an identification
system for automatic mail sorting machines, and an inte-
grated ship management system. The results of these appli-
cations are very encouraging [10, 11].

2.2. Chen and Poon

2.2.1. Systematic construction of classification trees

Obviously, once the classification tree has been constructed,
the formation of potential test cases is straightforward.
Chen and Poon have noted, however, that the construction
of classification trees as described in [10, 11] is onlyad
hoc. It will be difficult, therefore, to apply the method when
the specification is complex and involves a large number of
classifications and classes.

This problem motivated Chen and Poon to develop a
systematic tree construction method via the notion of a
classification-hierarchy table [4, 6]. Basically, the table
captures the hierarchical relation for every pair of distinct
classifications. In the table forbonus, for example, we note
that the classification “Type of Discount” cannot take any
of its classes when the classification “Class of Seat” takes
the class “First”. Once the classification-hierarchy table has
been constructed, the corresponding classification tree can
be formed using an associated tree construction algorithm.
Readers may refer to [4, 6] for details.

2.2.2. Restructuring of classification trees

Occasionally, a classification tree may not be able to
reflect all the constraints among classifications. Hence, all
the potential test cases constructed from the classification
tree should be verified with the specification. In this way,
we can identify and remove the potential test cases that
contradict the specification. Such potential test cases are
known asillegitimate test cases. Others are known aslegit-
imate test cases. For example, row 2 of the test case table
in Figure 1 will produce an illegitimate test case because,
according to clause(2)(c) of the specification forbonus, the
class “Yes” in the classification “Upgraded Class” cannot
coexist with the class “� 1000” in the classification “Total
Mileage”. In fact, 25 out of the 30 potential test cases con-
structed fromTbonus are illegitimate. Only five potential test

cases are legitimate and therefore useful for testing.
In [5], Chen and Poon proposed that the ultimate purpose

of the classification-tree method is to construct legitimate
test cases, and the classification tree is merely a means for
this construction. Given a classification treeT , let N p

T and
Nl

T be the number of potential test cases and legitimate test
cases, respectively. Chen and Poon defined aneffectiveness
metric ET for T as follows:

ET =
Nl

T
N p

T

For example, sinceN p
Tbonus

= 30 andNl
Tbonus

= 5, ETbonus
is

found to be 5
30 = 0:17. Obviously,Nl

T can only be known
after removing all the illegitimate test cases from the set
of potential test cases. On the other hand, even before
the identification of potential test cases,N p

T can be derived
directly fromT using the formulae presented in [5].

Obviously, a small value ofET is undesirable, as effort
will be wasted on illegitimate test cases. In [5], Chen and
Poon observed that a major cause of a poorET is the exist-
ence of duplicated subtrees under different top-level classi-
fications in a classification tree.

Let S[X] denote a subtree with a classificationX as its
root, andS[x] denote a subtree with a classx as its root. If
X is a top-level classification, we will callS[X] a top-level
subtree.

In Tbonus of Figure 1, since “Price of Ticket” is
related to both the top-level classifications “Class of
Seat” and “Total Mileage”, the subtreeS[Price of Ticket] is
duplicated in both the top-level subtreesS[Class of Seat]
andS[Total Mileage]. As a result, it is possible to construct
an illegitimate test case containing the incompatible classes

(“< 1000” and “Normal”)
or (“< 1000” and “Discounted”)

by selecting

(P7 or P8) and (P4 or P5 or P6).

Similarly, since “Upgraded Class” is related to both the top-
level classifications “Class of Seat” and “Total Mileage”,
the subtreeS[Upgraded Class] is also duplicated in both the
top-level subtrees. These two duplications result in 25 ille-
gitimate test cases, thereby reducingETbonus

to a very small
value.

From this observation, Chen and Poon developed a tree-
restructuring algorithmremove duplicate to improve on the
value ofET for classification trees with duplicated subtrees
under different top-level classifications [5]. This improve-
ment is achieved by removing the duplicated subtrees from
the classification tree, thereby reducing the number of ille-
gitimate test cases while preserving all the legitimate ones.

For example,ETbonus
can be increased from 0.17 to 0.40 after

the application ofremove duplicate.
The restructuring algorithmremove duplicate may,

however, convert some legitimate test cases into illegiti-
mate ones through the introduction of incompatible classes.
Hence, all the potential test cases constructed from the
restructured classification tree must be reformatted using
the algorithm described in [5]. The reformatting algorithm
will ensure that any newly introduced illegitimate test cases
are converted back into legitimate ones.

3. A new restructuring algorithm

Despite the ability to improve on the value ofET , we
observe thatremove duplicate has two limitations:

(a) The algorithm only deals with the removal of dupli-
cated subtrees under different top-level classifications.
Consider, for example, the classification tree in Fig-
ure 2. The subtreeS[C] with classificationC as its root
appears twice under the top-level classificationB. The
algorithm cannot remove such duplications.

(b) The algorithm can remove onlyone set of duplicated
subtrees from the classification tree at any one time,
even if the classification tree contains more than one
set of duplications. Furthermore, the follow-up refor-
matting algorithm will only work ifremove duplicate
is run only once. Suppose that, in Figure 1,

� τ1 and τ2 denote the top-level subtrees
S[Class of Seat] and S[Total Mileage], respec-
tively,

� Sτ1[Upgraded Class] and Sτ2[Upgraded Class]
denote the subtreesS[Upgraded Class] within τ1

andτ2, respectively, and

� Sτ1[Price of Ticket] and Sτ2[Price of Ticket] de-
note the subtreesS[Price of Ticket] within τ1 and
τ2, respectively.

In this case, the algorithm can be used to restructure
Tbonus by removing only one (but not both) of the
following sets of duplicated subtrees:

�
�

Sτ1[Upgraded Class]; Sτ2[Upgraded Class]
	

�
�

Sτ1[Price of Ticket]; Sτ2[Price of Ticket]
	

The improvement inETbonus
would of course be larger

if both of the above sets could be removed.

The above limitations motivated us to develop a new
restructuring algorithm for improving on the value of
ET . The new algorithm, known asremove identical, is
described as follows:

Tree Restructuring Algorithm remove identical for a
Classification Tree with Duplicated Subtrees:

Suppose

(a) the classification tree hasw top-level subtrees
denoted byτi, i = 1; 2; : : : ; w, wherew � 2,

(b) N(τi) denotes the total number of combinations of
classes forτi,

(c) Sτi [X] denotes a subtree ofτi such that the root of
Sτi [X] is the classificationX ,

(d) τ0i denotes the top-level subtree formed fromτi after
pruning from it all the subtreesSτi [X], and

(e) N(τ0i) denotes the total number of combinations of
classes forτ0i.

Suppose there are two or more top-level subtrees con-
taining duplicated subtrees. Without loss of generality,
let these top-level subtrees beτ1, τ2, : : : , τn, where
n � 2, and let the duplicated subtrees beSτ1[X], Sτ2[X],
: : : , Sτn [X]. a

Select a top-level subtreeτk (where 1� k� n) such that,
if we prune all theSτ1[X], Sτ2[X], : : : , Sτk�1[X], Sτk+1[X],
: : : , Sτn [X] from τ1, τ2, : : : , τk�1, τk+1, : : : , τn, respec-
tively, it yields thesmallest value of

Q =

k�1

∏
j=1

N(τ0j)

!
�N(τk)�

n

∏
j=k+1

N(τ0j)

!

Replace the top-level subtreesτ1, τ2, : : : , τk�1, τk+1,
: : : , τn by τ01, τ02, : : : , τ0k�1, τ0k+1, : : : , τ0n, respectively,
but leave the selected top-level subtreeτk unchanged. In
case there are two or more distinctτk that produce the
same smallest value ofQ, then arbitrarily select any of
them.

Repeat the above process until there are no duplicated
subtreesSτ j [X] andSτk [X] across any pair of distinct top-
level subtreesτ j andτk. Note, however, thatSτk [X] is
allowed to occur more than oncewithin a top-level sub-
treeτk.

aWe note the number of duplicated subtrees may be more than the
number of top-level subtrees with duplications. This is because the
same subtree may occur more than once within a top-level subtree.
The original algorithmremove duplicate by Chen and Poon did not
cater for this type of duplication and cannot, therefore, be used for
restructuring such classification trees.

In the above algorithm,N(τ0j) andN(τk) can be derived
using the formulae from [5]. SupposeT 0 denotes the classi-

fication tree after restructuring. According to the formulae
for the computation ofN p

T 0
in [5], the smaller the value ofQ,

the smaller will be the value ofN p
T 0

. Thus, by minimizing
the value ofQ, we can improve on the value ofET 0 .

There are two important properties ofremove identical,
as reflected in the two propositions that follow.

Proposition 1 (Convergence Property)
Suppose a classification treeT has been restructured using
the algorithmremove identical to form T 0. The number
of potential test cases constructed fromT 0 will be no more
than that fromT .

Proof
As seen from the restructuring algorithmremove identical,
T 0 is equivalent toT with some duplicated subtrees
pruned. Obviously, the proposition follows immediately.

�

Before we proceed to prove the second property of the
restructuring algorithmremove identical, we have to intro-
duce a few concepts. We define afeasible net F in a classifi-
cation tree as a collection of paths such that all the classes in
these paths are selectedtogether to form a whole potential
test case. Thus, the number of distinct feasible nets in the
classification tree is always equal to the number of potential
test cases. For example, in the test case table of Figure 1,
the potential test case corresponding to row 1 is formed by
selecting the feasible net that contains the pathsP1 andP8.
In most cases, a feasible net will contain more than one path
because:

(a) a typical classification tree contains more than one top-
level subtree, and

(b) at least one path within each top-level subtree must be
selected to form a potential test case.

Let τi denote a top-level subtree in a classification tree.
Given any feasible netF in the classification tree, afeasible
subnet F jτi is defined as the set of all pathsP in F such that
P is within τi. For example, supposeτ1 denotes the top-
level subtree in Figure 2 with classificationA as its root.
Then,fP1; P3g is a feasible subnet withinτ1. It is obvious
that:

(i) If every class in a classification tree has only one child
classification, as in Figure 1, then all the feasible sub-
nets in the tree will contain only one path.

(ii) If some class in a classification tree has two or more
child classifications, as in Figure 2, then some of the
feasible subnets in the tree will contain more than one
path.

Now, suppose a classification tree has two or more top-
level classifications denoted byτ1, τ2, : : : , τw. Suppose fur-
ther that:

(a) τi andτ j (where 1� i; j � w) denote two distinct top-
level subtrees containing duplicated subtreesSτi [X]
andSτ j [X], respectively, and

(b) τk (wherek 6= i, k 6= j, and 1� k � w) denotes a top-
level subtree that does not contain a duplicated subtree
Sτk [X].

The feasible subnets withinτi can be classified as follows:

(i) A feasible subnetF jτi is in F(τi; X) if some path in
the subnet contains the classificationX .

(ii) A feasible subnetF jτi is in F(τi; :X) if no path in the
subnet contains the classificationX .

Let us illustrate this concept with the classification tree
in Figure 2. Again, letτ1 denote the top-level subtreeS[A].
Then,fP1; P3g is a feasible subnet inF(τ1; C), andfP5g is
a feasible subnet inF(τ1; :C).

Having introduced the above concepts, we are now ready
to prove the second property of the new restructuring algo-
rithm remove identical.

Proposition 2 (Preservation Property)
Suppose a classification treeT has been restructured using
remove identical to form T 0. Any legitimate test case that
can be constructed fromT can also be constructed fromT 0.

Proof
We shall follow the notation used in the restructuring algo-
rithm remove identical. Without loss of generality, suppose
that

(a) the classification treeT has w top-level subtrees
denoted byτi, i = 1; 2; : : : ; w, wherew � 2,

(b) τ1, τ2, : : : , τn (wheren � w) contain duplicated sub-
trees of the formSτ1[X], Sτ2[X], : : : , Sτn [X], respec-
tively,

(c) for any 1� i � n, τ0i denotes the top-level subtree
formed by pruning all the subtrees of the formSτi [X]
from τi, and

(d) after the application ofremove identical, all the dupli-
cated subtrees in(b) are removed, except for the sub-
tree(s)Sτk [X] in one and only one top-level subtreeτk

for some 1� k � n.

Obviously, every feasible netF and the corresponding
potential test case are formed by selecting one feasible sub-
net from everyτi, i = 1; 2; : : : ; w. Any legitimate test case
constructed fromT can be classified into two types:

(i) The legitimate test case is formed by selecting one fea-
sible subnet from everyF(τi; X), i = 1; 2; : : : ; n,
and one feasible subnet from everyτi, i = n+ 1; n+
2; : : : ; w.

Obviously, all the feasible subnets inτn+1, τn+2, : : : , τw

will remain intact after restructuring becauseτ0n+1 =
τn+1, τ0n+2 = τn+2, : : : , τ0w = τw.

Consider any feasible subnetF jτi selected from
F(τi; X). Some path inF jτi must contain some class
within the duplicated subtreeSτi [X]. Consider any
such classy. It will obviously be deleted after prun-
ing all the subtreesSτi [X] from the classification tree
T . Sinceτ0k = τk, however,y must still appear in some
path of some feasible subnet inF(τ0k; X). Thus, all
the legitimate test cases of this type can still be formed
from T 0.

(ii) The legitimate test case is formed by selecting one fea-
sible subnet from everyF(τi; :X), i = 1; 2; : : : ; n,
and one feasible subnet from everyτi, i = n+ 1; n+
2; : : : ; w.

Such a test case will remain unchanged after restruc-
turing because:

� everyF(τi; :X) will be left intact, and

� τ0n+1 = τn+1, τ0n+2 = τn+2, : : : , τ0w = τw.

We shall prove by contradiction that no third type of legiti-
mate test case exists.

Suppose a legitimate test case is formed by selecting fea-
sible subnets from a mixture ofF(τi; X) andF(τ j; :X) for
i; j = 1; 2; : : : ; n (wherei 6= j), and one feasible subnet
from everyτi, i = n+1; n+2; : : : ; w. Consider any feasi-
ble subnetF jτ j selected fromF(τ j; :X). By definition, any
path inF jτ j cannot contain the classificationX , and hence
cannot contain any of its child classes. In other words, this
path must contain some child classy (in a classificationY)
that cannot coexist with any child class inX . For any fea-
sible subnet fromF(τi; X), it must contain a child classx
in X . This will contradict the fact that the test case is legiti-
mate.

Thus, any legitimate test case that can be constructed
from T can also be constructed fromT 0. �

Let us use Example 2 to illustrate the application of the
restructuring algorithmremove identical and to show the
improvement inET .

Example 2
Consider the classification treeTbonus in Figure 1. Letτ1

and τ2 denote the top-level subtreesS[Class of Seat] and
S[Total Mileage], respectively.

Consider the duplicated subtreesSτ1[Price of Ticket] and
Sτ2[Price of Ticket]. There are two alternative ways of
restructuringTbonus using the algorithmremove identical:

(a) PruneSτ1[Price of Ticket] from τ1, or

(b) PruneSτ2[Price of Ticket] from τ2.

Figures 3 and 4 depict the two classification trees after
the above ways of restructuring, respectively. Letτ01 be the
result of pruningSτ1[Price of Ticket] from τ1, andτ02 that
of pruningSτ2[Price of Ticket] from τ2. Using the formu-
lae presented in [5],N(τ01)�N(τ2) = 20 for Figure 3, and
N(τ1)�N(τ02) = 18 for Figure 4. Hence, the restructured
classification tree in Figure 4 should be chosen.

A close examination of the restructured classification
tree in Figure 4 reveals that it still contains the duplicated
subtreesSτ1[Upgraded Class] andSτ02

[Upgraded Class]. The
restructuring algorithmremove identical should therefore
be applied again to prevent duplication. The resultant class-
ification treeT 0

bonus after the second application is depicted
in Figure 5.

From the preservation property of the restructuring
algorithmremove identical, we can guarantee that the five
legitimate test cases constructed fromTbonus before restruc-
turing can still be constructed fromT 0

bonus. Hence,Nl
T 0

bonus
=

Nl
Tbonus

= 5. On the other hand,N p
T 0

bonus
is found to be 12

using the formulae in [5]. Thus,ET 0

bonus
= 5

12 = 0:42. When
compared withETbonus

= 0:17, the improvement is about
147% and therefore quite significant. �

4. Conclusion

Chen and Poon [4, 6] provided a methodology for
constructing a classification tree from a given set of
classifications and associated classes via the notion of a
classification-hierarchy table. They observed that(a) the
quality of classification trees depends on the effective-
ness of constructing legitimate test cases, and(b) a major
reason for a poor quality is the occurrence of duplicated
subtrees under different top-level classifications. From
these observations, they defined an effectiveness metric
for classification trees and developed a tree-restructuring
algorithmremove duplicate to improve on the value of the
metric.

We have proposed in this paper a new restructuring al-
gorithmremove identical to supplementremove duplicate.
We have proved that our new algorithm not only preserves
the legitimate test cases but is also converging.

Upgraded
Class

Yes No

P1()

P2() P3() P4()

P5() P6()

P7() P8() P9()

P10() P11()

Upgraded
Class

Yes No

T
re

e
C

la
ss

ifi
ca

tio
n

T
es

t C
as

e
T

ab
le

Price of
Ticket

Price of
Ticket

Seat

Business EconomyFirst

1
2
3

Note: Only part of the test case table is shown

< 1000 >= 1000

Normal Discounted

PassengerStaff

Discount
Type of

Normal Discounted

PassengerStaff

Discount
Type of

Total
Mileage

Class of

Figure 1. Classification tree for bonus point program and part of the test case table

6() P 7() P 9() P 10()

P 5() P 8()

those in lower case are classes.
Note: Letters in upper case are classifications, whereas

P 1() P 2() P

Symbols enclosed in brackets represents paths.

3() P 4() P

a2 b2 b3

c 1 c 2

C

c 1 c 2

C

1

D

d1 d2

b1

c 1 c 2

C

a

A B

Figure 2. Duplicated subtrees under the same top-level classification

Upgraded
Class

Yes No

Upgraded
Class

Yes No

Price of
Ticket

BusinessFirst Economy < 1000 >= 1000

Normal Discounted

PassengerStaff

Discount
Type of

TotalClass of
Seat Mileage

Figure 3. The resultant classification tree after pruning Sτ1[Price of Ticket]

Upgraded
Class

Yes No

Price of
Ticket

Normal Discounted

PassengerStaff

Discount
Type of

Upgraded
Class

Yes No

BusinessFirst Economy < 1000 >= 1000

Class of
Seat Mileage

Total

Figure 4. The resultant classification tree after pruning Sτ2[Price of Ticket]

Upgraded
Class

Yes No

Price of
Ticket

BusinessFirst Economy

Normal Discounted

PassengerStaff

Discount
Type of

Class of
Seat

< 1000 >= 1000

Total
Mileage

Figure 5. The final classification tree T 0

bonus
after restructuring

References

[1] P. Ammann and J. Offutt. Using formal methods to derive
test frames in category-partition testing. InSafety, Reliabil-
ity, Fault Tolerance, Concurrency, and Real Time Security:
Proceedings of 9th Annual IEEE Conference on Computer
Assurance (COMPASS ’94), pages 69–79, June 1994. IEEE
Computer Society Press, Los Alamitos, California.

[2] R. Bache and M. M¨ullerburg. Measures of testability as a
basis for quality assurance.Software Engineering Journal,
5(3):86–92, March 1990.

[3] M. J. Balcer, W. M. Hasling, and T. J. Ostrand. Automatic
generation of test scripts from formal test specifications. In
Proceedings of 3rd ACM Annual Symposium on Software
Testing, Analysis, and Verification (TAV ’89), pages 210–
218, December 1989. ACM Press, New York.

[4] T. Y. Chen and P. L. Poon. Classification-hierarchy table: A
methodology for constructing the classification tree. InPro-
ceedings of 1996 Australian Software Engineering Confer-
ence (ASWEC ’96), pages 93–104, July 1996. IEEE Com-
puter Society Press, Los Alamitos, California.

[5] T. Y. Chen and P. L. Poon. Improving the quality of
classification trees via restructuring. InProceedings of
3rd Asia-Pacific Software Engineering Conference (APSEC
’96), pages 83–92, December 1996. IEEE Computer Society
Press, Los Alamitos, California.

[6] T. Y. Chen and P. L. Poon. Construction of classification
trees via the classification-hierarchy table.Information and
Software Technology, 39(13):889–896, December 1997.

[7] T. Y. Chen and P. L. Poon. Teaching black box testing.
In Proceedings of Software Engineering: Education and
Practice Conference (SE:E&P ’98), pages 324–329, January
1998. IEEE Computer Society Press, Los Alamitos, Califor-
nia.

[8] T. Chusho. Test data selection and quality estimation based
on the concept of essential branches for path testing.IEEE

Transactions on Software Engineering, 13(5):509–517, May
1987.

[9] R. Ferguson and B. Korel. The chaining approach for soft-
ware test data generation.ACM Transactions on Software
Engineering and Methodology, 5(1):63–86, January 1996.

[10] M. Grochtmann and K. Grimm. Classification trees for par-
tition testing.Software Testing, Verification and Reliability,
3(2):63–82, June 1993.

[11] M. Grochtmann, J. Wegener, and K. Grimm. Test case de-
sign using classification trees and the classification-tree edi-
tor CTE. InProceedings of 8th International Software Qual-
ity Week (QW ’95), 1995. Software Research Institute, San
Francisco, California.

[12] B. Korel. Automated test data generation for programs with
procedures. In S. J. Zeil, editor,Proceedings of 1996 ACM
International Symposium on Software Testing and Analy-
sis (ISSTA ’96), pages 209–215, January 1996. ACM Press,
New York.

[13] A. J. Offutt and A. Irvine. Testing object-oriented software
using the category-partition method. In R. K. Ege, M. Singh,
and B. Meyer, editors,Proceedings of 17th International
Conference on Technology of Object-Oriented Languages
and Systems (TOOLS 17), pages 293–304, August 1995.
Prentice Hall, Englewood Cliffs, New Jersey.

[14] T. J. Ostrand and M. J. Balcer. The category-partition
method for specifying and generating functional tests.Com-
munications of the ACM, 31(6):676–686, June 1988.

