-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

Efficiently rendering large volume data using texture mapping

Title hardware

Author(s) Tong, X; Wang, WP; Tsang, WW,; Tang, Z

Joint EUROGRAPHICS - IEEE TCCG Symposium on
Citation Visualization Proceedings, Vienna, Austria, 26-28 May 1999, p.
121-132

Issued Date | 1999

URL http://hdl.handle.net/10722/48433

Rights Creative Commons: Attribution 3.0 Hong Kong License

https://core.ac.uk/display/37885942?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

¢s, pages

efficient,
tendering

1ographic
me Visu-

g-varying
1997.

irbulence
Jomputer

mposium

he shear-
Graphics,

orization
451-458,

on of the
Septem-

ed paral-
nposium,

onnected
‘ose, CA,

e volume
Yancisco,

r, editor,
ng of the
-memory

Phoenix,

lume vi-
180-187,

ume ren-
Orlando,

2l volume
October

Efficiently Rendering Large Volume Data Using
Texture Mapping Hardware

Xin Tong', Wenping Wang?, Waiwan Tsang?, Zesheng Tang'

' CAD Laboratory, Department of Computer Science, Tsinghua University,
Beijing, 100084, P. R. China
ztang@tsinghua.edu.cn
? Department of Computer Science, University of Hong Kong,
Pokfulam Road, Hong Kong
{wenping, tsang}@cs.hku.hk

Abstract. Volume rendering with texture mapping hardware is a fast volume
rendering method available on high-end workstations. However, limited texture
memory often prevents the method from being used to render large volume data
efficiently. In this paper, we propose a new approach to fast rendering of large
volume data with texture mapping hardware. Based on a new volume-loading
pipeline, the volume data is preprocessed in such a way that only the volume data
that contains object voxels are loaded into texture memory and resampled for
rendering. Moreover, if classification threshold is changed, our algorithm
classifies and processes the raw volume data accordingly nearly in real time. Our
tests show that about 40% to 60% rendering time is saved in our method for large
volume data.

1 Introduction

In scientific visualization, direct volume rendering is used to generate high quality
semi-transparent images with details. As millions of voxels are usually involved in
rendering, the amount of computation is enormous. Although much effort has been
made to shorten the rendering time [3]{5][7][10], the real-time direct rendering of the
volume data still cannot be achieved by software.

The rapid progress of graphics hardware development offers new possibility for real
time volume rendering [1]. Carbral [2] first proposed to use 3D texture mapping
hardware to render volume data in 1994. Since then, several improved algorithms and
implementations have been reported [4][11]. In these methods, the volume data is
rendered via the texture mapping hardware in two steps. As shown in Fig. 1, in the first
step for volume loading, volume data are read from a disk file (i.e., the first level) into
volume buffer (i.e., the second level) in main memory. Then the data are loaded into
texture cache (i.e., texture memory, the last level) and defined as 3D texture maps. In
the second step for volume rendering, a set of polygons are used to resample the volume
data by texture mapping and then these texture mapped polygons are blended from
back to front to generate the final image. For volume data that can reside entirely into
the texture cache, the volume loading step is done only once. In the following rendering

122

step, the texture mapping and composition operations are performed by hardware very
quickly, about ten frames per second or higher. However, due to limited texture
memory supported by hardware, large volume data must be divided into several blocks
and rendered one by one. For such large volume data, the increased time on resampling
texture 1/0 will reduce the frame rate greatly.

Volume || .| Volume | |
Data File | Buffer |

Hard Disk

— Volume loading II

> Volume rendering

Texture
Cache

I i
Texture |
| Mapping | =

Fig. 1. The diagram of the conventional method

L Final
Image

In fact, in many visualization applications, lots of voxels in volume data are so-
called empty voxels, which belong to the background or parts of no interest. As the
empty voxels are often treated as transparent (alpha=0) in rendering, skipping the
empty regions may speed up volume rendering significantly, while not affecting image
quality at all [12]. Unfortunately, in most existing methods [2][4][11], classification is
performed by a hardware look-up table in the volume rendering step so that all the
volume data must be loaded into the texture memory for rendering. In addition, since
the texture mapping hardware requires that data in volume buffer be stored as a 3D
array, volume data can not be processed efficiently using the three-level volume
loading pipeline.

In this paper we propose an algorithm to speed up the volume rendering with 3D
texture mapping hardware. Unlike conventional method, a four-level volume-loading
pipeline is exploited to classify and preprocess volume data efficiently. After the
volume data is classified into empty voxels and object voxels, only the parts that
contain the object voxels are loaded into the texture memory for rendering, while the
empty voxels will be kept in volume buffer but not loaded into texture memory. In this
way, the volume rendering step is also accelerated by avoiding the unnecessary
resampling operations.

The rest of the paper is organized as follows. In section 2, the related work is
reviewed. Our algorithm is described in detail in section 3. Section 4 gives the
experimental results. The paper is concluded in section 5.

2 Related Work

Skipping empty regions is a well-known acceleration technique that has been
extensively exploited by ray casting type volume rendering algorithms. Marc Levoy [8]
employed an octree of the binary volumes to enumerate the presence of objects in
volume data. Thus for the ray casting method, the ray can skip the largest empty space

contai
structu
to be
object
diffict
In |
from ¢
the vo
then b
voxels
traver:
proxir
In add
modif
The
that c«
object
directi
that pc
resam|
mappi
render
be use
hardw
spent ¢
The
the en
render
hardw

3 Eff

3.1 Sy

As shc
Howe:
is add
volum
Three
thresh
bound
texture
buffer
1/0O. In

wvare very
d texture
-al blocks
sampling

Final
Image

1 are so-
t. As the
ping the
1g image
cation is
it all the
n, since
as a 3D
volume

with 3D
-loading
fter the
irts that
'hile the
". In this
lcessary

work is
ves the

S been
voy [8]
jects in
Y Space

123

containing the current sampling point by traversing the octree. However, the octree data
structure of binary volumes not only occupies auxiliary memory space but also needs
to be reconstructed whenever the classification threshold is altered. Moreover, since
object voxels are represented by a set of octree nodes with different sizes, it is then
difficult to render these nodes by texture mapping hardware.

In proximity-clouds methods [3][14], an auxiliary distance volume is constructed
from original volume data: In the distance volume each voxel value'is the distance from
the voxel to the closest object voxel. If the current resample point on a ray is at a voxel,
then based on the distance value of the voxel the next resample point can leap to object
voxels quickly, so that many unnecessary resampling can be avoided. Although
traversing the distance volume is more efficient than traversing the octree, the
proximity-clouds methods need large additional memory to store the distance volume.
In addition, it takes long time to compute the distance volume when the classification is
modified.

The PARC approach [10] uses graphics hardware to identify the segments of rays
that contribute to the final image. Given a classification threshold, the outer faces of
object cells are presented by a set of rectangular polygons. Then for each view
direction, the polygons are projected into the zbuffer twice to obtain the ray segments
that possibly contribute to the final image and only these ray segments are traversed and
resampled in ray casting. Unfortunately, because the depth test occurs after the texture
mapping in the graphics pipeline, the PARC method cannot be used for volume
rendering with texture mapping hardware. Although the envelope of object voxels can
be used to clip the resampling polygons in volume rendering with texture mapping
hardware, only resampling operations in the rendering step can be reduced and the time
spent on volume loading step is not reduced at all.

The shear-warp method [5] takes advantage of spatial coherence of voxels to skip
the empty regions in volume data. The method also cannot be applied in the volume
rendering with texture mapping hardware, as the volume must be resampled by
hardware slice by slice.

3 Efficient Rendering of Large Volume Data

3.1 System Overview

As shown in Fig. 2, our method also contains two steps: volume loading and rendering.
However, a four-level volume-loading pipeline is adopted, where a new texture buffer
is added between volume buffer and texture cache. In the volume loading step, the
volume data is divided into several volume blocks and loaded into volume buffer first.
Three min-max arrays are then built for each volume block. Given a classification
threshold, empty voxels in each volume block are identified and trimmed off by the
bounding boxes of object voxels. These trimmed volume blocks are transferred into a
texture buffer and defined as texture blocks. Finally the texture blocks in the texture
buffer are merged into bigger texture chunks to reduce the overload of texture memory
[/O. In the volume rendering step, after the texture chunks are sorted according to a

124

given view direction, they are loaded into texture cache from back to front. Then the
texture blocks are resampled by a set of polygons that are clipped by the bounding
boxes. After blending all the texture-mapped polygons to the frame buffer, a new image

is generated for display.
Volume Texture [
Buffer Buffer |{§
ain Memory |

Volume
Data File

Hard Disk

— Volume loading

Final
—=—> Volume rendering Image

Fig. 2. The diagram of our new volume rendering method

In our method the parameters of volume-loading pipeline are determined by the
configuration of texture cache, while texture cache that lies in the texture memory is
configured by the operating system and special hardware implementation. In general,
the following rules are compatible with texture cache, where the n, m, s and & are
constant determined by the configuration of texture memory [9]:

e The texture data that will be loaded in the texture cache must be stored in an array.
¢ The texture maps in the texture cache is stored in a tiled page mode.

o The size of texture page is 2"x2" for 2D texture and 2"x2"x2 for 3D texture.

e A texture page is the minimum unit for 3D texture 1/0.

e At most 2 texture pages can be resident in texture cache at same time.

We suppose that a volume data is axis-aligned and stored as an /x mx n 3D array.
The length of the volume (in voxels) in X, ¥, Z direction is / m, n respectively.
Suppose V; , ; denoted the voxel value of voxel (4 /, k) as in the 3D array.

3.2 Volume Loading

The volume loading step can be divided into three phases. The whole volume data is
uniformly subdivided into several blocks and loaded into the volume buffer first (see
section 3.2.1). Next the volume block is classified and trimmed by the bounding boxes
of object voxels, and the trimmed blocks are then moved into texture buffer (see section
3.2.2). Finally, in order to optimize the [/O performance of texture cache, the texture
blocks are merged (see section 3.2.3).

3.2.1 Volume Buffer loading and min-max array generation
In this stage, volume data is subdivided into several volume blocks. In order to avoid
artifacts caused by seams between adjacent blocks in the final image, each block shares

its bou
selectir
regions
redund:
cannot

fragme
hardwa
optimiz
our mef

e The
e The
simp

Give
volume

If the la
part of
29 data
minimu
corresp

322D
A blocl
contain
of the
block al
the texti

After
the bloc
defined

o V

Lk

~

The 1
box. Ac
In the fi
block al
second
means t
case, an
block. Ii
a grey |

t. Then the
: bounding
new image

2d by the
1emory is
1 general,
ind £ are

in array.

re. r

’D array.
iectively.

€ data is
rst (see
1¢ boxes
> section
: texture

0 avoid
k shares

125

its boundary voxel data with its neighboring blocks. Two factors are considered in
selecting the block size. On one hand, the smaller is the block size, the more empty
regions can be excluded. On the other hand, smaller blocks would result in more
redundant data on the overlapping boundaries of the blocks and in fact the block size
cannot be less than the size of the texture page. Moreover, the large number of texture
fragments with irregular sizes after trimming would cause the overhead of graphics
hardware, and it is also difficult to merge these small blocks into bigger blocks to
optimize /O of texture memory. On that account, the size of volume block is chosen in
our method to be the size of the smallest block that satisfies the following two rules:

¢ The volume block must contain at least one texture page.
e The volume block must have equal length along each axis. This rule is used to
simplify the following merging operation.

Given the size 27 of volume blocks, volume data is loaded from a disk file into the
volume buffer block by block. The number of blocks is

[l—l" l'm—l] l'n—l-' (1)
291271 29

If the last block along an axis cannot be fully filled with the volume data, the remaining
part of the block is supposed to be filled with empty voxels. An array is created for the
2¢ data slices of the block along one axis; each element of the array records the
minimum and maximum.data value of the corresponding slice. Three arrays that
correspond to three coordinate axes are set up for each volume block.

3.2.2 Data classification and volume block trimming
A block list is generated after the above preprocessing step. Each node of the list
contains a pointer to a volume block, the min-max arrays of the block and the position
of the volume block in world space. At this stage, most empty voxels in the volume
block are excluded so that the block will be trimmed to a smaller size and moved into
the texture buffer.

After a classification threshold is specified by the user, the three min-max arrays of
the block are traversed to find three intervals [L,, R], [L, R] and [L, R,] that are
defined on X Y, Zaxes respectively, such that:

e V., ,areempty voxels forall /< R andall /> R,

e V., «areempty voxels forall j< R andall /> R,

1

sV, iare empty voxels forall k< R,and all k> R,

)

The three intervals listed above bound the object voxels of the volume block in a
box. According to the volume of this bounding box, there are three cases for one block.
In the first case, the volume of the bounding box is zero. Obviously, all the voxels in the
block are empty voxels in this case, so the block is marked as a white block. In the
second case, the volume of the bounding box is the same as that of the block, which
means that the block cannot be trimmed. The block is marked as black block in this
case, and all the data in the volume block are moved into the texture buffer as a texture
block. In the last case, part of the block can be trimmed off, and the block is marked as
a grey block first. Then we choose the trimming axis to be the one along which the

126

interval length is the shortest. After that, the block is trimmed along the trimming axis.
The remaining part that contains object voxels are moved into the texture buffer as a
texture block. A 2D example is shown in Fig. 3, where the trimming axis is the Y axis.
Only the empty voxels V,;, with /<L and />R, are trimmed off. Although the empty
voxels that lie out of the other four faces of the bounding box are retained, they will be
skipped to avoid resampling in rendering step. Hence after being trimmed along the
trimming axis s, the size of texture block is 2x2'xd, where d,=R.— L +1. Finally, the
information about the bounding box is saved in the node of the block list.

[] Border of block

Object voxels

(a) A white block (b) A black block (¢) A grey block before and
after trimming

Fig. 3. The 2D illustration of the block trimming

After trimmed blocks are moved into the texture buffer, the volume data is divided
into two parts. The texture blocks that contain object voxels are moved into the texture
buffer, while the empty parts are trimmed off and stored in the volume buffer.

3.2.3 Texture block merging

Although the texture blocks could be directly loaded into texture memory for rendering
now, the frequent texture 1/0 and binding operations would degrade the performance of
the algorithm seriously. So we will try to merge the texture blocks into bigger texture
chunks before rendering.

In this stage, the texture blocks are grouped into clusters first. A cluster contains uxv
adjacent texture blocks with the same index along Z. If all of the texture blocks are
black blocks, the size of the cluster is the same as the size of the texture cache. That is,
the texture blocks in a cluster can reside in the texture cache at the same time. The
constants # and v can be computed from the size of the volume block easily. If
necessary, some white blocks are added into the last clusters along the axis. The
position of the texture block in the texture cache (i.e. the texture coordinates) is also
recorded in the block node.

After grouping, the texture blocks are merged in two steps: merging in cluster and
merging between clusters. In each step, two basic merge operations are executed for a
pair of texture-blocks: horizontal merge and vertical merge. The merge operation and
the procedure of merging blocks are described below.

3.2.3.1Merge Operation

e Horizontal merge

As shown in Fig. 4(a), two blocks with the smallest difference of their thickness (block
length along Z axis) are selected and merged into a 2/ x2/xd,, chunk, where d,=max

m

(dypock » Toock2)- Thus for a thinner data block, the extended part will be filled with empty

voxels.

extra en
memory
step.

e Vert

As sho
yjock) 1€
blocks
source |
extende
it. The
necessa

3232,
The text
not 2, t
trimmin
pair of b
merged
of textur

32331
After the
cluster 1
parallel

along th
whether

aming axis,
buffer as a
the Yaxis.
the empty
hey will be
1 along the
“inally, the

is divided
he texture
r.

rendering
rmance of
er texture

tains yxy
locks are
:. That is,
ime. The
easily. If
ixis. The
s) is also

Aster and
ited for a
ttion and

is (block
4,,=max
h empty

127

voxels. The original thickness of the block is saved in the block node. Although some
extra empty voxels have to be added into the texture chunk, this would speed up texture
memory 1/O and the empty voxels can be skipped without resampling at the rendering
step.

o Vertical merge

As shown in Fig. 4(b) and 4(c), If the thickness of the two blocks satisfy
ytocks o xS2", the two blocks can be piled up together. The two original texture
blocks will be directly merged into a chunk of size 2’x2/x (d,;. ., #dyoiz). If one of
source blocks has been horizontally merged into a chunk of size 2"/x2xd . the
extended part in this chunk is excluded first. Then the other original block is piled up to
it. The result is a chunk of size 2*/x2xd,,,, where d,.,=max (d,, dy,u;*dypes). 1T

necessary, some empty voxels are used to fill in the extended part.

o 5 - @ Texture blocks

@ The extended part
fill with empty

e
tY iz tY iz
(b) Vertical merge (c) Vertical merge

Fig. 4. The horizontal and vertical merge operation

3.2.3.2 Merging in cluster

The texture blocks in a cluster are checked first. If the trimming axis of a data block is
not Z, the texture block is rotated and reorganized in the texture buffer so that the
trimming axis is changed to Z. Two kinds of merge operations are executed until no
pair of blocks in the cluster can be merged. In horizontal merge, pairs of blocks will be
merged according to the ascending order of their thickness difference. That is, the pair
of texture blocks with the smallest thickness difference will be merged first.

3.2.3.3 Merging Between clusters

After the above merge operations, the texture blocks that have not been merged in the
cluster may be merged further if the merging between clusters is considered. For
parallel projection of the volume data, the texture clusters are traversed and rendered
along the Z axis first, then along the Y axis, at last along the X axis. For each axis,
whether ascending or descending order of the indices is used for traversing is

128

determined by the view direction. Hence, a sequence of clusters {B, ; , | /<k<N,, N, is
the number of clusters along Zaxis} are loaded into the texture memory sequentially. If
two texture blocks from adjacent clusters along Z axis are merged, after loading the
merged texture chunk into texture memory for rendering one cluster, the other texture
block in the adjacent cluster is also resident in texture memory. Thus the latter block
needs not to be loaded again when rendering the adjacent cluster.

In this step, for each row of clusters along Z direction (that is, the clusters with same
X and Y indices), if there are texture blocks that have not been merged in pair of
adjacent clusters, the two merge operations are executed for them. Fig. 5 shows two
examples of the merge between clusters, where the cluster contains 4 texture blocks.

Texture block that Extended part White Other blocks
can be merged after merging blocks in cluster

S o

........

After Before After

Before
Merging Merging Merging Merging

Fig. 5. Two examples of merging between clusters

Note that in Fig. 5, although the merged chunk is drawn twice in resulting clusters,
only one copy of the merged texture chunk is stored in the texture buffer, and
referenced by the pointers of block nodes in two clusters. This guarantees that the
merged data can always be loaded and resident in texture memory for rendering the two
clusters with different traversing orders.

3.2.3.4 Notes about the texture block merging

In the above merging procedure, the texture blocks are rotated, moved and merged in
the texture buffer. In order to keep the correct texture mapping, the block position in the
world space is reserved in the block node, while the texture coordinates of the block
need to be updated accordingly. Thus during rendering, the trimmed blocks will “stay”
in the original position in world space so that the volume blocks can be rendered
correctly for a given view direction. A 2D example is illustrated in Fig. 6.

In addition, for a set of texture blocks, different orderings of the texture merging
operations would lead to different merging results. For a special configuration of the
texture hardware, texture blocks with different sizes should be loaded with the different
speeds. Adjusting the order of the merging operation properly may produce texture
chunks that lead to higher texture 1/0 performance.

(-32.0.-
\

Fig. 6. T
texture ¢
coordin:
block ca

3.3 Vol

For any
texture
order, t
cluster.
texture
cache.]
is white
by a set
in each
inside t
back to

4 Exp:

Our m
R10000
size of
128x12

<N,, M, is
ientially. If
oading the
her texture
atter block

with same
in pair of
shows two
: blocks.

locks
iter

fter
rging

; clusters,
ffer, and
» that the
g the two

lerged in
on inthe
he block
il “stay”
rendered

merging
m of the
different
' texture

129

<-32.0,32.O)AY(32,0,32.0) (0.0.1.0 (1.0,1.0)
A b A b A(-32.0,32.0)—>A(0.0, 1.0)
B(-32.0,0.0) —»B(0.0, 0.5)
= = B C C(0.0,0.0) —»C(0.5,0.5)
X R D(0.0,32.0) —D(0.5, 1.0)
(-32.0.-32.0)! (-32.0.32.0) (0.0.0.0 (1.0,0.0)
world space texture space
Y
(-32.0,32.0)A " (32.0,32.0) (o,o,l,o)“m (1.0,1.0)
A b A(-32.0,32.0—»A(0.5, 0.0)
D c B(-32.0,0.0) —»B(1.0, 0.0)
- C(0.0,0.0) —»C(1.0, 0.5)
B C X
R D(0.0,32.0) —D(0.5,0.5)
* 0.0.0.0 =
(32,0320 (3203200 ¢ A B(L000)

world space texture space

Fig. 6. The top figure shows a block ABCD and its corresponding data (i.¢. texture) stored in the
texture space. After moving and rotating the data in texture space (bottom figure), the texture
coordinates of the block is updated accordingly, while the world coordinate is preserved So the
block can be rendered with the same texture. -

3.3 Volume Data Rendering

For any given view direction, the traverse order (ascending or descending) of the
texture clusters along each axis is determined first. Then according to the viewing
order, the texture clusters are traversed from back to front, and rendered cluster by
cluster. If all blocks in a cluster are white blocks, the cluster is skipped. Otherwise, the
texture chunks that do not reside in the texture cache are now loaded into the texture
cache. The texture blocks in the cluster are also rendered from back to front. If a block
is white, it is skipped without any further operation. Otherwise, the block is resampled
by a set of parallel polygons from back to front. The bounding box of the object voxels
in each texture block is used to clip the resampling polygons so that only the voxels
inside the bounding box are resampled. After composing all resampling slices from
back to front, the final image can be displayed on the screen.

4 Experimental Results

Our method has been implemerted on SGI Octane/MXI, configured with
R10000/195MHZ CPU, 128MB memory and 4MB texture memory. On this system the
size of the texture page is 4k(32x64x2)[10] and the size of texture cache is
[28x]28x64. Thus the size of the volume block is 64x64x64. The texture cluster is

130

composed of 2x2 texture blocks. Since in our platform the texture block with longer
length along X axis is loaded faster than other texture blocks, the horizontal merge is
used before the vertical merge in texture merging step.

We have compared our algorithm with three other algorithms. Algorithm I is an
implementation of the conventional method {2]. In Algorithm II, the resample polygons
are clipped by the envelope of object voxels. To show the effect of the merge operation,
an implementation of our method without the merge operation is tested as Algorithm
I11. The full version of our algorithm is implemented as Algorithm IV. Six data sets
from [6][8][13] are used for the test, where the size of the test image is 400x400. The
experimental results are listed in Table I, where

* Data PI'OC@SSlng Time = Time data classification +Time block trimming + Time block merging
number of empty voxl es

e Empty = x 100%

number of voxels
_ (Renderinglimel - RenderingTimel V)

¢ S ten x100%
Renderinglimel
Table 1. The experiment results of the four algorithms
Algorithm | | Algorithm I1 | Algorithm 111 Algorithm 1V
Data Data Size Empty Repdering Re;ldcx‘illg Re.ndering Rgl\del‘ing Date{
(%) Time (s) Time (s) Time (s) Time (s) S(%) Processing
Time (s)
Head | 256x256x128 | 74.1 0.700 0499 0.406 0.287 590 0.156
Head 11 512x512%56 68.4 0.963 0.740 0.787 0.510 470 0.140
Body I 512x512x78 70.7 1.329 1.032 1.022 0.652 509 0.242
Frog 500x470x176 | 834 1.963 1.446 1.235 0.786 59.9 0374
Foot 250%512%352 | 766 2.552 2.056 1.578 0978 61.7 0.535
Head Il | 512x512x256 | 67.0 3.575 3166 2.792 1.604 551 2.624
Rendering Time (s)
4.0 r
35 F .
3.0 W Algorithm I
23T . 8 Algorithm 11
20 b § gorithm
15 | . .
§\\ W Algorithm III
1.0 - §
05 | u | .
0.0 L L 0 Algorithm 1V

Head] Headll Body! Frog Foot Head Il

Fig. 7. The rendering time of four algorithms

As shown in Fig. 7, compared with the conventional method, about 40% to 60%
rendering time can be saved by our method for the test data sets. Our method is also
significantly faster than the Algorithm I1 and Algorithm I11.

Fig.8
mappin;
data set
images
image. |
renderir

In ou
blocks ¢
are mo\
volume
approxi

5 Con

To sumi
texture
level v
efficien
volume
voxels.
blocks.
perform
the boul
operatio
of rend
factor o
min-ma
processt
Inou
the HE /
preproc
volume
object v
the text
investig
possibil
data on

Refere

1 Akele
116

h longer
nerge is

1 [is an
olygons
yeration,
gorithm
lata sets
00. The

w

to 60%
is also

131

Fig.8 is the rendering result of the Head I data set by the conventional texture
mapping hardware assisted volume rendering. Fig. 9 is the rendering result of the same
data set by our new method. There is no difference between the visual quality of two
images because the excluded and skipped empty voxels contribute nothing to the final
image. Fig. 10 is the rendering result of the Frog data set by our algorithm. Fig. 11 is the
rendering result of the Foot data set.

In our method, after the classification threshold is modified by the user, the volume
blocks are classified again, and then only the texture blocks that contain object voxels
are moved into the texture buffer for rendering. As listed in Table 1, although the
volume data cannot be processed in real time, the time spent for processing is
approximately on the same order of the rendering time.

5 Conclusion and Further Work

To summarize, we proposed an acceleration method to render large volume data with
texture mapping hardware. Unlike the conventional method, our method uses a four-
level volume-loading pipeline, through which the volume data can be processed
efficiently before rendering. In the volume loading step, the empty voxels in the
volume blocks are identified and trimmed off by the bounding boxes of the object
voxels. Then the trimmed blocks are loaded into the texture buffer and become texture
blocks. Finally, the texture blocks are merged into texture chunks to optimize the I/O
performance of texture cache. During rendering, the resampling slices are clipped by
the bounding box. As a result, both texture memory 1/O and the texture resampling
operations are reduced effectively. Experiments show that our method boosts the speed
of rendering large volume data with texture mapping hardware approximately by a
factor of 2. Moreover, the classification of the volume data is also accelerated by the
min-max arrays of the volume blocks. Thus the raw volume data can be classified and
processed quickly for the modified classification threshold.

In our method, if the volume data cannot be entirely stored in the main memory (e.g.,
the HEAD III data set), the frequent memory swapping operation would result in long
preprocessing time. Fortunately, the volume data can be compressed and stored in the
volume buffer. After the volume data is classified, only the texture blocks that contain
object voxels are reconstructed from the compressed data on the fly and then moved to
the texture buffer. In our further work different kinds of compression methods will be
investigated to find the best compression scheme for our method. In addition, the
possibility of using our method to render multiresolution volume data or the volume
data on remote machine will also be explored in the future.

References

1 Akeley. K..: RealityEngine Graphics. In Proceedings of ACM SIGGRAPH’93. (1993) 109-
116

132

2 Cabral, B., Cam. N., and Foran. J,: Accelerated Volume Rendering and Tomographic
Reconstruction Using Texture Mapping Hardware. ACM Symposium on Volume
Visualization. (1994) 91-98

3 Cohen, D. and Shefer, Z.,: Proximity Clouds - An Acceleration Technique for 3D Grid
Traversal. Technical Report FC93-01, Ben Gurion University of the Negev. (1993)

4 Gelder, A. V. and Kim, K.,: Direct Volume Rendering with Shading via 3D Textures. In
Proceedings of ACM Symposium on Volume Visualization. (1996) 23-30

5 Lacroute, P. and Levoy, M.,: Fast Volume Rendering Using a Shear-Warp Factorization of the
Viewing Transformation. In Proceedings of ACM SIGGRAPH’94. (1994) 451-458

6 LBL.,: Whole Frog Project. From http://www-itg.Ibl.gov/. (1994)

7 Levoy, M.,: Efficient Ray Tracing of Volume Data. ACM Transactions on Graphics. Vol. 9,
No. 3, (1990) 245-261

8 NLM..: Http://www.nlm.nih.gov/research/visible/visible_human.html. (1997)

9 Silicon Graphics.: OpenGL on Silicon Graphics System. From
http://trant.sgi.com/opengl/docs/docs.html. (1997)

10 Sobierajski, L. M., and Avila, R. S.,: A Hardware Acceleration Method for Volumetric Ray
Tracing. In Proceedings of IEEE Visualization’95. (1995) 27-34

11 Westermann, R. and Ertl, T.,: Efficiently Using Graphics Hardware in Volume Rendering
Applications. In Proceedings of ACM SIGGRAPH’98. (1998) 169-178

12 Yagel, R.,: Towards Real Time Volume Rendering. Proceedings of Graphicon’96. Vol. 1,
July, (1996) 230-241

13 Zubal, 1.G., Harrell, C.R., Smith E. O., Rattner, Z., Gindi, G. R. and Hoffer, P. B.,:
Computerized Three-dimensional Segmented Human Anatomy. Medical Physics, Vol. 21,
No. 2, (1994) 299-302

14 Zuiderveld, K., Koning, A. H. J., and Viergever, M. A.,: Acceleration of Ray Casting Using
3D Distance Transforms. In Proceedings of Visualization in Biomedical Computing 1992.
October, (1992) 324-335,.

Editors” Note: see Appendix, p. 323 for colored figures of this paper

