
Title Performance guarantee for EDF under overload

Author(s) Lam, TW; Ngan, TWJ; To, KK

Citation Journal Of Algorithms, 2004, v. 52 n. 2, p. 193-206

Issued Date 2004

URL http://hdl.handle.net/10722/48426

Rights Creative Commons: Attribution 3.0 Hong Kong License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37885935?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


This is a pre-published versionThis is a pre-published version

Performance Guarantee for EDF under Overload
∗

Tak-Wah Lam†‡ Tsuen-Wan Johnny Ngan§‡ Kar-Keung To†

October 17, 2003

Abstract. Earliest deadline first (edf) is a widely used algorithm for online
deadline scheduling. It has been known for long that edf is optimal for scheduling
an underloaded, single-processor system; recent results on the extra-resource anal-
ysis of edf further revealed that edf when using moderately faster processors can
achieve optimal performance in the underloaded, multi-processor setting. This pa-
per initiates the extra-resource analysis of edf for overloaded systems, showing that
edf supplemented with a simple form of admission control can provide a similar
performance guarantee in both the single and multi-processor settings.

Key words: online algorithms, extra-resource analysis, firm deadline scheduling, earli-
est deadline first.

1 Introduction

This paper is concerned with online algorithms for scheduling jobs with deadlines. A
typical example is the earliest deadline first (edf) algorithm, which has been widely used
in real-time systems (see [15] for a survey). It is well-known that edf is optimal for a
single processor system that is underloaded, i.e., whenever there exists an offline schedule
meeting the deadlines of all jobs released, edf can always do so [7]. However, when
the system is overloaded or involves more than one processor, edf has no performance
guarantee in the sense that its performance cannot match or even be competitive against
the optimal offline algorithm. Indeed, in most settings, no online algorithm has this
sort of performance guarantee [2, 8]. In recent years, a plausible approach to studying
performance guarantee for online scheduling without restricting the inputs is to allow
the online scheduler to use faster processors [1, 3, 5, 9, 10, 13, 14]. Intuitively, we want to

∗Results in this paper have appeared in a preliminary form in the Proceedings of the 12th Annual
ACM-SIAM Symposium on Discrete Algorithms, 2001 and Proceedings of the 15th International Parallel
and Distributed Processing Symposium, 2001

†Department of Computer Science, University of Hong Kong, Pokfulam Road, Hong Kong
({twlam,kkto}@cs.hku.hk).

‡This research was supported in part by Hong Kong RGC Grant HKU-7024/01E.
§Department of Computer Science, Rice University, Houston, TX 77005, USA (twngan@cs.rice.edu).

1



study how effectively can faster processors compensate the online scheduler for the lack
of future information. Phillips et al. [14] were able to extend the optimality of edf to the
underloaded, multiprocessor setting by allowing the online scheduler to use double-speed
processors.

In this paper we study deadline scheduling for overloaded systems, in which even the
offline adversary may not be able to meet the deadlines of all jobs and job deadlines are
firm in the sense that it is useless to complete a job after its deadline. Our aim is to
attain optimality with the meaning of matching the offline adversary on the total work
of jobs that are completed by their deadlines. Scheduling under overload is more difficult
as the online algorithm has to be smart in selecting the right jobs to schedule. Even for
the single processor setting, no online algorithm using a normal speed or faster processor
is known to be optimal. In fact, this paper presents a lower bound result that any online
algorithm using a processor with speed factor less than the golden ratio (≈ 1.618) cannot
be optimal. This result should be contrasted with the fact that in the underloaded setting,
edf using a normal speed processor is already optimal [7]. If we do not insist on optimal
scheduling, it is possible to have an online algorithm that can approximate the total work
achieved by the adversary within a constant ratio when using moderately faster processors
[10].

In this paper, we resolve in the affirmative that in the overloaded setting, edf with
moderately faster processors can achieve optimality for both single-processor and multi-
processor systems. The speed requirement is double and triple, respectively. Furthermore,
we study the general case when jobs carry arbitrary values (or weights) that are indepen-
dent of their processing times. The aim of a scheduler is to maximize the total value of
the jobs meeting their deadlines. This scheduling problem is obviously more general (it is
referred to as the firm deadline scheduling problem in the literature). Our main result is
that edf when given faster processors can still guarantee optimality in this more general
setting.

Problem and definitions: We are given a pool of m ≥ 1 processors and a stream of
jobs which are released at arbitrary times, with varying work (processing time) require-
ments and deadlines. Every job is sequential in nature and can be processed by at most
one processor at a time. Preemption is allowed. For a hard deadline (or equivalently, an
underloaded) system, the offline adversary can schedule all jobs to meet the deadlines,
and we also aim at an online algorithm that does so. In general, the system may be
overloaded, i.e., even the offline adversary may not be able to meet all the deadlines. In
this case, our aim is to maximize the total work of jobs completed before the deadlines.
There is no credit awarded to completing a job after its deadline.

In this paper, we consider overloaded systems and on-line algorithms equipped with
processors that are faster than those available to the offline adversary. For any real number
s ≥ 1, a processor is said to be speed-s if it can process one unit of work in time 1/s.
Furthermore, an online algorithm is said to be speed-s optimal if the algorithm when
using m speed-s processors can match the total work of jobs completed by any offline

2



J1

J2

J4

J3

Time

edf-ac J1 J3 J1

Figure 1: An example of edf-ac scheduling. Note that J2 and J4 are not admitted for
scheduling, and J3 preempts J1 due to its earlier deadline.

algorithm using m speed-1 processors. Note that an online algorithm that is optimal for
overloaded systems is also optimal for underloaded systems.

EDF with admission control: The way edf schedules jobs on m ≥ 1 processors
is as follows: Whenever a job is released or completed, edf examines the remaining jobs
to be completed. If there are at most m such jobs, each job is scheduled to run in one
processor; otherwise, edf chooses m jobs with earliest deadlines for execution. When the
system is overloaded edf may be too aggressive in preempting jobs; thus, edf is often
supplemented with some kind of admission control. We consider the following simple form
of admission control. Upon release, every job has to go through a feasibility test in order
to get admitted for edf scheduling. The test simply checks whether the new job together
with the previously admitted jobs can all be completed before their deadlines using an
edf schedule. See Figure 1 for an example. In this paper, edf when supplemented with
the above form of admission control is referred to as edf-ac.

Our first result on scheduling under overload is that for a single processor system,
edf-ac is speed-2 optimal. We also show that no algorithm can be speed-s optimal if
s < (1 +

√
5)/2 ≈ 1.618. For scheduling with m ≥ 2 processors, we find that speed-3

processors suffice to guarantee edf-ac to be optimal, no matter how big m is. This is the
first result attaining optimality for scheduling in overloaded multiprocessor systems.

Scheduling jobs with values: In general, the credit awarded to completing a job
may not be related to its work. Jobs are given arbitrary values and the objective becomes
to maximize the total value of the jobs completed by their deadlines. Define the value
density of a job to be the ratio of its value to its required work. The importance ratio of
a system refers to the ratio of the largest possible value density to the smallest possible
one. In the special case when the importance ratio is one (i.e., all jobs have uniform value
density), maximizing the total value is equivalent to maximizing the total work.

3



For maximizing total value, there are several online algorithms in the literature,
whose performance has been rigorously analyzed. An online algorithm A is said to be
c-competitive for some c > 0 if, for any job sequence, A can attain at least a fraction
1/c of the total value obtained by any offline algorithm [4]. Furthermore, A is said to
be speed-s c-competitive if A is allowed to use processors s times faster than the offline
adversary. In the single processor setting, Koren and Shasha [12] have given a (1 +

√
k)2-

competitive algorithm, where k is the importance ratio. Kalyanasundaram and Pruhs [10]
later showed that a speed-O(1) processor is sufficient to improve the competitive ratio to
a constant. In particular, their algorithm is speed-2 32-competitive. In the multiprocessor
setting, Koren et al. [11] have given a (1 + m(k1/ψ − 1))-competitive algorithm1, where
ψ = m ln k/2(ln k+1); no algorithm has been known to exploit faster processors to achieve
O(1)-competitiveness.

Note that none of the above algorithms achieves optimality, i.e., matching the total
value achieved by the offline adversary. In this paper, we show that the complication
due to varying value densities can again be offset by extra speed; precisely, edf-ac is
speed-(k + 1) optimal in the single processor setting and speed-(k + 2) optimal in the
multiprocessor setting. When k is large, a simple adaptation of edf-ac can reduce the
speed factor to O(log k). The idea is to divide the processors into dlog ke groups such
that each group handles jobs with a smaller range of densities.

Note that the lower bound of (1 +
√

5)/2 on the speed requirement for achieving
optimal scheduling on a single processor is still valid in this general setting. Chrobak et
al. [6] have recently given a better lower bound for jobs with varying value densities. In
particular, they showed that the speed requirement is at least 2 − 1/k, where k is the
importance ratio. We conjecture that even for jobs with uniform value densities, the lower
bound should approach 2.

Organization of the paper: The remainder of the paper is organized as follows.
Section 2 serves as a warm-up, showing that in the single processor setting, edf-ac is
speed-2 optimal for scheduling jobs with uniform job density. Section 3 gives a lower
bound on the speed factor to achieve optimality in this setting. Section 4 considers the
general case of scheduling jobs with non-uniform value densities on multiprocessors. Note
that the speed factor does not depend on the number of processors. We show that edf-ac
is speed-(k + 2) optimal, where k is the importance ratio. In Section 5, we adapt edf-ac
so as to reduce the speed factor to O(log k).

Notation: In the rest of the paper, whenever we refer to a sequence of jobs, we assume
that the first job is released at time 0. The release time, work requested, and deadline of
a job J are denoted by r(J), p(J), and d(J) respectively. We measure p(J) in terms of
the time required to process J on a speed-1 processor. We only consider jobs satisfying
p(J) ≤ d(J) − r(J). Without loss of generality, for a system with an importance ratio of
k, we assume that jobs have value densities in the range [1, k]. Furthermore, we assume
that jobs have distinct deadlines (ties are broken using the job IDs).

11 + m(k1/ψ − 1) approaches 2 ln k + 3 when m is large.

4



Suppose we schedule a sequence L of jobs on m ≥ 1 processors using edf. The
schedule in which jobs of L are processed is referred to as the edf schedule of L. In
this schedule, every job of L will get processed to completion, but the deadline may not
be met. On the other hand, in the edf-ac schedule of L, which is the schedule based
on edf-ac, not every job will receive processing time, but a job, once scheduled, will be
completed by its deadline. Let E(L) ⊆ L denote the set of jobs that edf-ac can complete
by their deadlines. It is worth-mentioning that the edf-ac schedule of L is identical to
the edf schedule of E(L).

2 Optimal work for uni-processor scheduling

In this section we investigate online scheduling on a single processor. We show that
increasing the processor speed by a factor of two suffices to guarantee that edf-ac matches
the total work achieved by any offline algorithm (using a speed-1 processor). In other
words, when all jobs have the same value density, edf-ac is speed-2 optimal.

For any sequence L of jobs, let E(L) ⊆ L be the set of jobs that edf-ac using a speed-
2 processor can complete, and let O(L) ⊆ L be the set of jobs that an optimal offline
algorithm using a speed-1 processor can complete. Denote by ‖L‖ the total work (i.e.
processing time) of the jobs in L.

Theorem 1 For any sequence L of jobs, ‖E(L)‖ ≥ ‖O(L)‖.

We prove Theorem 1 by contradiction. Suppose that there exists a job sequence L
such that ‖O(L)‖ > ‖E(L)‖. Let us consider L to be such a job sequence containing the
fewest jobs.

If jobs in E(L) are scheduled to run in two or more continuous periods, we can imme-
diately derive a contradiction since one of such periods contains a smaller job sequence
violating Theorem 1. Below, we assume that all jobs in E(L) are scheduled in one contin-
uous period. Denote by ` the length of this period. A job in L is said to be a late-dead

job if its deadline is after 2`; otherwise, it is called an early-dead job. We will show a
contradiction that the early-dead jobs form a proper subset of L violating Theorem 1.
The contradiction stems from an interesting property of E(L): any late-dead job (with
deadline after 2`), if present in L, must be admitted into E(L), and would not affect the
admittance of any early-dead jobs (with deadline at or before 2`) released subsequently.
The latter means that even if we remove all late-dead jobs from L, we cannot schedule
more early-dead jobs.

Lemma 2 Let Le and Lt be the sets of early-dead and late-dead jobs in L, respectively.

Then Lt ⊆ E(L) and E(Le) = E(L) − Lt.

5



With Lemma 2, we can prove Theorem 1 by contradiction as follows: Recall that
jobs in E(L) are scheduled in one continuous period of length `. Since ‖O(L)‖ > ‖E(L)‖,
any offline algorithm using a speed-1 processor takes more than 2` time to complete
O(L), and some jobs in O(L) have deadlines after 2`. In other words, L contains some
late-dead jobs. By Lemma 2, ‖E(Le)‖ = ‖E(L)‖ − ‖Lt‖ < ‖O(L)‖ − ‖Lt‖. Note that
‖O(Le)‖ ≥ ‖O(L) − Lt‖ ≥ ‖O(L)‖ − ‖Lt‖. In summary, ‖E(Le)‖ < ‖O(Le)‖, yet Le
contains fewer jobs than L. This contradicts the definition of L and Theorem 1 follows.

Proof of Lemma 2. To see Lt ⊆ E(L), it suffices to observe that it is always feasible
to schedule a late-dead job J within the period [`, d(J)]. This is because ` ≤ d(J)/2 and
the time needed to process J on a speed-2 processor is p(J)/2 ≤ d(J)/2. Thus, J always
passes the feasibility test of edf-ac.

We prove E(Le) = E(L) − Lt by contradiction. Suppose the equality does not hold.
Then E(Le) and E(L) do not contain the same set of early-dead jobs. Let t ≤ ` be the
release time of the first early-dead job J on which E(Le) and E(L) disagree. Denote by
X the set of jobs in E(Le) released before t, and similarly for Y and E(L). Note that
Y comprises all the jobs in X plus possibly some late-dead jobs. At time t, the only
possible scenario for E(Le) and E(L) to disagree on J is that J is admitted into E(Le)
but not admitted into E(L). That means, X ∪ {J} can be completed by their deadlines
using an edf schedule, but Y ∪ {J} cannot be. This can only happen when admitting
J into Y causes some late-dead job J ′ ∈ Y to miss its deadline. By definition of `, all
jobs in E(L) and thus all jobs in Y can be completed before time `. To cause J ′ to miss
the deadline which is after 2`, J must request more than ` units of time on a speed-2
processor, or equivalently, p(J) > 2`. This is impossible because J is an early-dead job
and p(J) ≤ d(J) ≤ 2`. Thus, J cannot exist and E(Le) = E(L) − Lt.

3 Lower bound for optimal work scheduling

This section shows that no online algorithm using a speed-s processor, where s < (1 +√
5)/2, can match the total work achieved by the optimal offline algorithm using a speed-1

processor.

Let φ denote (1 +
√

5)/2. Note that 1 + 1
φ

= φ and 1 + 1
s
> s for any s < φ (because

1 + 1
s
> 1 + 1

φ
= φ > s). The latter implies that a speed-s processor, where s < φ, cannot

complete s+ 1 units of work in s units of time.

Theorem 3 For deadline scheduling on a single processor, no online algorithm is speed-s
optimal if s < φ.

To show that an online algorithm A is not speed-s optimal, where 1 ≤ s < φ, we
consider a sequence of four jobs. Initially, A is given two jobs such that A cannot complete
both by their deadlines. To be optimal, A must attempt to complete the job with bigger

6



J1

J2

J4

J3

Optimal

Time

J1 J4

Figure 2: The four jobs.

work. When the job with smaller work becomes infeasible to complete, the third job with
an even bigger work is released. Again, A cannot complete both current jobs and is forced
to switch to the third one without completing the first two jobs. Finally, the fourth job
is released late enough so that the optimal offline algorithm can complete both the first
and the fourth job, yet A can only finish either the third or the fourth job, failing to be
optimal. Figure 2 depicts the relationship of these jobs. Details are as follows.

Definition. A job J is said to be feasible with respect to a speed-s processor at time
t if the remaining work of J at time t is at most s(d(J) − t); otherwise, J is said to be
infeasible.

Denote (J1, J2, J3, J4) as a sequence of four jobs. All these jobs have a tight deadline
(i.e., d(Ji) = r(Ji) + p(Ji)). For J1 and J2, they are both released at time 0, and their
work requirements are 1 and s respectively. The release times of J3 and J4 depend on
how A schedules J1 and J2.

The time required by a speed-s processor to complete both J1 and J2 is 1+s
s

> s.
Since d(J1) = 1 and d(J2) = s, A cannot meet the deadlines of both J1 and J2. J3

will be released after J1 becomes infeasible. If J1 is feasible during the entire period
[0, d(J1)] = [0, 1], A must have met the deadline of J1 by d(J1) and cannot complete J2

on time. In this case, we do not release any more jobs and A is already not optimal. It
remains to consider the case where J1 becomes infeasible before d(J1). Let t be the last
instant such that J1 is still feasible, and let ` be the total processing time J1 received up
to time t. By the definition of t, s(1− t)+ s` = p(J1) = 1, or equivalently, t = 1+ `−1/s.

We let r(J3) = 1 + ` − 1/φ > t. That is, J3 is released after J1 becomes infeasible.
Furthermore, J3 has a higher work requirement than J2; we let p(J3) = φ and d(J3) =
r(J3) + p(J3).

Claim 4 At time r(J3), the remaining work of J2 is at least s/φ.

7



Proof. At time r(J3), the work done on J2 is at most s(r(J3) − `) = s(1 + `− 1/φ− `) =
s− s/φ. The remaining work is at least p(J2) − (s− s/φ) = s− (s− s/φ) = s/φ.

Next, we show that A cannot meet the deadlines of both J2 and J3. At time r(J3),
the total remaining work of J2 and J3 is at least s/φ + φ. The time required by a
speed-s processor to complete both jobs is at least (s/φ + φ)/s > 1/φ + 1 = φ. Note
that max(d(J2), d(J3)) = r(J3) + φ. Thus, A cannot complete both J2 and J3 by their
deadlines.

Note that p(J3) > p(J2). Using the same argument for J1, we only need to consider
the case where J2 is abandoned by A and becomes infeasible before d(J2). J4 is released
after J2 becomes infeasible. We require that J1 and J4 can both be completed by an
offline algorithm, yet A will complete only one of J3 and J4. Furthermore, we make
p(J1) + p(J4) > p(J3). Then it follows that A is not optimal.

Let t′ be the last instant that J2 is still feasible. Let `′ be the processing time received
by J2 during [r(J3), t

′]. By the definition of t′, we have s(d(J2) − t′) + s`′ equal to the
remaining work of J2 at r(J3), which is at least s/φ. In other words, t′ ≤ s+ `′ − 1/φ. J4

is released after J2 becomes infeasible. Let r(J4) = φ+ `′ − 1/φ, which is strictly beyond
t′. Note that r(J4) ≥ φ−1/φ = 1. Thus, r(J4) ≥ d(J1) = 1, and it is possible to complete
both J1 and J4 using a speed-1 processor.

Claim 5 At time r(J4), the remaining work of J3 is at least φ+ s(1 + `− φ).

Proof. Recall that r(J4) > t′. During [r(J3), r(J4)], the work done on J2 is at least
s`′, and the work done on J3 is at most s(r(J4) − r(J3)) − s`′ = s[(φ + `′ − 1/φ) −
(1 + ` − 1/φ)] − s`′ = s(φ − 1 − `). The remaining work of J3 at time r(J4) is at least
p(J3) − s(φ− 1 − `) = φ+ s(1 + `− φ).

To complete the proof of Theorem 3, it remains to show that we can choose the value
of p(J4) such that an offline algorithm can complete more work than A.

We set p(J4) = 1+ `. Then d(J4) = r(J4)+ p(J4) = (φ+ `′− 1/φ)+ (1+ `). Note that
d(J3) = r(J3) + p(J3) = (1 + `− 1/φ) + φ. Thus, d(J4) = d(J3) + `′. Starting from r(J4),
the total remaining work of J3 and J4 is at least φ+ s(1 + `− φ) + (1 + `) and the time
needed by a speed-s processor to complete them is at least [φ+ s(1+ `−φ)+ (1+ `)]/s ≥
1+ `−φ+(φ+1)/s = 1+ `−φ+φ2/s > 1+ ` = p(J4). That is, A cannot complete both
J3 and J4 at the time r(J4) + p(J4), which is equal to max(d(J3), d(J4)). The maximum
possible work achieved by A is max(p(J3), p(J4)) = max(φ, 1 + `).

On the other hand, an offline algorithm using a speed-1 processor can meet the dead-
lines of J1 and J4, attaining a total work of 1+1+ ` > max(φ, 1+ `). Therefore, A is not
optimal. Theorem 3 follows.

8



Time

P2

P3

P4

P1 J1

J3 J4

J6

J5

J2

Figure 3: An example of edf-ac schedule with m = 4 processors. Assume that O contains
J4 but not J2 and J5. The shaded regions count toward δ(L,O).

4 Optimality of edf-ac for multiprocessor scheduling

We extend the result of Section 2 to the setting with multiprocessors and non-uniform
value densities. Specifically, we show that for scheduling on m ≥ 1 processors, edf-ac is
speed-(2 + k) optimal, where k is the importance ratio.

Consider any sequence L of jobs with value densities in the range [1, k]. Denote by
‖L‖ the total value of jobs in L, and by E(L) the subset of jobs in L that edf-ac using m
speed-(2 + k) processors can complete by their deadlines. Note that jobs in L− E(L) are
never scheduled by edf-ac. With respect to the edf-ac schedule of L, a period is said to
be busy if all the m processors are working throughout this period.

Unlike the uni-processor setting, the case when edf-ac schedules L over two or more
busy periods is no longer straightforward. The problem is that edf-ac may cause a job to
span more than one busy period, making it difficult to derive a contradiction by splitting
L. To deal with multiple busy periods, we strengthen Theorem 1 and prove that the value
attained by edf-ac not only matches that of any offline algorithm but is in excess by a
significant amount. Consider any subset O of L that can be completed by the deadlines by
some offline algorithm using m speed-1 processors. For any job J in L, let σ(L, J) be the
amount of work of J scheduled by edf-ac after the last busy period in the edf-ac schedule
of L. Define δ(L,O) to be the sum of σ(L, J) over all jobs J in E(L)−O (see Figure 3 for
an example). We show that ‖E(L)‖ is in excess of ‖O‖ by at least δ(L,O). Then, when
there is more than one busy period, we can split L into two parts both containing those
jobs spanning two busy periods, and the overlap is compensated by the excess of δ(L,O)
after the split. Details are as follows.

Theorem 6 Let L be any job sequence. Then ‖E(L)‖−δ(L,O) ≥ ‖O‖ for any O ⊆ L that

can be completed by the deadlines by some offline algorithm using m speed-1 processors.

We prove Theorem 6 by contradiction. Suppose there exists a job sequence L such
that, for some O ⊆ L, ‖E(L)‖− δ(L,O) < ‖O‖. Without loss of generality, we consider L

9



to be the job sequence containing the fewest jobs. The rest of this section is divided into
parts, considering the cases when the edf-ac schedule of L admits more than one busy
period and exactly one busy period, respectively. In each case, we derive a contradiction.

Before showing the details of the contradiction, we first observe that L can be assumed
to satisfy an additional assumption: With respect to the edf-ac schedule of L, no job
is released outside a busy period. This assumption helps us simplify the contradiction
argument.

Lemma 7 Suppose that there is a job sequence violating Theorem 6. Then among all

such job sequences, there exists one, denoted L, such that L contains the smallest number

of jobs and no job is released outside a busy period in the edf-ac schedule of L.

Proof. Let L0 be any job sequence with the fewest jobs that violates Theorem 6. Let
O0 be the subset of L0 such that ‖E(L0)‖− δ(L0,O0) < ‖O0‖, With respect to the edf-ac
schedule of L0, it is possible that some job J is released outside a busy period. Yet it is
impossible that J ’s deadline is before the next busy period starts. Otherwise, edf-ac can
meet the deadline of J and deleting J from L0 would give a smaller job sequence violating
Theorem 6.

Below we show how to construct another sequence L from L0 to satisfy the assumption
on release time. For every job J released outside a busy period, J must be admitted by
edf-ac. Let w denote the time when the next busy period starts in the edf-ac schedule
of L0. We delay the release time of J to w and reduce the required work by the amount
of work J has been processed before time w in the edf-ac schedule of L0. The new value
of J is in proportion to the remaining work. This results in another sequence of jobs
L, which, when scheduled by edf-ac, have exactly the same busy periods and the same
jobs completed. Note that ‖E(L)‖ is less than ‖E(L0)‖ by exactly the total value reduced
in modifying L0 to L. With respect to the subset O0 of L0, we denote the collection
of the corresponding jobs in L as O. Then ‖Oo‖ − ‖O‖ ≤ ‖Lo‖ − ‖L‖. On the other
hand, δ(L,O) is the same as δ(Lo,Oo). Recall that ‖E(Lo)‖ − δ(Lo,O0) < ‖O‖. Thus,
‖E(L)‖ − δ(L,O) < ‖O‖, and L also violates Theorem 6.

4.1 More than one busy period

We are now ready to show that if the edf-ac schedule of L contains two or more busy
periods, we can obtain a contradiction that there is a job sequence with fewer jobs than
L, which violates Theorem 6. Recall that O denotes a subset of L such that ‖E(L)‖ −
δ(L,O) < ‖O‖.

We construct two smaller job sets La and Lb from L as follows. Let t be the time
when the second busy period starts. La contains all jobs in L released earlier than t. Lb
contains all other jobs plus some new jobs derived from La as follows. With respect to
the edf-ac schedule of L, we denote by N the set of jobs in E(L) ∩ La which have not

10



yet completed at time t, and let ε > 0 be a small enough constant such that during the
interval [t − ε, t], every job in N is being processed. For each job J in N , we add a new
job to Lb with release time t − ε, deadline d(J), required work x, and value x, where x
denotes the amount of remaining work of J at time t−ε. Denote by N ′ the set of new jobs
added to Lb. All jobs in Lb except those in N ′ are released at or after t, and N ′ contains
less than m jobs. When scheduling Lb using edf-ac, all the jobs in N ′ will get admitted
first. It is easy to see that E(La) = E(L) ∩ La. E(Lb) contains all jobs in N ′ as well as all
jobs in E(L)−La. Thus, ‖E(La)‖ + ‖E(Lb)‖ = ‖E(L)‖ + ‖N ′‖ < ‖O‖ + δ(L,O) + ‖N ′‖.

It remains to show that La or Lb violates Theorem 6. Consider the following two sets:
Oa = La∩O, and Ob contains all jobs in Lb that are either found in O or derived from jobs
in O ∩N . Note that ‖Oa‖ + ‖Ob‖ = ‖O‖ + ‖N ′ ∩ Ob‖. Furthermore, δ(L,O) is exactly
δ(Lb,Ob), and δ(La,Oa) is at least the total work in N ′ − (N ′ ∩ Ob), which also equals
‖N ′ − (N ′ ∩ Ob)‖. Consider the value of ‖E(La)‖+ ‖E(Lb)‖ − δ(La,Oa)− δ(Lb,Ob). It is
smaller than ‖O‖+ ‖N ′‖− δ(La,Oa), which is at most ‖O‖+ ‖N ′ ∩ Ob‖, or equivalently,
‖Oa‖+‖Ob‖. We conclude that ‖E(La)‖+‖E(Lb)‖−δ(La,Oa)−δ(Lb,Ob) < ‖Oa‖+‖Ob‖.
Thus, either Oa causes La to violate Theorem 6, or Ob causes Lb to violate Theorem 6.
Both La and Lb contain less jobs than L. This contradicts the definition of L.

4.2 One busy period

To complete the proof of Theorem 6, it remains to derive a contradiction when the edf-ac
schedule of L contains only one busy period, say, [0, `]. Again, we assume that all jobs in
L are released within this busy period. We say that a job in L is early-dead if its deadline
is at or before 2+k

k
`, and late-dead otherwise. For example, when k = 1, a late dead job

has deadline beyond 3`. We will show that the early-dead and late-dead jobs in L satisfy
the same properties as in the single-processor setting (see Lemma 9 below); the proof is
more complicated due to the multiprocessor setting.

Lemma 8 L contains at least one late-dead job.

Proof. By the definition of L, there exists O ⊆ L such that ‖O‖ > ‖E(L)‖−δ(L,O) and O
can be completed by the deadlines using m speed-1 processors. Note that ‖E(L)‖−δ(L,O)
is bounded below by the total work scheduled during the busy period of the edf-ac
schedule of L, which is at least m(k + 2)`. In other words, ‖O‖ > m(k + 2)`. To achieve
a total value of ‖O‖, any offline algorithm using m speed-1 processors requires time more
than [m(k + 2)`]/mk = k+2

k
` units. Thus, O contains a job whose deadline is beyond

k+2
k
`, i.e., a late-dead job.

Lemma 9 Let Le and Lt be the sets of the early-dead jobs and late-dead jobs in L, re-

spectively. Then Lt ⊆ E(L) and E(Le) = E(L) − Lt.

11



By Lemma 8, Lt is nonempty and Le contains fewer jobs than L. Before we prove
Lemma 9, we show how this lemma can lead to the contradiction that Le violates The-
orem 6. Partition O into two subsets: Oe contains all early-dead jobs and Ot contains
all late-dead jobs. By definition, Oe ⊆ Le and Ot ⊆ Lt. As Oe ⊆ O, Oe can also be
completed by the deadlines using m speed-1 processors. The following lemma shows the
key property that ‖Oe‖ > ‖E(Le)‖ − δ(Le,Oe). That is, Le violates Theorem 6.

Lemma 10 ‖Oe‖ > ‖E(Le)‖ − δ(Le,Oe).

Proof. Recall that ‖O‖ > ‖E(L)‖ − δ(L,O). By Lemma 9, E(L) = E(Le) ∪ Lt and
‖E(L)‖ = ‖E(Le)‖ + ‖Lt‖. Thus, ‖O‖ > ‖E(Le)‖ + ‖Lt‖ − δ(L,O). Furthermore, ‖Oe‖ =
‖O‖ − ‖Ot‖ > ‖E(Le)‖ − δ(L,O) + ‖Lt‖ − ‖Ot‖.

Next, we derive an upper bound of δ(L,O). Recall that δ(L,O) denotes the amount
of work that the edf-ac schedule of L has performed on jobs in E(L) − O after the last
busy period. We consider how each job in E(L) − O contributes to δ(L,O). The late-
dead jobs in E(L) − O are captured by the set Lt − Ot, which contributes an amount
of at most ‖Lt‖ − ‖Ot‖ to δ(L,O). The set of early-dead jobs in E(L) − O is exactly
(E(L) − Lt) − Oe = E(Le) − Oe. Since the edf schedules of E(Le) and E(L) give an
identical schedule with respect to the early-dead jobs, the last busy period of the former
cannot exceed that of the latter, i.e., it must end no later than `. The amount contributed
by the early jobs in E(L) −O to δ(L,O) is at most δ(Le,Oe).

In conclusion, δ(L,O) ≤ (‖Lt‖− ‖Ot‖) + δ(Le,Oe). And ‖Oe‖ > ‖E(Le)‖− δ(L,O) +
(‖Lt‖ − ‖Ot‖) ≥ ‖E(Le)‖ − δ(Le,Oe).

To complete the contradiction argument, it remains to prove Lemma 9.

Proof of Lt ⊆ E(L). Let J be any late-dead job in L. I.e., d(J) > 2+k
k
`. Let X be

the set of jobs admitted by edf-ac just before J is released. Note that X ⊂ E(L) and
the edf schedule of X contains only one busy period up to time h, where h ≤ `. To see
why J must be admitted, we show that the edf schedule of X ∪ {J} always meets the
deadline of all jobs in X ∪ {J}.

A basic property of edf is that at any time, the edf schedule of X ∪ {J} uses at
least as many processors as the edf schedule of X. Thus, the edf schedule of X ∪ {J}
contains a busy period ending at ĥ ≥ h and outperforms the edf schedule of X by at
least (k + 2)(ĥ − h) units of work. Note that these two schedules differ by exactly p(J)
with regard to the total amount of work. Thus, (k + 2)(ĥ − h) ≤ p(J), or equivalently,
ĥ ≤ h+ p(J)/(k + 2) ≤ h+ d(J)/(k + 2).

By the definition of edf, adding J into X does not cause any jobs with deadline
earlier than d(J) to miss the deadline. It remains to consider those jobs J ′ in X ∪ {J}
with d(J ′) ≥ d(J) > k+2

k
`. In the edf schedule of X ∪ {J}, the time J ′ is completed is

bounded above by ĥ+ p(J ′)
k+2

, which is at most h+ d(J)
k+2

+ d(J ′)
k+2

≤ `+ d(J ′)
k+2

+ d(J ′)
k+2

≤ d(J ′). In
other words, the deadline of J ′ is met. In summary, the edf schedule of X ∪ {J} meets
the deadline of every job. Thus, J should be included in E(L).

12



Proof of E(Le) = E(L)−Lt. To show this equality, it suffices to consider all early-dead
jobs J in the order of their release times and prove inductively that J ∈ E(Le) if and only
if J ∈ E(L). Let J be an early-dead job in L. Assume that before J is released, the edf-ac
schedules of L and Le have admitted the same set of early-dead jobs, which is denoted
X below. With respect to the edf-ac schedule of L, we further define Y to be the set of
late-dead jobs in E(L) before J is released. As X ∪Y is a subset of E(L), the edf schedule
of X ∪ Y contains only one single busy period, the length, denoted by h, is at most `.

If J ∈ E(L), then the edf schedule of X ∪ Y ∪ {J} can meet the deadline of all jobs.
Removing all late-dead jobs does not change the schedule of the early-dead jobs. The
edf schedule of X ∪ {J} can meet the deadline of all jobs. Thus, J ∈ E(Le).

If J ∈ E(Le), then the edf schedule of X∪{J} can meet the deadline of all jobs. Below
we investigate the edf schedule of X∪Y ∪{J} and argue that the deadline of every job is
met. Since the presence of late-dead jobs does not affect the schedule of early-dead jobs,
all early-dead jobs in X ∪ Y ∪ {J} (i.e., X ∪ {J}) can be completed by their deadlines.

For any late-dead job J ′ in Y , the time J ′ is completed is bounded by ĥ + p(J ′)
k+2

, where ĥ

is the length of the new busy period of the edf schedule of X ∪Y ∪{J} and ĥ is at most

` + p(J)
k+2

< kd(J ′)
k+2

+ d(J)
k+2

. In other words, J ′ is completed before d(J ′). In summary, the
edf schedule of X ∪ Y ∪ {J} meets the deadline of every job, and J should be included
in E(L).

Remarks: To analyze the performance of edf-ac for scheduling jobs with varying value
densities on m = 1 processor, we can also generalize the proof in Section 2, showing that
edf-ac is indeed speed-(1+k) optimal. The details are omitted as the only thing we need
to change is the definition of a late-dead job (which becomes a job with a deadline after
1+k
k
`) and the argument remains the same.

5 Improving edf-ac with value density groups

As shown in the previous section, edf-ac is speed-(2 + k) optimal, where k is the im-
portance ratio. When k is large, edf-ac demands very fast processors in order to be
optimal. In this section, we use edf-ac as a black box to derive a more speed-efficient
algorithm. To ease our discussion, we first define an algorithm called λ-edf-ac, where
λ is any integer greater than 1. λ-edf-ac uses λm speed-(2 + k1/λ) processors and it
can match the total value obtained by any offline algorithm using m speed-1 processors
(see Theorem 11). In particular, we are interested in dlog2 ke-edf-ac, i.e., when the
algorithm is using dlog2 kem speed-4 processors. Using time sharing, we can simulate
dlog2 ke-edf-ac using m speed-(4dlog2 ke) processors and thus obtain an algorithm that
is speed-(4dlog2 ke) optimal.

The algorithm is defined as follows:

λ-edf-ac: Divide λm processors into λ clusters, each with m processors run-

13



ning edf-ac independently. For each 1 ≤ i ≤ λ, the i-th cluster is responsible
for jobs with value density between k(i−1)/λ and ki/λ.

Theorem 11 λ-edf-ac, using λm speed-(2 + k1/λ) processors, can match the value at-

tained by any offline algorithm using m speed-1 processors.

Proof. Consider an input job sequence L. Let Li be the set of jobs that are allowed to
use the i-th cluster. For a set of jobs X ⊆ L, let O(X ) be the set of jobs that meet their
deadlines when the optimal off-line algorithm schedules X using m speed-1 processors.
Note that ‖O(L1)‖ + · · · + ‖O(Lλ)‖ ≥ ‖O(L)‖, since the optimal off-line algorithm can
always choose to run jobs in O(L) ∩ L1, . . . , O(L) ∩ Lλ when scheduling L1, . . . , Lλ,
respectively.

The value obtained by λ-edf-ac is the sum of values obtained by each cluster, i.e.
‖E(L1)‖ + · · · + ‖E(Lλ)‖. Jobs in the same cluster have value densities which differ by
at most a factor of k1/λ. For scheduling Li, edf-ac uses m speed-(2 + k1/λ) processors.
Applying Theorem 6, we have ‖E(Li)‖ ≥ ‖O(Li)‖. This results in that the value obtained
by λ-edf-ac is at least ‖O(L1)‖ + · · ·+ ‖O(Lλ)‖ ≥ ‖O(L)‖.

References

[1] S. Baruah. Overload tolerance for single-processor workloads. In IEEE Symposium

on Real time technology and applications, pages 2–11, 1998.

[2] S. Baruah, G. Koren, B. Mishra, A. Raghunathan, L. Rosier, and D. Shasha. On-line
scheduling in the presence of overload. In Proceedings of the 1991 IEEE Real-Time

Systems Symposium, pages 101–110, San Juan, Puerto Rico, 1991.

[3] P. Berman and C. Coulston. Speed is more powerful than clairvoyance. In Proceedings

of the Sixth Scandinavian Workshop on Algorithm Theory, pages 255–263, Stockholm,
Sweden, July 1998.

[4] Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis.
Cambridge University Press, The Pitt Building, Trumpington Street, Cambridge,
United Kingdom, 1998.

[5] Mark Brehob, Eric Torng, and Patchrawat Uthaisombut. Applying extra-resource
analysis to load balancing. In Proceedings of the Eleventh Annual ACM-SIAM Sym-

posium on Discrete Algorithms, pages 560–561, San Francisco, California, January
2000.

[6] M. Chrobak, L. Epstein, J. Noga, J. Sgall, R. van Stee, T. Tichý, and N. Vakhania.
Preemptive scheduling in overloaded systems. In Proceedings of the Twenty-ninth

14



International Colloquium on Automata, Languages, and Programming, pages 800–
811, 2002.

[7] Michael L. Dertouzos. Control robotics: the procedural control of physical processes.
In Proceedings of IFIP Congress, pages 807–813, 1974.

[8] Michael L. Dertouzos and Aloysius Ka Lau Mok. Multiprocessor on-line scheduling of
hard-real-time tasks. IEEE Transactions on Software Engineering, 15(12):1497–1506,
December 1989.

[9] Jeff Edmonds. Scheduling in the dark. In Proceedings of the Thirty-First Annual

ACM Symposium on Theory of Computing, pages 178–188, 1999.

[10] B. Kalyanasundaram and K. R. Pruhs. Speed is as powerful as clairvoyance. Journal

of the ACM, 47(4):617–643, 2000.

[11] G. Koren, D. Shasha, ans S. C. Huang. MOCA: A multiprocessor on-line competitive
algorithm for real-time system scheduling. In Proceedings of the Fourteenth Real-Time

Systems Symposium, pages 172–181, 1993.

[12] Gilad Koren and Dennis Shasha. Dover : An optimal on-line scheduling algorithm for
overloaded uniprocessor real-time systems. SIAM Journal on Computing, 24(2):318–
339, April 1995.

[13] T.W. Lam and K.K. To. Trade-offs between speed and processor in hard-deadline
scheduling. In Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 623–632, Baltimore, Maryland, January 1999.

[14] Cynthia A. Phillips, Cliff Stein, Eric Torng, and Joel Wein. Optimal time-critical
scheduling via resource augmentation. In Proceedings of the Twenty-Ninth Annual

ACM Symposium on Theory of Computing, pages 140–149, El Paso, Texas, May
1997.

[15] John A. Stankovic, Marco Spuri, Krithi Ramamritham, and Giorgio C. Buttazzo.
Deadline scheduling for real-time systems: EDF and related algorithms. Kluwer Aca-
demic Publishers, Boston, Mass., 1998.

15


