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INTRODUCTION

Structured analysis and design methodology has been one of the most popular and successful

methods in information systems development1, 2 . A complex system is specified in the form of a

collection of graphical and textual representations, each of which is suited to a different phase of the

system life cycle. Each representation has a hierarchical structure, so that users can conceptualize the

target system at a high level of abstraction, and then look for details at a lower level. Interfaces

between subsystems are defined explicitly and kept to a minimum. One representation of the system

is converted to another when we pass from one phase of the life cycle to another. The whole process

is based on recommended guidelines laid down by experienced systems developers.

For example, it is recognized that flow graphs are better records of procedures, while hierarchical

charts are more suitable for defining program control. Graphical specifications are excellent for

presenting overviews of complex systems, but textual languages are better tools for detailed

description. Thus data flow diagrams3, 4, 5 are recommended in the structured methodology for the

systems analysis phase, when we wish to capture the way data items move from one user task to

another. Structure charts6, 4, 7 are recommended for the systems design phase, when the overall

structure of the target systems becomes more concrete and program control mechanisms need to be

determined. Textual mini-specifications3, 5 are used for defining minute details of individual

components of the system.

Conventional CASE tools for structured methodology provide extremely user-friendly graphical

interfaces and elaborate cross-referencing facilities. However, although many of them support the

transformation of one structured representation to another (such as data flow diagrams into structure

charts), this is often done without much consideration on the design philosophy or evaluation criteria

such as coupling and cohesion. Most of them do not support the comparison of the relative merits of

various alternatives for selecting the most appropriate design choice. This is because design decisions

in structured methodology are not well-defined algorithms6 , but are imprecise heuristics collected

through the experience of practitioners. Such recommendations cannot be programmed easily in

conventional imperative languages, on which the conventional CASE tools are based. We must

provide systems designers with a new generation of CASE tools with the intelligence to automate the

decision-making processes. Logic programming techniques could be used to simulate the expertise.

In particular, the application of logic programming to structured design is an area which is

relatively underexplored. Most of the related work in structured methodology, such as Goble8 ,

emphasizes only on analysis. Ko walski9 has suggested that data flow diagrams are equivalent in

semantics to logic programs, but little is said about structure charts. Docker10 has used Prolog to

develop a CASE tool known as SAME to simulate the behaviour of data flow diagrams. Tsai and

Ridge11 have reported on the problems encountered in developing expert systems for the evaluation

of structure charts, but have not proposed a feasible solution.

In this paper, we present our experience * in the use of Prolog as a modelling and evaluation tool

for structure charts. We discuss how to construct first-cut structure charts from data flow diagrams

using transform and transaction analyses. We then illustrate how to evaluate the resulting charts using

standard recommended criteria such as coupling, cohesion, morphology and tramp, so as to improve

on the charts by means of automatic backtracking.

∗ A prototype system has been implemented using Arity Prolog. Interested readers from academia may contact the first

author for a copy of the programs at a nominal handling charge.
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Basic knowledge of Prolog is assumed in this paper. Readers may like to refer to Bratko12 ,

Clocksin and Mellish13 , or Sterling and Shapiro14 for more information.

MODELLING OF STRUCTURE CHARTS

A unique feature of logic programming is that one can use a set of relations to represent a data

structure. We shall not discuss in detail the relative merits and dismerits of term-based and relation-

based representations (see Kow alski15 , for example). Our contention is that a structure chart is

usually large, and hence would be rather cumbersome to be encoded as one huge term2 . On the other

hand, the use of individual relations allows us to add new modules or other components more easily

when the needs arise.

Thus, a structure chart is modelled by a set of Prolog predicates. They cover the standard

components, namely the modules, the substructures of the modules, the data items, and how the data

items communicate between modules.

Consider, for example, a typical structure chart often quoted in standard texts such as

Page-Jones6 . It is an interactive system for updating files, as shown in Figure 1. It is modelled in

Prolog as follows:

Modules

We define the modules using an is Module predicate. One clause is specified for each module

in the system. Examples are:

is Module (updateFile).

is Module (getValid Trans).

is Module (putNew Master).

Substructures of Modules

We then specify the control structure of submodules in each module. The predicate

structureOf (Parent, ControlType, ChildModules) indicates that a Parent

consists of a list of Child Modules , which are linked together by one of the ControlTypes

‘‘sequence’’, ‘‘selection’’ or ‘‘iteration’’. Thus:

structureOf (updateFile, iteration,

[getValid Trans, get Master, update Master, putNew Master]).

structureOf (getValid Trans, sequence,

[getTrans, validateTrans]).

structureOf (putNew Master, sequence,

[format Master, write Master, askIfUserWantsToContinue]).

Data Items

We define the data items in a structure chart using an isData predicate. The first argument of

the predicate is the name of a data item. The second argument tells us whether it is an atomic item,

a record , or a control flag. Examples are:
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isData (valid Trans, record).

isData (new Master, record).

isData (continueResponse, control).

Communications between Modules

Finally, we define the communications between modules using the predicate

couplingBetween (Module1, Module2, Data) , which indicates that Data is passed from

Module1 to Module2 . Examples are:

couplingBetween (getValid Trans, updateFile, validTrans).

couplingBetween (updateFile, putNew Master, new Master).

Thus a structure chart is specified fully using the above four kinds of predicates.

CONSTRUCTION OF STRUCTURE CHARTS FROM
DATA FLOW DIAGRAMS

We hav e also defined predicates for the specification of data flow diagrams, such as

isBubble (Node).

isSource (Node).

isSink (Node).

isFile (Node).

isDataFlow (DataFlow).

childrenOf (Node, ChildNodes).

dataFlowBetween (Node, Node2, DataFlow).

These predicates are similar to those for structure charts and hence detailed explanation or examples

will not be given here.

Suppose a data flow diagram has been specified as facts in a Prolog database, and suppose that

the bubble in the context diagram is RootNode . In order to convert it into a structure chart and to

save the result as StructureChartFile , we should issue a goal:

?- structureChartFor(RootNode, StructureChartFile).

The predicate is defined as follows:

structureChartFor (RootNode, StructureChartFile) :-

convert (RootNode),

evaluate,

saveAs (StructureChartFile).

Thus a first-cut structure chart is inserted into the Prolog database, and then evaluated. If the

evaluation is not satisfactory, the system will backtrack automatically and produce another version of

structure chart for evaluation. When the evaluation is successful, or when the user does not want any

further improvement, the final structure chart representation is saved as StructureChartFile .

Examples of the evaluation of the structure chart using the evaluate predicate will be given in the

next section.
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To construct structure charts from data flow diagrams, two supplementary strategies are normally

recommended: transform and transaction analyses. In transform analysis, we follow the input and

output data streams of a data flow diagram to determine the central portion responsible for the main

transform of data. In this way, a balanced structure chart can be derived accordingly. In transaction

analysis, we try to isolate a transaction centre which captures an input transaction, determines its type,

and then processes it in the appropriate branch in the centre. We combine the suggestions of

Page-Jones6 and Yourdon7 on transform and transaction analyses to produce a first-cut structure

chart, and specify a recursive conversion procedure thus:

(a) Use breadth-first strategy to expand each node in the data flow diagram by recursively zooming

into its children, grandchildren and so on, until sufficient details* hav e been shown.

(b) Find the transaction centres in the data flow diagram and reduce each one of them into a single

node.

(c) Perform transform analysis on the resulting data flow diagram to produce a structure chart.

(d) Re-expand the hidden transaction centres.

(e) Recursively perform the conversion procedure on the leaf modules in the structured chart

produced above, until they cannot be expanded further because they hav e no children in the

original data flow diagram.

An example illustrating the conversion procedure is shown in Figure 2. The corresponding

Prolog predicate convert is as follows:

convert (RootNode) :-

childrenOf (RootNode, []).

convert (RootNode) :-

breadthFirstExpand ([RootNode], NodeList),

hideTransactCentres (NodeList, _, NewNodeList),

transform Analysis (RootNode, NewNodeList),

expand TransactCentres,

findall (Module,

( isModule (Module), structureOf (Module, _, []) ),

Leaf ModuleList),

continue (Leaf ModuleList).

continue ([ ]).

continue ([Module | Other Modules]) :-

convert (Module),

continue (Other Modules).

Here the predicate transform Analysis is involved with transform analysis and

hideTransactCentres and expand TransactCentres are involved with transaction

analysis. These predicates will be explained in detail in the next two subsections.

∗ We follow the recommendation that we must expand each node into a minimum of ‘‘more than 9 nodes’’, unless the node

happens to have less than 9 children and grandchildren.
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Transform Analysis

A data flow diagram contains a central transform plus afferent and efferent streams6, 7 . The

central transform is the collection of nodes which make up the major function of the system. An

afferent stream is a string of nodes which start off by reading data from a physical source, and then

convert it into a more abstract form suitable for the central transform. An efferent stream, on the other

hand, is a string of nodes which convert output data from the central transform into a more physical

form suitable for output to the real world. Tsai and Ridge11 suggest that, in order to identify the

central transform, user input must be required. We would like, however, to automate the structured

design process as much as possible by defining recommended heuristics using Prolog predicates.

In order to identify the central transform, we should first of all identify the nodes which are

potentially part of an afferent or efferent stream. The criteria are:

(a) There is a close resemblance between the input and output data for the node. For instance, both

the input and output contain identical names qualified by different prefixes, such as

valid Trans and confirmed Trans .

(b) The name of the node does not contain a verb implying an abrupt change between its input and

output data, such as update .

We then identify the central transform as the remaining nodes.

One question often raised is, in the absence of real human expertise, is there a chance of isolating

the wrong nodes as the transform centre? We should note that transform analysis is only a

recommended ‘‘strategy’’ for transforming data flow diagrams into structure charts, instead of an

‘‘algorithm’’6 . A good transform centre thus found would reduce the number of backtracking

required for determining the best structure chart. If, however, we hav e isolated a different transform

centre by making the wrong assumptions on afferent and efferent flows, we may still arrive at a

similar structure chart, albeit after a number of unnecessary backtracking.

The following is the program for transform analysis:

transform Analysis (Node, NodeList) :-

new Module (Node),

transform CentreOf (NodeList, Transform Centre),

convertTransform Centre (Transform Centre, Transform Root),

convertAfferent (Node, NodeList, TransformRoot,

Transform Centre),

convertEfferent (Node, NodeList, TransformRoot,

Transform Centre),

addStructure (Node).

The details of the predicates in the program are as follows:

(i) The predicate new Module (Node) creates a new parent module known as Node . This is done

by inserting a fact is Module (Node) into the Prolog database.

(ii) The predicate transform CentreOf identifies the transform centre from a given NodeList ,

thus:
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transform CentreOf (NodeList, Transform Centre) :-

( findall (Node,

( member (Node, NodeList),

inputOutputSimilar (Node) ),

AffAndEffStreams)

;

findall (Node,

( member (Node, NodeList), noAbruptChange(Node) ),

AffAndEffStreams) ),

subtract (NodeList, AffAndEffStreams,

Transform Centre).

inputOutputSimilar (Node) :-

dataFlowBetween ( _ , Node, Input),

dataFlowBetween (Node, _, Output),

removePrefix (Input, KeywordOfInput),

removePrefix (Output, KeywordOfOutput),

KeywordOfInput = KeywordOfOutput.

noAbruptChange (Node) :-

verbOf (Node, Verb),

not isAbruptChange(Verb).

Here the predicate removePrefix removes the lower case letters from the identifier of

Input , starting from the left to the right, until an upper case is encountered. The remaining

string of characters is stored in KeywordOfInput . The predicate verbOf extracts the Verb

from the identifier of Node . The predicate isAbruptChange (Verb) will hold if the Verb

causes abrupt changes between its input and output data. Information on abrupt changes is

stored in advance in a knowledge base of the system. Users may extend the knowledge base

should the needs arise.

(iii) The predicate convertTransform Centre creates a sub-structure-chart for

Transform Centre , with Transform Root as the root. The identifier for

Transform Root is constructed by putting ‘‘do_’’ in front of the original identifier for the first

node in the transform centre.

convertTransform Centre (Transform Centre,

Transform Root) :-

member (FirstTransform Node, Transform Centre),

not ( member (Node2, Transform Centre),

dataFlowBetween (Node2, FirstTransform Node, _) ),

concat (’do_’, FirstTransform Node, Transform Root),

assertz (is Module (Transform Root)),

buildSubchart (Transform Root, Transform Centre).

buildSubchart ( _ , []).

buildSubchart (Root, [Node | NodeList]) :-

assertz (is Module (Node)),

( dataFlowBetween ( _ , Node, Data),

[! assertz(couplingBetween (Root, Node, Data)) !],

fail

; true ),
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( dataFlowBetween (Node, _, Data2),

[! assertz(couplingBetween (Node, Root, Data2)) !],

fail

; true ),

buildSubchart (Root, NodeList),

assertz (structureOf (Root, sequence,

[Node | NodeList])).

(iv) The predicate convertAfferent converts each afferent branch into a sub-structure-chart, and

adds the data couples from its Subroot to Node and those from Node to Transform Root .

convertAfferent (Node, NodeList, TransformRoot,

Transform Centre) :-

( member (Node2, NodeList) ; not isBubble(Node2) ),

[! not member(Node2, TransformCentre),

dataFlowBetween (Node2, Node3, Data),

member (Node3, Transform Centre),

concat (’get_’, Data, Subroot),

assertz (is Module (Subroot)),

assertz (couplingBetween (Subroot, Node, Data)),

assertz (couplingBetween (Node, Transform Root,

Data)),

convertOneAfferentBranch (Node2, Data,

NodeList) !],

fail

; true.

convertOneAfferentBranch (Node, Data, NodeList) :-

concat (’get_’, Data, Subroot),

( isBubble (Node, _), !,

assertz (is Module (Node)),

dataFlowBetween (Node4, Node, Data4),

( member (Node4, NodeList)

; not isBubble(Node4, _) ),

concat (’get_’, Data4, NewSubroot),

assertz (is Module (NewSubroot)),

assertz (couplingBetween (NewSubroot, Subroot,

Data4)),

assertz (couplingBetween (Subroot, Node, Data4)),

assertz (couplingBetween (Node, Subroot, Data)),

assertz (structureOf (Subroot, sequence,

[NewSubroot, Node])),

convertOneAfferentBranch (Node4, Data4, NodeList)

;

% Node is source or file:

assertz (couplingBetween (Node, Subroot, Data)) ).

(v) The predicate convertEfferent is similar to convertAfferent .

(vi) The predicate addStructure completes the structure chart by hanging to Node all the

modules which have coupling with it. In other words, the afferent modules, the transform centre

and the efferent modules will be hung under Node:
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addStructure (Node) :-

findall (Node2,

( ( couplingBetween (Node, Node2, Data)

; couplingBetween (Node2, Node, Data) ),

not parentOf(Node, Node2) ),

ChildNodes),

assertz (structureOf (Node, sequence, ChildNodes)).

where parentOf (Node, Node2) indicates that Node2 is the parent of Node .

Figure 3 shows the result of each step when transform Analysis is applied to the data flow

diagram of Figure 2(b). We assume in this illustration that each of the nodes and data items have been

given meaningful names in order to facilitate the selection of the transform centre.

Transaction Analysis

Transaction analysis includes two main phases, hideTransactCentres and

expand TransactCentres . Giv en a NodeList , the predicate hideTransactCentres

will:

(a) Find a FirstNode , defined as a node in a transaction centre which inspects the type of each

transaction and routes it to the corresponding branch for processing.

(b) Find all the nodes which are linked immediately after the FirstNode , and put them in

NextNodeList .

(c) If all the transaction paths finally merge into a single node, we call it the MergeNode .

(d) Find all the transaction nodes in an individual branch between (but excluding) the FirstNode

and MergeNode , and put them in a list TransactBranch1 . Move the NextNode to the

head of TransactBranch1 to form TransactBranch .

(e) Collect all the TransactBranches together to form TransactBranchSubList . Add the

FirstNode to the head of TransactBranchSubList to form TransactBranchList .

( f ) Insert the fact transactBranches (TransactBranchList) into the Prolog database for

use in expand TransactCentres later.

(g) Replace the FirstNode and all the nodes in each TransactBranch by a single

NewFirstNode . The identifier for the NewFirstNode is constructed by putting

‘‘process_’’ in front of the original identifier for FirstNode . Rename the resulting list of

nodes as TempNodeList .

(h) Recursively call hideTransactCentres for TempNodeList , until no more FirstNode

exists.

(i) Assign the final TempNodeList to NewNodeList .

The following shows the result of each step when transaction analysis is applied to the data flow

diagram of Figure 2(a′).

(a) FirstNode = n2b.

(b) NextNodeList = [n2c, n2d].

(c) MergeNode = n2e.

9



(d) There are two TransactBranches, one is [n2c] , another is [n2d] .

(e) TransactBranchSubList = [[n2c], [n2d]],

TransactBranchList = [n2b, [n2c], [n2d]].

( f ) The Prolog database now contains the fact

transactBranches ([n2b, [n2c], [n2d]]).

(g) NewFirstNode = process_n2b,

TempNodeList = [n1a, n1b, n1c, n2a, process_n2b, n2e, n3a, n3b,

n3c].

(h) The result of the recursive calls of hideTransactCentres are as follows:

(aa) FirstNode = n3a.

(bb) NextNodeList = [n3b, n3c].

(cc) MergeNode = nil.

(dd) There are two TransactBranches, one is [n3b] , another is [n3c] .

(ee) TransactBranchSubList = [[n3b], [n3c]],

TransactBranchList = [n3a, [n3b], [n3c]].

( ff ) The Prolog database now contains the facts

transactBranches ([n2b, [n2c], [n2d]]),

transactBranches ([n3a, [n3b], [n3c]]).

(gg) NewFirstNode = process_n3a,

TempNodeList = [n1a, n1b, n1c, n2a, process_n2b, n2e,

process_n3a].

(hh) Since there is no more FirstNode , the recursive call stops here.

(i) NewNodeList = [n1a, n1b, n1c, n2a, process_n2b, n2e,

process_n3a].

The graphical equivalence is as shown in Figure 2(b).

The actual predicate for the above procedure is declared as follows:

hideTransactCentres (NodeList, TempNodeList, NewNodeList) :-

firstNodeOf (NodeList, FirstNode),

findall (Node,

dataFlowBetween (FirstNode, Node, _),

NextNodeList),

findall (TransactBranch,

transactBranchOf (NodeList, FirstNode, NextNodeList,

TransactBranch),

TransactBranchSubList),

append ([FirstNode], TransactBranchSubList,

TransactBranchList),

assertz (transactBranches (TransactBranchList)),

replace (NodeList, FirstNode, NextNodeList, TempNodeList,

TransactBranchList),

hideTransactCentres (TempNodeList, TempNodeList2,

NewNodeList)

;
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NewNodeList = TempNodeList.

transactBranchOf (NodeList, FirstNode, NextNodeList,

TransactBranch) :-

member (NextNode, NextNodeList),

ifthenelse (

mergeNodeOf (NodeList, NextNodeList, MergeNode),

findall (Node1,

inTransactBranch (NodeList, NextNode, Node1,

MergeNode),

TransactBranch1),

findall (Node2,

samePath (NodeList, NextNode, Node2),

TransactBranch1)),

subtract (TransactBranch1, [NextNode], TransactBranch2),

append ([NextNode], TransactBranch2, TransactBranch).

The predicate firstNodeOf is listed below. It verifies that any Input to the FirstNode

must be routed to one and only one of its various Outputs.

firstNodeOf (NodeList, FirstNode) :-

member (FirstNode, NodeList),

dataFlowBetween ( _ , FirstNode, Input),

findall (Data,

dataFlowBetween (FirstNode, _, Data),

OutputList),

transactData (Input, OutputList),

mutuallyExclusive (OutputList).

Here the predicate transactData will hold if the output data flows in OutputList are

components of Input . The predicate mutuallyExclusive will hold if and only if, for any two

data flows in OutputList , one is not a component of the other, or a permutation of the other, or

combination(s) of these. These results are determined through the analysis of the data dictionary,

which is beyond the scope of the present paper and will not be discussed here.

The second main phase of transaction analysis, expand TransactCentres , use automatic

backtracking to search for all the hidden transaction centres. For each hidden centre, we recursively

invoke expandEachBranch to re-expand its Branches, apply transform Analysis to them,

and hang the resulting subcharts below the structure chart from the previous phase, as shown in Figure

2(d). The predicate expand TransactCentres is declared as follows:

expand TransactCentres :-

transactBranches ([FirstNode | BranchList]),

%

% ’transactBranches’ is a Prolog fact asserted

% by the predicate ’hideTransactCentres’

%

expandEachBranch (FirstNode, BranchList),

concat (’process_’, FirstNode, NewFirstNode),

findall (Module,

couplingBetween (NewFirstNode, Module, _),

ModuleList),

11



assertz (structureOf (NewFirstNode, selection,

ModuleList)),

fail

;

abolish (transactBranches / 1).

expandEachBranch ( _ , []).

expandEachBranch (FirstNode, [Branch | OtherBranches]) :-

concat (’process_’, FirstNode, NewFirstNode),

Branch = [NextNode|SubBranch],

transform Analysis (NextNode, SubBranch),

dataFlowBetween (FirstNode, NextNode, Input),

tryAssertz (couplingBetween (NewFirstNode, NextNode,

Input)),

findall (Output,

( lastNodeOf (Branch, NextNode, LastNode),

dataFlowBetween (LastNode, _, Output) ),

OutputList),

tryAssertz (couplingBetween (NextNode, NewFirstNode,

OutputList)),

expandEachBranch (FirstNode, OtherBranches).

where the predicate tryAssertz (fact) puts the Prolog fact into the database in forward

execution, but if backtracking is necessary, the fact will be removed automatically by the system.

EVALUATION OF STRUCTURE CHARTS

In this section, we illustrate how we apply Prolog predicates to review structure charts according

to evaluation guidelines as recommended in DeMarco3 , Page-Jones6 and Yourdon7 . These reviews

will help to determine whether the structured charts should be improved. If the result of an evaluation

is not satisfactory, the system will backtrack automatically and use alternative conversion procedures

to produce other structure charts for consideration. Examples of alternative procedures include

promoting a boss instead of hiring a new boss6 , swapping the order of transform and transaction

analyses, and expanding the nodes into more children than the first-cut attempt.

We would like to point out we have not yet exhausted the many evaluation criteria as

recommended in the literature. We are currently studying the respective Prolog predicates for

implementing additional criteria, such as fan-in, factoring, decision-splitting, and initializing and

terminating modules. The results obtained so far appear to be promising. Furthermore, we find that

we can easily incorporate new guidelines into the Prolog system in an incremental manner.

Coupling

Coupling is a measure of the inter-dependence among different modules. The recommendation in

structured methodology is that modules should exhibit a loose coupling. In other words, they should

be independent of one another as far as possible. Myers16 and Stevens et al .17 have identified five

levels of coupling between two modules. They are listed in order of preference as follows:

(a) Data coupling: Modules communicate through atomic data items.

(b) Stamp coupling: Modules communicate through composite data items, or records.

(c) Control coupling: Modules communicate through control flags.
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(d) Common coupling: Modules share common data.

(e) Content coupling: A module refers to or changes the inside of another module.

The following predicates help to detect the preferred levels of couplings. The absence of such

couplings between two modules will be highlighted as anomalies.

dataCoupling (Module1, Module2) :-

( couplingBetween (Module1, Module2, Data)

; couplingBetween (Module2, Module1, Data) ),

isData (Data, atomic).

stampCoupling (Module1, Module2) :-

( couplingBetween (Module1, Module2, Data)

; couplingBetween (Module2, Module1, Data) ),

isData (Data, record).

controlCoupling (Module1, Module2) :-

( couplingBetween (Module1, Module2, Data)

; couplingBetween (Module2, Module1, Data) ),

isData (Data, control).

Cohesion

Cohesion, also known as cohesiveness, is a measure of the strength of association of components

within a module. The recommendation in structured methodology is that the components should

exhibit a high cohesion among themselves. In other words, they should be inter-related as much as

possible. Myers16 and Stevens et al .17 have identified seven lev els of cohesion within a module.

They are listed in order of preference as follows:

(a) Functional cohesion: The module performs a single inseparable function.

(b) Sequential cohesion: A later component of the module makes use of the data produced in an

earlier component.

(c) Communicational cohesion: Different components of the module refer to data items in the same

file, but the order of the components is not important.

(d) Procedural cohesion: The components in the module are related by program control structures

such as selection or iteration.

(e) Temporal cohesion: The components should be done roughly at the same time, such as the end of

ev ery month.

( f ) Logical cohesion: The module tries to accommodate general procedures which may be slightly

different depending on the input data or other logical conditions, so that exceptional treatments

have to be added here and there.

(g) Coincidental cohesion: The components are grouped arbitrarily for no reason.

Tsai and Ridge11 find it difficult to determine the levels of cohesion of individual modules, and

suggest a system which prompts the user for advice. On the other hand, we note that it is not usual as

a matter of practice to determine the exact cohesion level for every module in a structure chart. There

is scepticism among structured design experts as to whether precise numerical values assigned to

cohesion levels have any meaning in real life. Designers would like only to identify those modules

which have low cohesiveness and re-arrange them wherever possible. To this aim, our system

highlights the modules whose internal components do not share common input/output data, through

the analysis of the mini-specifications18 . This is based on the observation that data must be passed

among the components of a module with functional, sequential or communicational cohesion. The

analysis of mini-specifications is beyond the scope of the present paper and will not be discussed in

detail here.
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Morphology

Structure charts should also be evaluated according to their morphology7 , or shapes. One of the

criteria is fanout, which is the number of children for a module in the chart. It is recommended that

structure charts should have low fanouts. Thus if an afferent module has three or more children, with

two or more of them being transform modules, then it is advisable to group some of the children

together to form a subtree, headed by an afferent submodule. Similarly for an efferent module. In this

way, a module high up in a structure chart does not need to be fully responsible for the behaviour of

all its subordinates, but can delegate some of its supervisory function to ‘‘middle management’’. For

example, a chart with an afferent module followed by a transform module, such as Module3 and

Module4 in Figure 4, would be preferred to that with a flat sequence of transform modules, such as

Module2 and Module4 in Figure 5. We detect morphological anomaly by means of a

morph Anomaly predicate.

morph Anomaly (Parent) :-

moduleType (Parent, afferent),

structureOf (Parent, sequence, [Module1|Other Modules]),

moduleType (Module1, afferent),

findall (Module2,

( member (Module2, Other Modules),

moduleType (Module2, transform) ),

Transform Modules),

length (Transform Modules) > 1.

morph Anomaly (Parent) :-

moduleType (Parent, efferent),

structureOf (Parent, sequence, ChildModules),

append (Other Modules, Module1, ChildModules),

moduleType (Module1, efferent),

findall (Module2,

( member (Module2, Other Modules),

moduleType (Module2, transform) ),

Transform Modules),

length (Transform Modules) > 1.

The predicate moduleType above determines whether a given Module is afferent ,

efferent , or a transform module, thus:

moduleType (Module, afferent) :-

is Module (Module),

parentOf (Module, Parent),

findall (Data, couplingBetween (Parent, Module, Data),

[]),

( childrenOf (Module, [])

;

parentOf (Child, Module),

findall (Data2,

couplingBetween (Module, Parent, Data2),

DataItems),

findall (Data3,

couplingBetween (Child, Module, Data3),

DataItems) ).
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moduleType (Module, efferent) :-

is Module (Module),

parentOf (Module, Parent),

findall (Data,

couplingBetween (Module, Parent, Data),

[]),

( childrenOf (Module, [])

;

parentOf (Child, Module),

findall (Data2,

couplingBetween (Parent, Module, Data2),

DataItems),

findall (Data3,

couplingBetween (Module, Child, Data3),

DataItems) ).

moduleType (Module, transform) :-

is Module (Module),

parentOf (Module, Parent),

findall (Data,

couplingBetween (Parent, Module, Data),

[_|_]),

findall (Data2,

couplingBetween (Module, Parent, Data2),

[_|_]).

The detection of further morphological anomalies can be defined by adding more rules. We can

do this in an incremental manner without being bothered by the detection procedure.

Tramp

A tramp is ‘‘an item of data that, although irrelevant to the function of a given module, has to pass

through that module in order to reach another module’’ 6 . An example of a tramp is shown in Figure

6, where master is passed through getTrans and getValid Trans but is irrelevant to both of

these modules.

In order to detect irrelevance, we can start off by defining a simple Prolog predicate, and augment

the definition incrementally when more knowledge is available. For instance, we may try to specify

irrelevance using a rather simplistic predicate

irrelevant (Data, Module) :-

couplingBetween ( _ , Module, Data),

couplingBetween (Module, _, Data).

which checks whether a piece of Data passes in and out of a Module directly.

Let us take a look at Figure 4. According to the simplistic predicate, the data item B would be

irrelevant to the module Parent . We should not consider it as a tramp, however, because it is

recommended in structured methodology that two modules on the same level should pass data through

their parent rather than directly from one to another, the latter process being known as a pathological

connection7 . We should augment the original definition of irrelevance with this extra knowledge.

The improved predicate will also check whether both the source module M1 and the destination

module M2 of Data are children of the Module concerned.
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irrelevant (Data, Module) :-

couplingBetween (M1, Module, Data),

couplingBetween (Module, M2, Data),

not ( parentOf (M1, Module),

parentOf (M2, Module) ).

Let us take a further look at Figure 4. According to the predicate, the data item B would be

irrelevant to Module3 . But we still do not wish to consider it as a tramp because this design follows

the guideline on morphology, as discussed in the previous section. Module3 helps to hide the

modules working on A from modules higher up in the chart. We should augment further the definition

of irrelevance. The new predicate will also check whether the passage of data is according to the

recommended morphology.

irrelevant (Data, Module) :-

couplingBetween (M1, Module, Data),

couplingBetween (Module, M2, Data),

not ( parentOf (M1, Module),

parentOf (M2, Module) ),

not ( parentOf (M1, Module),

parentOf (Module, M2),

parentOf (M3, M2),

couplingBetween (M2, M3, Data) ),

not ( parentOf (M2, Module),

parentOf (Module, M1),

parentOf (M4, M1),

couplingBetween (M4, M1, Data) ).

CONCLUSION

In this paper, we hav e summarized our experience in the use of Prolog to model and evaluate

structure charts according to standard guidelines in structured design. We hav e found that we can

construct first-cut structure charts automatically from data flow diagrams using transform and

transaction analyses, evaluate them using recommended criteria such as coupling, cohesion,

morphology and tramp, and improve on the resulting structure charts by means of automatic

backtracking. Prolog has been found to be very useful because:

(a) Although various recommendations have been made on the criteria for good and poor structure

charts, there is no prescribed procedure to detect them. But we can simply formulate the criteria

as Prolog predicates, and leave the detection procedure to the built-in inference system of Prolog.

(b) Most of the recommendations on the construction and evaluation of structure charts are based on

the practical experience of individuals. They are described informally in the literature, and new

recommendations are added in the light of further experience on the method. It is very difficult to

implement such partial recommendations in a conventional imperative programming language and

to add further recommendations without significantly disturbing the original program. But such

recommendations can be specified easily as Prolog predicates in an incremental manner.

(c) The guidelines given in structured methodology, such as those for converting a data flow diagram

into a structure chart, do not give a unique result. The processes involved are non-deterministic in

nature. We are supposed to make a first-cut attempt, and evaluate it based on a set of

recommended criteria. In case the design is not satisfactory, backtracking must be employed to

find an improved solution. If we use an imperative programming language to implement the

methodology, we shall have to specify the backtracking strategy explicitly. This, however, can be
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done automatically in Prolog and is transparent to the implementor.
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Figure 4  Get Modules According to Recommended Morphology
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Figure 5  Example of Morphological Anomaly
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Figure 6  Example of Tramp Data
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