
Title Acceleration of Levenberg-Marquardt Training of Neural
Networks with Variable Decay Rate

Author(s) Chen, TC; Han, DJ; Au, FTK; Tham, LG

Citation Proceedings Of The International Joint Conference On Neural
Networks, 2003, v. 3, p. 1873-1878

Issued Date 2003

URL http://hdl.handle.net/10722/47064

Rights

©2003 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be
obtained from the IEEE.

Acceleration of Levenberg-Marquardt Training of Neural Networks with Variable Decay Rate

. Tai-cong Chen Da-jian Han
Department of Civil Engineering. South China University of Technology, Guangzhou. People’s Republic of China, 510640

(cvchentc@scut.edu.cn ardjhan@scut,edu.cn)
Francis T.K. Au L.G. Tham

Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
(francis.au@hku.hk hrectlg@hkucc.hku.hk)

Abstract - In the application of the standard
Levenberg-Marquardt training process of neural networks,
error oscillations are frequently observed and they usually
aggravate on approaching the required accuracy. In this paper,
a modified Levenberg-Marquardt method based on variable
decay rate in each iteration is proposed in order to reduce such
error oscillations. Through a certain variation of the decay rate,
the time required for training of neural networks is cut down to
less than half of that required in the standard
Levenherg-Marqnardt method. Several numerical examples
are given to show the effectiveness of the proposed niethod.

1. Introduction
As is known, the Levenburg-Marquardt (LM) method

shows the most efficient convergence during the Back
Propagation (BP) training process because it acts as a
compromise, between the first-order optimization method
(steepest-descent method) with stable but slow
convergence and the second-order optimization method
(Gauss-Newton method) with opposite characteristics [I].

However, when using the LM method for neural
network training, several disadvantages are still observed
i n the numerical computations. Firstly, large memory is
required for matrix operations in each iteration and the
computational complexity increases with the number of
weights in a quadratic manner. Researches to improve the
standard LM method mostly concentrated on this issue.
Memory demand and computational complexity can be
greatly reduced by using techniques based’ on Jacobian
deficiency 121, block-diagonal approximation [3] or
matrix contraction [4]. Secondly, serious error oscillations
during the standard LM training process frequently occur

and this phenomenon even aggravates when approaching
the required accuracy. As will be discussed in the
following sections, such error oscillations resulting in
lengthy calculations are mainly ascribed to the use of a
fixed decay rate. A modified method by varying the decay
rate according to a certain generally applicable rule
during the training process is presented in this paper. The
proposed method shows great effectiveness in
convergence and reduces the amount of training work by
more than half of that in the standard LM method.

11. The Levenberg-Marquardt method
In the BP algorithm, the performance index F(w) to be

minimized is defined as the sum of squared errors
between the target outputs and the network’s simulated
outputs, namely

where w=[w,, w?. ..., w , v] ~ consists of all weights of the
network, e is the error vector comprising the errors for all

the training examples.
When training with the LM method, the increment of

weights Aw can be obtained as follows

Aw =’ [J ‘J + AIf’ J ‘e

where J is the Jacobian. matrix, 1 is the training
parameter which is to be updated using the decay rate p
depending on the outcome. In particular, 1 is multiplied
by the decay rate p (0<p< I) whenever F(w)
decreases, while A is divided by p whenever F(w)
increases in a new step.

The standard LM training process can, be illustrated in

0-7803-7898-9/03/$17.00 02003 IEEE 1873

mailto:ardjhan@scut,edu.cn

the following pseudo-codes,
1. Initialize the weights and' parameter R

(1 = 0.01 is appropriate).
Compute the sum of squared errors over all
inputs, F(w).

3. Compute the Jacobian matrix J.
4. Solve Equation (2) to obtain the increment of

weights Aw.
5 . Recompute the sum of squared errors F(w)

using wt Aw as the trial w, andjudge
IF trial ~ (w) < ~ (w) in Step 2, THEN

n=n.p (D = O . l)

2.

w = w+Aw

go back to Step 2.
ELSE

n=n ib
go back to Step 4.

END IF

111. Disadvantages of fixing'the decay ra te as p = 0. I
During the training process, the loop of Steps 2-5-2

causing a subsequently reduced value of F(w) is called an
iteration. According to Marquardt [5], a suitable strategy
for decreasing F(w) is to use a small value of 1 such
that the modified Gauss-Newton method would converge
nicely. To achieve this, several trials of varying R with

b are carried out before deciding upon a suitable value
of R for each iteration.

In the Neural Network Toolbox of MATLAB [6],
which is commonly used in neural network simulations,
the default value of p is taken to be 0.1. This value is

fixed during the whole training process, which is also the

value recommended by Marquardt [5]. However, some
disadvantages are observed in network training adopting
such a strategy, as will be seen in the following numerical
example.

A. Observations

A two-layer feedfonvard network NIlnSxII is built to
train a set of 21 input/output pairs denoted by the crosses

in Fig. 1. The algorithm of the standard LM training (with
p=O.l during the batch-mode training process) is

coded in Fortran Language. Fig. 2 shows the typical
training process using the standard LM method with
weights initialized randomly between [-I I], the
performance of which is characterized by the variations
of F(w) and 1. As opposed to the normal practice in

MATLAB of plotting the curve of F(w) against Training
Iterations, Figure 2 plots F(w) against Training Trials, as
an increased F(w) caused by improper trial of 0.lR
results in additional computation work of solving
Equation (2) and calculating F(w).

. . , . . ~ ,

i
1 . -.. 'I

0 5! ,' .

.. 45; :
' , ; . , ! jl .,!. ~~ ~~ i

. I .oe 4 8 4, 4 2 0 0.2 0 . 0 6 0 8 2
Inpm

Fig. 1. Prototype of desired curve

~___ , .___.____________
- sum of squared errors F(w)

I. osramsfet A
:I

10' [?\
!

!

0 20 40 60 80 1w 120 140 le0 180
Training Trial

Fig. 2. Typical training process by the standard LM method

From Fig. 2, several characteristics of the training

1. In the curve of F(w) against Training Trials, many
error oscillations occur during the training process and
this phenomenon aggravates on approaching the required
accuracy. It takes only fewer than 10 oscillations (nearly
20 trials) for F(w) to descend from the initial value of
4.4787EO to 1E-I, while nearly 20 oscillations (nearly 40
trials) subsequently to reach 1E-3 and 50 oscillations
(nearly 100 trials) eventually to reach 1E-4. Such a kind
of error oscillations implies that the speed of convergence
greatly slows down on approaching the required accuracy.

curves are observed:

2. In the curve of /I against Training Trials, when

1874

F(w) reaches 1.0016E-1, /1 takes the value of 1E-2.
Then A falls into a longtime oscillation of constant
amplitude until F(w) reaches 4.2567E-4 when /1 takes
the value of 1E-3:. Afterwards, an even longer period of
oscillation happens until F(w) reaches the required
accuracy. This kind of oscillations in A implies that
many trials in decreasing A by multiplying p=O.l
would not be valuable to the reduction of F(w) but cause
unexpected ascend of F(w) and therefore waste time.

Although the exact numbers of staggered oscillations
differ among different training processes due to the use of
different initial weights, they all have serious problems of
error oscillations before the required accuracy is reached.
The main reason for this kind of error oscillations is the
fixed value of the decay rate ,O of 0.1 during the
training process.

B. Discussion

Generally, when a new reduced F(w) is reached, an
“ideal” A is obtained and the weights are updated by
adding the new increments. In the subsequent trial, the
choice of a new A is not only a choice of step direction
but also a choice of step size [5]. An attempt of
decreasing /1 by multiplying ,O (O<p<1) can

therefore be seen as a trial roughly along the Gauss-
Newton direction with a step size larger than the ones
determined by the former A . In addition, having
,8 = 0.1 m a n s a much large scale in both aspects.

At the beginning of the training process, when F(w) is
much greater than the required accuracy, a trial with step

direction close to, the Gauss-Newton direction with a
large step size may cause a great reduction of F(w) which
is expected in fast convergence. Repeated trials with
decreasing /1 by multiplying by ,b’ = 0.1 often succeed

in a great reduction of F(w), as can be seen from F i g 2
Hence, such an approach is valuable and effective at this
stage.

However ‘a t the subsequent stages when F(w)
approaches the neighborhood of the minimum, the use of
a small step size is as important for stable convergence as
the large reduction of F(w) at the beginning. As stable
convergence is essential at this stage, adopting a step

close to the Gauss-Newton direction with the
corresponding step size by setting B=O.l is not as
important. Hence at such stages, some value of p in the
range of O.I<p<l will be helpful for the trial of
decreasing to obtain a relative large descend of F(w).
Actually using the value of p = 0.1 to experiment with
decreasing values of A seldom succeeds in reducing
F(w), as can be seen from Fig. 2. If an unexpected ascend
of F(w) is obtained, a redeeming trial should be made to
resume A to the former ideal one by dividing with
p=O.l. These two trials not only cause unnecessary

calculations of two values of F(w), but also obtain a small
descend of F(w) determined by the former “ideal” A.
Consequently, the speed of convergence slows down.

Similarly, the decay rate ,O has been tested with fixed

values of 0.2, 0.3, ... 0.9 during the training process, and
numerical computations show that fixing the decay rate

at any acceptable value can hardly achieve both fast

descending at the beginning stages and stable
convergence close to the required accuracy in one
training process. In other words, p should assume
different values at different stages so as to meet the
relevant convergence demand for accelerating the
network training.

IV. Rule of decay rate variation
In view of the above discussions, a Log-Linear

function is proposed as the rule of varying ,b’ after an

iteration, namely,

where F is the reduced sum of squared errors, FO is the
first calculated F(w) based on initialized weights and F,.
is the required training accuracy.

(a) Lagarithmic scale (b) Normal scale

Fig. 3 . Rule of decay rate vanation

1875

When the weights are initialized with the same values
used in Fig. 2, and at the same time the decay rate f l is

adjusted using the rule shown in Eq. (3) and Fig. 3, the
speed of training is greatly accelerated. As shown in Fig.
4, the parameter /z finally reaches a minimum value of
1.677E-04 and the total number of training trials is just 44,
which is much lower than the 169 trials in Fig. 2 with the
fixed decay rate of /3 = 0.1 .

1 d r-- ' i- w m ,,,.,, 0, *q~m4

Fig. 4. Improved training process by the modified LM method

V. Case studies
Example I : Nonlinear Curve Mapping

The objective in this test case is to learn a mapping
with a training set of 21 input/output pairs denoted by the
crosses in Fig. 1. A two-layer feedforward network NILnp

was trained by using the standard LM method and the
modified LM method. Two schemes of initializing weight
are also experimented to study the performance of the
new method.

weights are shown in Fig. 2 and Fig. 4 respectively. Table
I summarizes the training results of the two methods
using two different initialization cases.
Example 2: Nonlinear Static Mapping

In this example we train neural networks to
approximate the surface shown in Fig. 5(a). The function
describing this surface is

y = 0.5sin(m~)sin(2m2) (4)

A two-layer feedforward network N 1 2 x ~ x l ~ was trained
with 451 intersection points shown in Fig. 5(a). The
training results are shown in Fig. 5(b) and Table II.

(a) Prototype of desired surface

Tmining Trial

TABLE I

TRAINNG RESULTS FOR NONLINEAR CURVE MAPPING

Runs Ave. Ave. Effic- Ave.
Ite. Trials iency Time(s)

(b) Typical training c w e
Fig. 5. Simulation of a 2-dimensional desired function

TABLE
TRAINING RESULTS FOR NONLINEAR SURFACE MAPPING

Standard LM (I) 100 124.14 246.19 50.42% 0.15
ModifiedLM (I) 100 43.90 68.05 64.51% 0.05

StandardLM (n) 100 44.20 86.20 51.28% 0.06
ModifiedLM (n) 100 29.76 44.06 67.54% 0.03

(I) Weight initialization by random selection between [-I, I];

(11) Weight initialization by Nguyen-Widrow method 171.
Efficiency = (Average Iterations) I (Average Trials).

Runs Ave. Ave. Effc- Ave.
Ite. Trials iency Time(s)

Standard LM (0 100 116.73 233.02 50.09% 19.35
ModifiedLM (I) 100 42.96 73.04 58.82% 6.85

StandardLM (n) 100 82.03 162.36 50.52% 13.45
Modified LM (n) I00 35.17 57.91 60.73% 5.46

Example 3: Five-Step Advanced Prediction
The typical training curves of the standard LM method

and the modified LM method using the same initialized
In this example we train neural networks to predict

1876

results five steps ahead in a nonlinear dynamic process as
shown in Fig. 6(a). The inputs and outputs of the system
satisfy the following equation,

where,

= sin(Zni125) +sin(2dllO) (6)

~ *! ~.~~ ~ ~ o m ~ m ; ~ m m m

(a) Response of the nonlinear dynamic process

- Stendard LM
Modified LM

(b) Typical training curve

Fig. 6. Simulation of a five-step advanced prediction

TABLE UI

TRAINING RESULTS FOR 5-STEP ADVANCED PREDICTION
Runs Ave. Ave. Eftic- Ave.

Ite. Trials iencv Time(s)
Standard LM (I) 100 125.29 248.01 ’ 50.52% 11.41

Modified LM (I) 100 38.04 56.13 67.77% 3.32

Standard LM (11) 100 101.78 201.16 50.60% 9.98

Modified LM (U) 100 30.76 47.67 64.53% 2.98

A two-layer feedforward network N19 x 10 x 11 was
employed to predict a five-step advanced system output
 yo+^,. The 9 network inputs consist of 6 system inputs and
3 delayed outputs of the system, i.e. (~(~14) ,..., u(,.ll, y(,,.

Y (~ . ~) , ~ (~ - 2)) . In all the simulations, 200 training samples
were used for training the network. The training results
are shown in Fig. 6(b) and Table tU.

VI. Conclusions
Although the standard LM method is considered to be

one of the most effective methods in training feedforward
neural networks, error oscillations frequently occur
during the process and the problem usually aggravates on
approaching the required accuracy due to the fixed decay
rate p= 0.1. As a result, the process is time-consuming

because of a lot of unnecessary trials.
In the’modified LM method, error oscillations are .

greatly reduced and therefore network training is greatly
accelerated. There are three major advantages in the
proposed method:

(1) The decay rate ,8 varying from 0.1 to 0.9 with

reduced F(w) guarantees that a subsequent trial of
decreasing 1 would usually cause a relative large
descend of F(w), and this is valuable in the neighborhood
of the minimum. As a result, training is greatly
accelerated and it often involves less than half the amount
of computation required in the standard LM method.

(2) Modification to the decay rate as practiced in the
modified LM method is more effective in convergence
than improvement in weight initialization.

(3) Training acceleration achieved by the modified LM
method is not so sensitive to weight initialization
condition as the standard LM method. In other words,

special consideration of effective weight initialization is
not essential when using the modified LM method.

In the practical application of neural networks, fast
convergence in training is always desired, especially
when network leaming is running under a real-time mode.
The method proposed i n this paper can meet such
requirements pretty well with little additional
computation work compared with the standard LM
method.

References
[I] M. T. Hagan and M. B. Menhaj. ‘Training feedforward

I877

networks with the Marquardt algorithm”, IEEE Trans. on

Neural Net., vol. S. no. 6. pp. 989-993, 1994.

[2] G Zhou and J. Si, ”Advanced neural-network training

algorithm with reduced complexity based on Jacobian

deficiency”. IEEE Trans. on Neural Ner., vol. 9, no. 3, pp.

448-453, 1998.

131 L. W. Chan and C. C. Szeto, ‘Training recurrent network with

block-diagonal approximated Levenberg-Marquardt

algorithm”, in Proc. IJCNN, vol. 3, pp. 1521 -1526. 1999.

B. M. Wilamowski, Y. Chen. and A. Malinowski. “Efficient [4]

algorithm for training neural networks with one hidden layer”,

in Proc. IJCNN, vol. 3, pp. 1725-1728, 1999.

[5] D. Marquardt, “An algorithm for least squares estimation of
nonlinear parameters”, J. Soc. Ind. Appl. Math., pp. 431-441,

1963.

[6] H. Demuth and M. Bcale. Neural Nerwrk TOOLBOX User’s

Guide. Fur use with MATLAB. The MathWorks Inc.. 1998.

D. Nguyen and B. Widrow, “Improving the learning speed of

2-layer neural networks by choosing initial values of adaptive

weights”, in Proc. IJCNN. vol. 3, pp. 21-26. 1990.

[7]

1878

