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Abstract - In the application of the standard 
Levenberg-Marquardt training process of neural networks, 
error oscillations are frequently observed and they usually 
aggravate on approaching the required accuracy. In this paper, 
a modified Levenberg-Marquardt method based on variable 
decay rate in each iteration is proposed in order to reduce such 
error oscillations. Through a certain variation of the decay rate, 
the time required for training of neural networks is cut down to 
less than half of that required in the standard 
Levenherg-Marqnardt method. Several numerical examples 
are given to show the effectiveness of the proposed niethod. 

1. Introduction 
As is known, the Levenburg-Marquardt (LM) method 

shows the most efficient convergence during the Back 
Propagation (BP) training process because it acts as a 
compromise, between the first-order optimization method 
(steepest-descent method) with stable but slow 
convergence and the second-order optimization method 
(Gauss-Newton method) with opposite characteristics [I]. 

However, when using the LM method for neural 
network training, several disadvantages are still observed 
i n  the numerical computations. Firstly, large memory is 
required for matrix operations in each iteration and the 
computational complexity increases with the number of 
weights in a quadratic manner. Researches to improve the 
standard LM method mostly concentrated on this issue. 
Memory demand and computational complexity can be 
greatly reduced by using techniques based’ on Jacobian 
deficiency 121, block-diagonal approximation [3] or 
matrix contraction [4]. Secondly, serious error oscillations 
during the standard LM training process frequently occur 

and this phenomenon even aggravates when approaching 
the required accuracy. As will be discussed in the 
following sections, such error oscillations resulting in 
lengthy calculations are mainly ascribed to the use of a 
fixed decay rate. A modified method by varying the decay 
rate according to a certain generally applicable rule 
during the training process is presented in this paper. The 
proposed method shows great effectiveness in 
convergence and reduces the amount of training work by 
more than half of that in the standard LM method. 

11. The Levenberg-Marquardt method 
In the BP algorithm, the performance index F(w) to be 

minimized is defined as the sum of squared errors 
between the target outputs and the network’s simulated 
outputs, namely 

where w=[w,, w?. ..., w , v ] ~  consists of all weights of the 
network, e is the error vector comprising the errors for all 

the training examples. 
When training with the LM method, the increment of 

weights Aw can be obtained as follows 

Aw =’ [J ‘J + AIf’ J ‘e 

where J is the Jacobian. matrix, 1 is the training 
parameter which is to be updated using the decay rate p 
depending on the outcome. In particular, 1 is multiplied 
by the decay rate p ( 0<p< I ) whenever F(w) 
decreases, while A is divided by p whenever F(w) 
increases in a new step. 

The standard LM training process can, be illustrated in 
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the following pseudo-codes, 
1. Initialize the weights and' parameter R 

(1 = 0.01 is appropriate). 
Compute the sum of squared errors over all 
inputs, F(w). 

3. Compute the Jacobian matrix J. 
4. Solve Equation (2) to obtain the increment of 

weights Aw. 
5 .  Recompute the sum of squared errors F(w) 

using wt Aw as the trial w, andjudge 
IF trial ~ ( w )  < ~ ( w )  in Step 2, THEN 

n=n.p  ( D = O . l )  

2. 

w =  w+Aw 

go back to Step 2. 
ELSE 

n=n ib  
go back to Step 4. 

END IF 

111. Disadvantages of fixing'the decay ra te  as p = 0. I 
During the training process, the loop of Steps 2-5-2 

causing a subsequently reduced value of F(w) is called an 
iteration. According to Marquardt [5], a suitable strategy 
for decreasing F(w) is to use a small value of 1 such 
that the modified Gauss-Newton method would converge 
nicely. To achieve this, several trials of varying R with 

b are carried out before deciding upon a suitable value 
of R for each iteration. 

In the Neural Network Toolbox of MATLAB [6], 
which is commonly used in neural network simulations, 
the default value of p is taken to be 0.1. This value is 

fixed during the whole training process, which is also the 

value recommended by Marquardt [5]. However, some 
disadvantages are observed in network training adopting 
such a strategy, as will be seen in the following numerical 
example. 

A. Observations 

A two-layer feedfonvard network NIlnSxII is built to 
train a set of 21 input/output pairs denoted by the crosses 

in Fig. 1. The algorithm of the standard LM training (with 
p=O.l during the batch-mode training process) is 

coded in Fortran Language. Fig. 2 shows the typical 
training process using the standard LM method with 
weights initialized randomly between [-I I], the 
performance of which is characterized by the variations 
of F(w) and 1. As opposed to the normal practice in 

MATLAB of plotting the curve of F(w) against Training 
Iterations, Figure 2 plots F(w) against Training Trials, as 
an increased F(w) caused by improper trial of 0.lR 
results in additional computation work of solving 
Equation ( 2 )  and calculating F(w). 
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Fig. 1. Prototype of desired curve 
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Fig. 2. Typical training process by the standard LM method 

From Fig. 2, several characteristics of the training 

1. In the curve of F(w) against Training Trials, many 
error oscillations occur during the training process and 
this phenomenon aggravates on approaching the required 
accuracy. It takes only fewer than 10 oscillations (nearly 
20 trials) for F(w) to descend from the initial value of 
4.4787EO to 1E-I, while nearly 20 oscillations (nearly 40 
trials) subsequently to reach 1E-3 and 50 oscillations 
(nearly 100 trials) eventually to reach 1E-4. Such a kind 
of error oscillations implies that the speed of convergence 
greatly slows down on approaching the required accuracy. 

curves are observed: 

2. In the curve of /I against Training Trials, when 
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F(w) reaches 1.0016E-1, /1 takes the value of 1E-2. 
Then A falls into a longtime oscillation of constant 
amplitude until F(w) reaches 4.2567E-4 when /1 takes 
the value of 1E-3:. Afterwards, an even longer period of 
oscillation happens until F(w) reaches the required 
accuracy. This kind of oscillations in A implies that 
many trials in decreasing A by multiplying p=O.l 
would not be valuable to the reduction of F(w) but cause 
unexpected ascend of F(w) and therefore waste time. 

Although the exact numbers of staggered oscillations 
differ among different training processes due to the use of 
different initial weights, they all have serious problems of 
error oscillations before the required accuracy is reached. 
The main reason for this kind of error oscillations is the 
fixed value of the decay rate ,O of 0.1 during the 
training process. 

B. Discussion 

Generally, when a new reduced F(w) is reached, an 
“ideal” A is obtained and the weights are updated by 
adding the new increments. In the subsequent trial, the 
choice of a new A is not only a choice of step direction 
but also a choice of step size [5]. An attempt of 
decreasing /1 by multiplying ,O ( O<p<1 ) can 

therefore be seen as a trial roughly along the Gauss- 
Newton direction with a step size larger than the ones 
determined by the former A . In addition, having 
,8 = 0.1 m a n s  a much large scale in both aspects. 

At the beginning of the training process, when F(w) is 
much greater than the required accuracy, a trial with step 

direction close to, the Gauss-Newton direction with a 
large step size may cause a great reduction of F(w) which 
is expected in fast convergence. Repeated trials with 
decreasing /1 by multiplying by ,b’ = 0.1 often succeed 

in a great reduction of F(w), as can be seen from F i g 2  
Hence, such an approach is valuable and effective at this 
stage. 

However ‘a t  the subsequent stages when F(w) 
approaches the neighborhood of the minimum, the use of 
a small step size is as important for stable convergence as 
the large reduction of F(w) at the beginning. As stable 
convergence is essential at this stage, adopting a step 

close to  the Gauss-Newton direction with the 
corresponding step size by setting B=O.l is not as 
important. Hence at such stages, some value of p in the 
range of O.I<p<l will be helpful for the trial of 
decreasing to obtain a relative large descend of F(w). 
Actually using the value of p = 0.1 to experiment with 
decreasing values of A seldom succeeds in reducing 
F(w), as can be seen from Fig. 2. If an unexpected ascend 
of F(w) is obtained, a redeeming trial should be made to 
resume A to the former ideal one by dividing with 
p=O.l. These two trials not only cause unnecessary 

calculations of two values of F(w), but also obtain a small 
descend of F(w) determined by the former “ideal” A. 
Consequently, the speed of convergence slows down. 

Similarly, the decay rate ,O has been tested with fixed 

values of 0.2, 0.3, ... 0.9 during the training process, and 
numerical computations show that fixing the decay rate 

at any acceptable value can hardly achieve both fast 

descending at the beginning stages and stable 
convergence close to the required accuracy in one 
training process. In other words, p should assume 
different values at different stages so as to meet the 
relevant convergence demand for accelerating the 
network training. 

IV. Rule of decay rate variation 
In view of the above discussions, a Log-Linear 

function is proposed as the rule of varying ,b’ after an 

iteration, namely, 

where F is the reduced sum of squared errors, FO is the 
first calculated F(w) based on initialized weights and F,. 
is the required training accuracy. 

(a) Lagarithmic scale (b) Normal scale 

Fig. 3 .  Rule of decay rate vanation 
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When the weights are initialized with the same values 
used in Fig. 2, and at the same time the decay rate f l  is 

adjusted using the rule shown in Eq. (3) and Fig. 3, the 
speed of training is greatly accelerated. As shown in Fig. 
4, the parameter /z finally reaches a minimum value of 
1.677E-04 and the total number of training trials is just 44, 
which is much lower than the 169 trials in Fig. 2 with the 
fixed decay rate of /3 = 0.1 . 

1 d r-- ' i- w m  ,,,.,, 0, *q~m4 

Fig. 4. Improved training process by the modified LM method 

V. Case studies 
Example I :  Nonlinear Curve Mapping 

The objective in this test case is to learn a mapping 
with a training set of 21 input/output pairs denoted by the 
crosses in Fig. 1. A two-layer feedforward network NILnp 

was trained by using the standard LM method and the 
modified LM method. Two schemes of initializing weight 
are also experimented to study the performance of the 
new method. 

weights are shown in Fig. 2 and Fig. 4 respectively. Table 
I summarizes the training results of the two methods 
using two different initialization cases. 
Example 2: Nonlinear Static Mapping 

In this example we train neural networks to 
approximate the surface shown in Fig. 5(a). The function 
describing this surface is 

y = 0.5sin(m~)sin(2m2) (4) 

A two-layer feedforward network N 1 2 x ~ x l ~  was trained 
with 451 intersection points shown in Fig. 5(a). The 
training results are shown in Fig. 5(b) and Table II. 

(a) Prototype of desired surface 

Tmining Trial 

TABLE I 

TRAINNG RESULTS FOR NONLINEAR CURVE MAPPING 

Runs Ave. Ave. Effic- Ave. 
Ite. Trials iency Time(s) 

(b) Typical training c w e  
Fig. 5. Simulation of a 2-dimensional desired function 

TABLE 
TRAINING RESULTS FOR NONLINEAR SURFACE MAPPING 

Standard LM (I) 100 124.14 246.19 50.42% 0.15 
ModifiedLM (I) 100 43.90 68.05 64.51% 0.05 

StandardLM (n) 100 44.20 86.20 51.28% 0.06 
ModifiedLM (n) 100 29.76 44.06 67.54% 0.03 

(I) Weight initialization by random selection between [-I, I]; 

(11) Weight initialization by Nguyen-Widrow method 171. 
Efficiency = (Average Iterations) I (Average Trials). 

Runs Ave. Ave. Effc- Ave. 
Ite. Trials iency Time(s) 

Standard LM (0 100 116.73 233.02 50.09% 19.35 
ModifiedLM (I) 100 42.96 73.04 58.82% 6.85 

StandardLM (n) 100 82.03 162.36 50.52% 13.45 
Modified LM (n) I00  35.17 57.91 60.73% 5.46 

Example 3: Five-Step Advanced Prediction 
The typical training curves of the standard LM method 

and the modified LM method using the same initialized 
In this example we train neural networks to predict 
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results five steps ahead in a nonlinear dynamic process as 
shown in Fig. 6(a). The inputs and outputs of the system 
satisfy the following equation, 

where, 

= sin(Zni125) +sin(2dllO) (6) 

~ *! .... ~.~~ ~ ~ o m ~ m ; ~ m m m  

(a) Response of the nonlinear dynamic process 

- Stendard LM 
Modified LM 

(b) Typical training curve 

Fig. 6. Simulation of a five-step advanced prediction 

TABLE UI 

TRAINING RESULTS FOR 5-STEP ADVANCED PREDICTION 
Runs Ave. Ave. Eftic- Ave. 

Ite. Trials iencv Time(s) 
Standard LM (I) 100 125.29 248.01 ’ 50.52% 11.41 

Modified LM (I)  100 38.04 56.13 67.77% 3.32 

Standard LM (11) 100 101.78 201.16 50.60% 9.98 

Modified LM (U) 100 30.76 47.67 64.53% 2.98 

A two-layer feedforward network N19 x 10 x 11 was 
employed to predict a five-step advanced system output 
 yo+^,. The 9 network inputs consist of 6 system inputs and 
3 delayed outputs of the system, i.e. (~(~14) ,..., u(,.ll, y(,,. 

Y ( ~ . ~ ) ,  ~ ( ~ - 2 ) ) .  In all the simulations, 200 training samples 
were used for training the network. The training results 
are shown in Fig. 6(b) and Table tU. 

VI. Conclusions 
Although the standard LM method is considered to be 

one of the most effective methods in training feedforward 
neural networks, error oscillations frequently occur 
during the process and the problem usually aggravates on 
approaching the required accuracy due to the fixed decay 
rate p= 0.1. As a result, the process is time-consuming 

because of a lot of unnecessary trials. 
In the’modified LM method, error oscillations are . 

greatly reduced and therefore network training is greatly 
accelerated. There are three major advantages in the 
proposed method: 

(1) The decay rate ,8 varying from 0.1 to 0.9 with 

reduced F(w) guarantees that a subsequent trial of 
decreasing 1 would usually cause a relative large 
descend of F(w), and this is valuable in the neighborhood 
of the minimum. As a result, training is greatly 
accelerated and it often involves less than half the amount 
of computation required in the standard LM method. 

(2) Modification to the decay rate as practiced in the 
modified LM method is more effective in  convergence 
than improvement in weight initialization. 

(3) Training acceleration achieved by the modified LM 
method is not so sensitive to weight initialization 
condition as the standard LM method. In other words, 

special consideration of effective weight initialization is 
not essential when using the modified LM method. 

In the practical application of neural networks, fast 
convergence in training is always desired, especially 
when network leaming is running under a real-time mode. 
The method proposed i n  this paper can meet such 
requirements pretty well with little additional 
computation work compared with the standard LM 
method. 
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