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ABSTRACT 
The work in this paper is based on the theory in 

references[l-51. The main idea is to establish a 
transformation, which changes the original system into 
an image system, in which the control force is designed 
in the context of wave domain control and wave control, 
so that the number of degrees of freedom in the 
undisturbed state of the image system can be reduced. 
The design of control in the original system can be 
derived by inverse transformation. This method, 
compared with that in reference[2], is more general and 
is easy to apply. 

1. INTRODUCTION 
In structural analysis, the number of degrees of freedom 
is large when the structure is discretized by, such as, 
finite element method. The number of degrees of 
freedom of a large space structure after discretization 
may be hundred, thousands, or even more. It is 
adventageous to reduce the number of degrees of 
freedom in a control design based on the following 
reasons. The complexity of computation increases 
exponentially with the number of degrees of freedom, as 
evidence in the higher order Ricatti equation. The 
number and placements of actuators and sensors are not 
free, especially in large space structures. Otherwise, the 
primary behavior of the space structure may be changed, 
and the design on the original structure will be invalid. 
On the other hand, the orders of control equation are 
also suited for fewer actuators and sensors. For 
example, in the IMSC (Independent Modal Space 
Control), only n number of modes can be controlled 
for n actuators and sensors. The computation of large 
order matrices increases the round-off errors, in 
particular, in the higher modes of structure. And, fmally 
the hardware may encounter difficulties for the large 
number of degrees of freedom. For example, the 
capacity of the on orbit computer needs to be 
considered. 

Two kinds of approaches for the design of the 
reduced order control are of interest!-L-"-l 
One is the open-loop reduced order, where the order of 
the mathematical model of the original system is 
directly reduced and the usual design of system is 
obtained on the basis of the reduced order model. The 
other is close-loop reduced order, that is, the order of 
the controller, that is derived on the basis of the original 
system, is directly reduced. 
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This paper is based on the theory of wave domain 
control and wave control presented in [l-51. A reduced 
order control design is given in reference[3-41. The 
main idea is that when the initial disturbance is given, 
perhaps in the full spatial domain, the state that is 
reduced is almost zero with the control force obtained 
by the theory of structural wave domain control 
introduced in section 11. It is very difficult in 
applications when the endurance of structure and the 
performance of controller are to be considered. 
Furthermore, the design of this method is affected by 
the degrees of controllability of the structural wave 
domain control, which can not be given freely. 

The main idea of our work is to establish a 
transformation, with which the original system is 
changed to an image system. The initial disturbance in 
the image system, which is transformed from the initial 
displacement or other state variable, must be spatial 
domain defined so that the theory on structural wave 
domain control can be used to design the control force, 
that enables some other states of the image system 
remain undisturbed and reducible. The procedure .of 
reducing order is in the image system. After the design 
of reduced order control in the image system, the 
control design and the state response in the original 
system can be derived by inverse transformation. When 
the transformation is non-unique, a 'better' image 
sysiem can be found, in which the number of degrees of 
controllability of wave domain control is large, so the 
reduced orders can be high, and the control design is 
easier to realize. A new path is opened in the research of 
structural design of reduced order control. 

2. STRUCTURAL WAVE DOMAIN 

We summarize our results in the field of wave control 
and the degree of controllability for later discussion. 
The state equation of a system is expressed as: 

where A and B are the matrices of system and control 
respectively, x and U are vectors of state and control 
respectively, namely 

CONTROL[ 1-51 

X=Ax+Bu (1) 

A E R""", B E R""' ,x E R" ,U E R' 
In classical theory, that system (1) is state controllable 

means: for any initial state xo and time t , the control 
force u(T) (T E (0,t)) can be derived, so that the 
state can be controlled at all time t. 
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It is shown that the definition does not characterize 
the dynamic features that the response can be zero at 
any time in a spatial domain when appling the control 
force. In order to give further analyses, some symbols 
are introduced at first. A(i& is the matrix with its entries 
consisting of the first i rows and the first j columns of 
matrix A and A c j )  is that with the last i rows and the 
first j columns of matrix A. In a similar way, B(ij) and 
BGj) can be defined. x(t,i) is a vector with the first i 
elements of vector x and x ( t 3  is that with the last i 
elements of x.PnxJ is a matrix, whose column vectors 
are that of some j column vectors of unit matrix I,,,. 
On the other hand, PnxJ is a matrix, whose column 
vectors are that of the other n - i  column vectors of 

- 

In, , .  
B,, = B ( n - i , r ) P ,  B,, = B ( n - i , r ) F  

B,, = B(Pi-r), B,, =B(i,r) 7 
A , ,  = . 4 ( n - i y n - j ) ,  A,, =A&n-i) 

The matrix P must satisfy the following equation: 
R( B (-i,r)P)=R( B(i,r)) 

where R(.) means the spanning space of the 
corresponding matrix, and 8,,+ is the pseudo-inverse of 

Let 
B =  B,, - B l , B 2 1 f B 2 2 , ; I =  A , ,  -B,,B,,+A,,  
B = B2, - B,,B,,+B,, ,;? = A,, - B,,B,,+A,, 
From wave dynamics, we give the following definitions 
and criteria. 
Definition 1: Eq.(l) is controllable, if 3i ( i  is an integer 
less then n), tr'x(O,n-i),3u(z)(.r: > o), which 
result in x(t,i)=O for all C O .  
Definition 2: The degree of controllability of Eq.(l) is 
defined as the maximum of the integer i in Definition 1. 
The criteria of controllability are given below. 
Criterion 1: The degree of controllability of Eq.(l) is i, 
iff 
R(B(i,r)) 3R(A&n-i)), i.e. 
rank(B( i,r))=rank(BQr),A(-i,n-i)) 
The physical significance of the above definitions and 
criteria are that they are used to testify whether a given 
spatial domain can be disturbed with the applied control 
force, when a disturbance in a spatial domain is given. 
A simple proof of the criterion and numerical simulation 
with the model of spring-mass system are given in 
reference[ I ]  and Appendix A. 
Definition 3 A structure is wave controllable means, 
3i(i < n),Vx(O,n-i) ,Vt > 0, 

x(t',i)=O. (t'LO) and x(t,n-i)=O. 
Next, a sufficient condition for structural wave control 
is given. 
Criterion 2 A structure is wave controllable, if 
a. 3i(i < n) ,  R(B(-i,r))IR(A(-i,n-i)) 

B2I . 

which result in 
~ U ( Z ) ( T  E (0, f)), 

- b. 3P ,which makes 
rank ( B , A  B , . . . . ,A (n- ' - ' )B)=n- i  
The physical significance of above definitions and 
criteria is that they can be used to testify whether the 
structure can be controlled to zero state, meanwhile the 
given spatial domain can not be disturbed with the 
applied control force, when a disturbance 
in a spatial domain is given. The proof of criterion 2 and 
some numerical simulations with the models of spring- 
mass-system, string and Euler beam are given in 
reference[2]. 

- -- 

3. THE DESIGN OF A REDUCED ORDER 
CONTROL 

Consideration the transformation of system (l) ,  

transformation must satisfy the following conditions: 
1 .  [ 'p] can be inversed. 

2. ( 4 0  = [ 9 l - M - O  
3.{v2}0 = [o, 0, ...., o]', 

(.>o ""d(V>o 
are initial conditions in different system respectively. 
Substituting Eq.(2) into Eq.(l), one gets 

[<p]{v} = A[cp](v) + Bu (3 )  

Multiplying <p-' on the both sides of the above 
equation, we have the following system 

V = 'p-'A'pv + ~ - ' B U  = XV + BU (4) 
which is called the image system. 
Now, the control force is designed in the image system 
by the theory of structural control[2], which makes the 
disturbance to be absorbed on the determined spatial 
domains, so that they are not disturbed and to be 
reduced. Then the control design of the original system 
can be derived by the transformation equation (2). Let 
the degree of controllability of Eq.(4) be i ,according 
to criterion 1, Eq.(4) is rewritten as 

where 
v 3  E I?( , - ' ) ,  v4 E RI,  u1 E R"'-", u2 E R I A ,  
and Bml (m = 1,2, j = 1,2) are corresponding 
matrices. Assume Eq.(5) be wave controllable, that is, 
criterion 2 is satisfied. So state v4 is reduced, and 
Eq.(5) become 
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A2,v3 + BZlul + &u2 = 0 (6) 

that is the reduced order model, on which the control 
force is designed. From transformation Eq.(2), we have 

v 3  = A I I V 3  + B I I U ,  +B12U2 (7) 

so 

which is the state response of the original system. The 
procedure of obtaining Eq.(5),(6),(7), and the design of 
control force have been all discussed in reference[ 1-51. 

First, we take the model of spring-mass system 
expressed in Fig. 1 to illustrate our idea. 

Fig. 1 
The control equation of the system is 

where 
{X} + [K]{x} = [B]{U} (8) 

Let the initial displacement be 

{x}o =[1 -13' 
The transformation matrix and its inverse form are 

(P= [ -1 "1 1 9 (P-,=[:1 ;] 
The transformation is 

Substituting initial condition (9) into the above 
equation, the initial disturbance in image system is 
derived as 

x=cpv (10) 

The image system is 

That is 

where 

V + ~~- 'K(Pv  = (P-IBu 

v + Kv = B u  

(1 1) 

(12) 

Let bll +b,2 * 0 and 
b , ,  (b12 + b22)  # (b l l  + b2,)bl2,  to satisfy criterion 
2. So the degree of controllability of system (12) is 1, 

and the system is wave controllable. Then state v2 is 
reduced, the reduced model is 

VI + (k, + 2p)v, = b l l U l  + b12u2 (13) 

(14) 
(k, - k2)VI = ( 4 ,  +b21 )U, 

+ (42 + b22 )U2 
From Eq.( 14), we have 

1 

- ( k ,  - k2 )VI 1 
Substituting Eq.(15) into Eq.(13), one gets 

where 
VI + ( k ,  +2p)vI = c l u 2  + c 2 v ,  (16) 

1 

For the convenience of illustration, let 
k, = k, = k b,, = -b22 = 1 
b,, = b,, = 1 

so U ]  = o .  
Eq.( 16) changes to 

The control force u2 is designed based on Eq.(l7), 
and the state v,  is controlled to a determined one. From 
transformation (10). one has 

VI +(k,  +2p)vl = u2 (17) 

That is, x1 = v ,  x2 = -vl  , which are the response 
after control in the original system. Next, we will put 
the design of control force derived from the image 
system into the original system to verify if the response 
is the same as expressed in Eq.( 18). 
The original equation is 

f, + ( k ,  + P)X, - p2 = 
(19) 

(20) 

b,,u, + bI2u2 = U ,  + u2 

X, + (k2  + p)x2 - w, = 

b2,u, + b22u2 = U ,  - u2 
Summing both sides of above equations, one gets 

(XI + X,) + k(x, + x2)  = 2u, = 0 
For the initial condition of state x1 + x2 is 0, we 
obtain 

Introducing Eq.(2 1) into Eq.( 19), we have 

Compared with Eq.(17), we know that, 

that is 

(21) 

(22) 

XI = v1 (23) 

XI =-x2 

2,  + (k, + 2p)xl = u2 
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XI = v ,  x2 = - V I  

which is the same as that in Eq.(18). 
Now, consider the Euler beam as model to illustrate our 
theorv. The equation of an Euler beam is 

a2y a4y 
at ax4 @ ~ + E I - = f ( x , t )  (24) 

Without losing generality, let the material parameter 

= 1. , the length of beam = 10. EI - 
PA 
The model of differential discretization of Euler beam is 
given as 

where 

E1 
[Kl= 

5 -4 1 
-4 6 -4 1 
1 - 4 6 - 4 1  

- 4 6 - 4 1  
1 -4 6 -‘ 

1 -4 5 

The initial displacement in the original system is shown 
in Fig.2, and the initial disturbance in the image system 
is shown in Fig.3 when a transformation matrix Cp is 
given. The vertical axis expresses the response of the 
displacement of structure, and the horizontal axis 
expresses the length of structure. Let the criteria of 
wave domain and wave control are satisfied in the 
image systems. The design of control force and the 
displacement response are shown in Fig.4-5 by the 
classical method of IMSC (Independent modal space 
control). ARer inverse transformation, we get the design 
of control force and the displacement in the original 
system, which are shown in Fig.6-7. For Fig.4-Fig.7, the 
x axis expresses the length of structure, the y axis 
expresses the time corresponding to the response, and 
the z axis expresses the response of the displacement of 
structure. The time history is 5 seconds. 

4. CONCLUSIONS AND REMARKS 
A new idea of structural reduced order control is 
introduced in this paper, which is based on the concepts 
and criteria of structural wave domain control and wave 
control. Compared with the existed works on the design 
of structural reduced order, our work has the following 
characteristics. (1.) All the design of control is derived 
in one system, named image system that has strong 
physical significance. So the theory of wave domain 
control and wave control may be applied in the design 
of control. (2.) The numbers of the reduced order of this 
method can be larger depending on the selection of 
image systems, unlike the method in references[3-41, 
where the reduced orders are affected by the degrees of 

controllability. (3.) It can be seen that, from the 
procedure of this method, important physical 
information is captured. The reduced state in the image 
system is undisturbed with the control force applied, not 
like other researches in this field that the state is 
reduced according to some indexes, such as the degree 
of state controllability. 
There are still many further works. That which image 
system is ‘better’ is still unanswered due to the large 
selections of image system with the initial state in the 
original system and the initial disturbance given in 
image system. All the above researches rely on the 
further studies of the theory and application of wave 
domain control and wave control. 
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Appendix A 

Criterion 1: The degree of controllability of Eq.(l) is i, 
iff R(B(i,r)) I>R(A&n-i)), i.e. 
rank(B( i,r))=rank(B~,r),A(i,n-i)) 
A simple explanation of criterion 1 is given. 
If the degree of controllability of Eq.( 1) is i, we have 

which means that it requires there exists u(t) in order 
that Eq.(a) should be satisfied for any given x(t,n-i). The 
condition of such problem is 

R(B(i,r)) 3R(A&n-i)) 
Now we give an example to illustrate the significance 
and application of the definition and the criterion -in 
design of control force. 
The equation is (not losing the generality, 
m, = m 2  = 1 )  

(b) 
(c) 

and 

A(i,n-i)x(t,n-i)=B(i,r)u(t) (a) 

X I  +(k,  +m)x, -mx2 =f,(t) 
X, - mx, + (k, + m)x2 = f, (t) 

i = 1,2 where f ,  ( t )  = bllul + b,2u2 
Let 
y = ( y ,  , y 2  ) ’, U = (U, , u2 ) ,the state equation is 

T Y1 = (x1,~&T,Y2 = (X,,X,) , 
T 

y =  Ay+Bu 

0 1 0 0  
- k l - p  0 p 0 

0 0 0 1  

where 

P 0 4 - P  0 

Considering the problem of wave control and letting the 
degree of controllability is ],we have 
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From criterion 1, b,, ,b22 can not be zero 
simultaneously. 
I t  can be proved that when b,, = b,, = 0 , the criterion 
0 is satisfied for some b,, and b,, . However, if the 
wave should be controlled on m2, b,, and b,,must not 
be zero simultaneously as shown above. This is a new 
idea to deal with the problem of wave control. 

Appendix B 

Criterion 2 A structure is wave controllable, if 
a. 3 i(i<n), R(B(j,r)) 3 AQn-i)) 

which makes b. 
rank ( B  , A B ,...., A (n-’-’)p) = n - i 
Proof. From Criterion 1, we know the degree of 
controllability of Eq.( 1) is i, then Eq.(a) is written as the 
following forms: 

- IP 7 - _- 

A,,x(t,n-i)+B,,u, +B2,u2 = O  (9 
u ,  = P  U U, = P T u  

- T 

Because 
R( B(-i,r)) T>R(A(i,n-i)) 
R(B&r)P)=R(B(-i,r)) 

there exists B2,+ , and 

The state equation of x(t,n-i) is, 
x(t,n - i) = A,,x(t, n - i) + B(n - i,r)u 
x(t, n - i) = A,,x(t, n - i) + B,,u, + BI2u2 
Substituting Eq.6) into Eq.(k) 

x( t  , n - i) = ( A ,  , - B, , B, ,+ A,, )x ( t ,  n - i) 

U ,  = -B,,+[B:,u, + A 2 , x ( t , n - i ) l  6 )  

i.e. 

(k) 

+(RI, -BlIB,l+B22)~2 (1) 

(4 i .e.  
The system (m) is controllable, iff 
rank( B ,  A B ,..., A (”-‘-‘)B) = n - i. 
So, 3 u ( t ) ,  which makes x(t,j) wave domain 
controllable and x(t,n-i) state controllable. 

x( t ,n  - i) = Ax( t ,n  - i) + Bu, 

--- - 
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