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ABSTRACT

The surface morphology of GaN films grown by molecular beam epitaxy (MBE) is
investigated by scanning tunneling microscopy (STM). A comparison is made between
flat and vicinal surfaces. The wurtzite structure of GaN leads to special morphological
features such as step pairing and triangularly shaped islands. Spiral mounds due to
growth at screw threading dislocations are dominant on flat surfaces, whereas for vicinal
GaN, the surfaces show no spiral mound but evenly spaced steps. This observation
suggests an effective suppression of screw threading dislocations in the vicinal films.
This finding is confirmed by transmission electron microscopy (TEM) studies. Continued
growth of the vicinal surface leads to step bunching that is attributed to the effect of
electromigration.

INTRODUCTION

Current intensive experimentation on ITI-V nitrides has led to rapid progress in blue
light and high power device applications [1]. These achievements contrast greatly an
apparent lack of good understanding of many fundamental issues related to growth and
film properties of nitrides. To further improve the quality of epitaxial thin films and
hereafier the performance of nitride-based optoelectronic and microelectronic devices, a
better knowledge of its growth kinetics and surface dynamics is obviously needed.

In a non-equilibrium growth system such as molecular beam epitaxy (MBE), surface
morphology contains important kinetic and dynamic information related to the growth
process [2]. Therefore, by studying the morphological evolution of surfaces during MBE
growth under various conditions, key kinetic parameters governing growth can be
derived.

This paper presents recent observations of many novel morphologies during growth
of GaN(0001) on SiC(0001) substrates without the use of buffer layers. Both nominally
flat and vicinal substrates are used. In addition to the strong anisotropy in growth rates of
two types of surface steps, step bunching during vicinai film growth is also observed.
Furthermore, for a vicinal film, there is no spiral mound, which is the dominant feature
for a flat surface.

EXPERIMENTS

MBE growth and scanning tunneling microscopy (STM) experiments of GaN films
are conducted in a multi-purpose ultrahigh vacuum (UHV) system, with background
pressures in the range of 10"'" mbar. The MBE system is equipped with a conventional
eftusion cell for gallium (Ga) and a radio-frequency plasma generator for N». For all the
GaN growth reported in the paper, the Ga source temperature is set at 980°C, and the N,
flow rate at 0.13 sccm (standard cubic centimeter per minute). The power of the plasma
unit is set at 500W. These conditions correspond to an III/V flux ratio of approximately 2
and a GaN growth rate of 0.26 A "' [3]. The substrates are nominally flat 6H-SiC(0001)
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of screw threading dislocations in the flat film is of the order of 2 X 10° e, which has
been confirmed by transmission electron microscopy (TEM) investigations {5]. Similar
morphologies have also been reported by others [6,7], therefore, it seems that it is
characteristic to MBE-grown GaN films on flat substrates. Note that if a pair of growth
spirals originates from growth at two vertical screw arms of a ‘U’-shaped dislocation line,
then the spirals in the pair ought to have opposite rotation direction. Indeed, both
clockwise and anti-clockwise rotation spirals are seen.

Zooming-in one of the spiral mounds reveals a special step structure, as shown in
fig. 1(b). Along one of the <10-10> crystallographic directions, steps are all double
bilayer (BL) high, i.e., it equals ¢ = 5.2 A. the height of the unit cell of GaN in the [0001]
direction. In between the two adjacent double BL steps, along the [11-20] direction, the
steps are de-paired into single BL and a twilled structure results. Such a step structure
is understood by considering the dangling bond characteristics of a wurtzite film [8]. For
such a film’s surface, there are two types of steps, namely type-A and type-B steps. For a
type-A step, each edge atom has two dangling bonds whereas for type-B steps, the edge
atom has only one dangling bond. Therefore, for a type-A step, there is a high density of
kinks whose advance is limited by the arrival rate of adatoms by diffusion. On the other
hand, for a type-B step, there are few kinks, as the creation of a kink site on such a step
will expose the high-energy type-A step. As a result, the motion of a type-B step may
involve nucleation of one-dimensional (1D) islands along the step edge, therefore, its
speed of growth is reduced compared to the growth of a type-A step. For a wurtzite film,
consecutive steps along a given <10-10> direction belong to type-A and type-B
alternately, therefore, the fast-growing type-A step will ultimately catch up with the
slower-growing type-B step underneath, and step-pairing occurs. On the same terrace, a
step changes its character from type-A to type-B or vice versa upon turning 60°. This
explains the formation of the twilled structure of single BL steps along the [11-20]
direction.

Under the island nucleation growth mode at low substrate temperatures, €.2., 500°C,
2D single BL height islands form on terraces that show triangular shape, as depicted in
fig. 1(c). The triangular shape is again due to the growth anisotropy of GaN. The fast-
growing type-A step ultimately makes this step disappear and the island becomes
bounded by the slower-growing, low energy, type-B steps. Unexpectedly, from the image
of fig. 1(c), triangular islands oriented 180° with respect to each other on the same terrace
are seen, To explain this, we assume atoms in some of the islands are wrongly stacked.
For example, instead of the wurtzite ABAB... stacking, atoms take the cubic ABCA. ..
stacking instead. The oppositely oriented triangular islands can also originate from twins
in a pure cubic film, i.e., one with ABCA... and the other with ACBA... stacking. It has
been shown by TEM studies that low growth temperature promotes cubic film formation
and there is a high density of stacking faults and twin boundaries in such a film [9].
Therefore, the assertion of the 180°-oriented islands to stacking faults and twins is likely
to be correct.

Vicinal Surface
Fig. 2 shows a GaN surface following a 0.5pm film deposition at 650°C on a vicinal
SiC substrate. The most remarkable difference between this surface and the flat one (fig.

1(a)) is the absence of spiral mounds. As described earlier, spiral mounds reflect growth
at screw threading dislocations. Therefore, the absence of spirals in fig. 2 implies a
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 Figure 2 STM image of a GaN film grown
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Figure 3. A 1D model of a vicinal GaN surface. The consecutive steps belong to
type-A and type-B, respectively, as required by the-wurtzite crystal structure.
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Figure 4.5TM image showing step bunching of
the vicinal GaN film following prolonged growth
at 630°C and heated by a DC along the step

-down direction (from left to right).
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caused solely by the electromigration effect, or it is also caused by a higher rate of
incorporation of adatoms from the upper terrace compared to that from the lower terrace.
More studies are needed to separate out these two effects.

CONCLUSIONS

We have summarized our observations of surface morphology of GaN during its
MBE growth. A comparison is made between the flat and vicinal surfaces, where the
former shows spirals mounds due to screw threading dislocations, contrasting to vicinal
films where there is no spiral mound. This suggests an effective suppression of threading
dislocations. Furthermore, strong growth anisotropy and step bunching are observed,
which can have important implications in the design of nitride-based device structures.
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