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 Abstract—Though it is commonly assumed that the brain 
creates “motor programs” which store the information 
essential to perform a motor skill, little direct evidence 
exists for such motor programs. Electromyography (EMG) 
provides a look into the motoneurons − level of a 
movement by measuring the electrical activity in relation 
to the muscle’s involvement in the movement. In this 
paper, artificial neural networks (ANNs) were applied to 
define the temporal patterns of EMG activity used by normal 
subjects in performing step-tracking tasks, and how such 
patterns change with practice. Our results demonstrate that 
ANNs could be trained to detect the input-output relationship 
between muscles’ onset times and reaction times, and provided 
evidence to support the existence of a motor program. 
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I.  INTRODUCTION 
 
 Since the late 1960s, a central concept in the control of 
voluntary movement is that the brain generates some kind of 
algorithm (motor program) that results in a movement. The 
algorithm specifies at least: [1][2][5][6][7] 

1) Which muscles will be turned on, which muscles 
will be turned off, and which muscles will be ignored (there 
are about 600 muscles in the human body).  

2) When each muscle will be turned on (EMG onset 
times). 

3) How much each muscle will be turned on (EMG 
amplitude/area). 

4) When each muscle will be turned off (EMG offset 
time). 

From an engineer's point of view, it's like 
simultaneously controlling up to 600 torque motors to 
produce precise forces acting on linked levers. 

But there is still no published evidence that motor 
programs exist.  Most workers measure biomechanical 
variables, like reaction time and interpret their results in 
terms of the motor program. Some workers measure EMG 
onset/offset/amplitude from no more than 2, usually 
antagonistic muscles, which is useless in terms of 
identifying a central algorithm or pattern. They restrict 
themselves to 2 or 4 muscles because, until recently, the 
permutations and combinations quickly make analysis 
impossible.[3][4] 

We attempt to apply ANNs to simultaneous recordings 
from significant numbers of muscles (=8) to recognize 
patterns in EMG onset times, i.e. features of the central 
algorithm, if it exists. Our strategy is that an ANN trained on 
data from a learned task can be used as a probe to 
investigate differences between the learned pattern and 
patterns generated during the learning process. 
 

II.  METHODS 
 
A.  Multi-layer Perceptrons (MLPs) Neural Network 
 
      A commercially available simulator software package 
(NeuroSolutions Version 4.0: NeuroDimension, Inc., USA) 
was used to construct the neural networks. 

Multilayer perceptrons (MLPs) are layered feedforward 
networks typically trained with static backpropagation. 
These networks have found their way into countless 
applications requiring static pattern classification. Their 
main advantage is that they are easy to use, and that they can 
approximate any input/output map. 
      The MLP neural network topology of three layers; an 
input layer, an output layer and a hidden layer with 8 
processing elements (PEs) was chosen for this study (Fig.1). 
The 8 EMG onset times provided the input to the network, 
while the measured reaction time (RT) was the desired 
output for the network. The error between the predicted 
output from the network and the desired output would be 
minimized based on backpropagation rule. The training 
continued until the error reached the stop criterion of 0.01%. 
The hyperbolic tangent function was the activation function. 
The maximum number of epoch was 1000. The training rate 
of the batch method was chosen for this study. 

        
 

Fig. 1 MLP neural network topology 
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B. Data Acquisition 
 
      15 healthy, right-handed volunteers (7 men and 8 
women, aged 25-42 years, mean 29 yrs) participated in the 
experiment. They were all naïve with regard to the specific 
purposes of this study. The Ethics Committee of the 
University of Hong Kong approved all experimental 
procedures (EC 827-96). 
 Each participant was seated comfortably in a dental 
chair, with the forearms resting on an adjustable support. An 
individually fitted thermoplastic cast held the forearm stable, 
in order to maintain the same elbow, wrist and hand posture 
over the recording period. The participant was asked to use 
their left hand to grasp the handle of a manipulator mounted 
on a sturdy platform. The manipulator handle rotated freely 
around a bearing centered on the axis of rotation of the wrist. 
A potentiometer coupled to the bearing gave a continuous 
measure of wrist angle and its output was digitized and 
stored. Surface electrode pairs were placed about 1 cm apart 
on the skin overlying the following muscles: Abductor 
Digiti Quinti (ADQ), Abductor Pollicis Brevis (APB), First 
Dorsal Interosseous (FDI), Flexor Carpi Radialis (FCR), 
Flexor Carpi Ulnaris (FCU), Extensor Carpi Radialis (ECR), 
Extensor Carpi Ulnaris (ECU) and Extensor Digitorum 
Communis (EDC). 
 An oscilloscope screen displayed a cursor and a target 
in front of the participant. The cursor was a horizontal trace 
that moved in proportion to the wrist movements. It moved 
upwards for wrist extension, while moving downwards for 
wrist flexion. The target was a horizontal trace, which also 
moved in the vertical axis. The location of the target on the 
screen was determined by the computer. 
       To initiate a trail, the participant superimposed the 
cursor line on the target line and maintained this position 
until any observable target movement. The target then 
jumped instantaneously to a new position. The participant 
was required to move the cursor, as accurately, and as fast as 
possible, to this new position. After 500 ms, the target then 
moved instantaneously back to the initial position, and the 
participant was asked to move the cursor to follow the target 
movement, as accurately, and as fast as possible, back to the 
initial position, where the target remained for 500 ms. Thus 
each step was 1 second in duration. The process was then 
repeated 75 times in 75 seconds. No practice trails were 
allowed. 

While the participant performed the step-tracking 
movements, signals from the potentiometer and the 8 EMGs 
were stored in computer memory for further analysis. The 
raw EMG signals were amplified (×1000) and band-pass 
filtered (30-1000 Hz) using conventional preamplifiers 
(Model P15, Grass Instruments), and then digitized with 12-
bit resolution at a sampling rate of 1000 Hz (DT21EZ, Data 
Translation Inc.). 
 
 
 

III. RESULTS  
 

      Fig.2 describes performance measures of movement, 
including:  

1) RT (reaction time): the difference between the time 
the target moved and the time the subject began to move the 
wrist. A positive value indicates the subject moved after the 
target began to move; negative means the subject anticipated 
the target movement. RT has been used as the classic 
measure of motor learning in millions of experiments since 
the 1860s. RT decreases with practice. RT consists of PRT 
(premotor reaction time) and MRT (motor reaction time). 

2) MT (movement time): the time from the beginning of 
the wrist movement until its end. Probably not important, 
but also tends to decrease with practice. 

3) PRT (premotor reaction time): the time from the onset 
of the target movement to the first detectable EMG change 
of the prime mover (the principal muscle producing a 
movement, FCR is the prime mover in this trial). 

4) MRT (motor reaction time): the time from the first 
detectable EMG of the prime mover to the onset of the 
cursor movement. 
 

 
 

 
Fig. 2     Schematic diagram shows RT, MT, PRT and MRT. 

 
      Fig. 3 shows the first few trials of a typical experiment. 
The square wave on the bottom (blue) trace represents the 
target that the subject is trying to track by flexing and 
extending the wrist. The superimposed trace (pink) shows 
the actual wrist angle; in this case the subject fails to follow 
the first three trials and then starts tracking. The eight upper 
traces show the rectified EMG signals from wrist and hand 
muscles. 

The MLP neural networks constructed in this study had 
the capability to ‘learn’ the input-output relationship 
between the EMG onset times and the reaction time within 
the criterion we set for the network. These results 
demonstrate that there is a very strong relationship between 
the 8 EMGs’ onset times and RT. 
 Other different types of neural networks were also tried 
to train the data. Self-organizing feature map network (SOM) 
had the ability as well. The feature maps are computed using 
Kohonen unsupervised learning. The output of the SOFM 
can be used as input to a supervised classification neural 
network such as the MLP. 



 

 

      
 
Fig. 3     Activity profiles of all the 8 muscles recorded in the first 8 steps 
for subject A. The EMGs are full wave rectified.[9] 
 
 

IV.  DISCUSSION 
 
Researchers from different fields of study, such as 

experimental psychology, motor behavior and neurobiology, 
have provided evidence to support the existence of motor 
program. Other than theoretical issues raised by the idea of 
motor programs, another more pragmatic line of research is 
aimed at identifying the content and structure of such 
programs. [1][3][5][8] But the problem is there is still no 
consensus on what constitutes a motor program. The main 
reason is because of limitations of the technology available 
to previous studies. For example, the acquisition and 
analysis of many channels of complex data continues to 
pose a major challenge. The use of ANNs in this study is a 
new approach to investigate motor programs. 

EMG data provide an indirect, but perhaps the best 
indication of the timing of exerted force and relative 
changes in force produced during movement. More 
significantly, it also tells us about instructions arriving at the 
motor neurons from central control center. One way to study 

motor learning is to measure the spatial and temporal 
patterns in the muscles’ activation (i.e. EMG) pattern. In this 
study, the temporal patterns in the muscles studied were the 
point of focus. Unlike previous studies, we were interested 
in observing the changes in the activation patterns of all 8 
muscles rather than an individual muscle and its antagonist, 
because joint movements depend on more than one muscle. 
 ANNs is proved effective for the study of motor 
program. We can further apply them to more parameters 
(PRT, MRT, MT, amplitude of EMG, frequency spectrum 
of EMG, etc.) to obtain more evidences for the existence of 
motor program and its characteristics. 
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