

The HKU Scholars Hub

The University of Hong Kong

Title	Oral arsenic trioxide in the treatment of relapsed acute promyelocytic leukaemia
Author(s)	Au, WY; Kumana, CR; Kou, M; Mak, R; Chan, GCF; Lam, CW; Kwong, YL
Citation	The 8th Medical Research Conference (MRC 2003), Hong Kong, China, 25-26 January 2003. In Hong Kong Medical Journal, 2003, v. 9 supp 1, p. 59, abstract HO-06
Issued Date	2003
URL	http://hdl.handle.net/10722/46908
Rights	Creative Commons: Attribution 3.0 Hong Kong License

H0-05 Effect of arsenic trioxide on the cell proliferation of human neuroblastoma cell line IMR-32 cells

W.M.W. Cheung, P.W.K. Chu & Y.L. Kwong. Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong.

Introduction: Neuroblastoma is one of the commonest pediatric tumors and is derived from neural crest precursors cells. Spontaneous regression and maturation of neuroblastoma to ganglioneuroma suggest that differentiation therapy might be potentially useful. Arsenic trioxide (As_2O_3) is an effective therapeutic agent for acute promyelocytic leukemia (APL), and induces both differentiation and apoptosis of leukemic cells *in vivo*. However, the underlying molecular mechanisms are not fully understood. In this study, we used a human neuroblastoma cell line, IMR-32, as our *in vitro* model to study the potential application of As_2O_3 as a differentiation agent for neuroblastoma.

Method: IMR-32 cells were treated with increasing concentrations of As_2O_3 (0.1 to 5.0 μ M). MTT assays were performed to examine the effect of As_2O_3 on cellular proliferation. Western blot analysis was performed to identify the potential signaling molecules involved.

Results: At high concentrations of As_2O_3 , cellular proliferation of IMR-32 was significantly inhibited (~35% at 1.5 μ M and ~78% at 5.0 μ M). Western blot analysis of differentiation markers suggested that As_2O_3 induced differentiation of IMR-32 cells at low concentrations ($\leq 2.5 \mu$ M), but led to apoptosis at high concentrations (5.0 μ M). As_2O_3 induced the phosphorylation of p42/44 MAP kinases (Erk1/2) and protein kinase C (PKC) in a dose and time-dependent manner. Pre-treatment of IMR-32 cells with Ro-31-8220 (1 μ M), a specific PKC inhibitor, partially blocked the effect of As_2O_3 .

Conclusion: We conclude that As_2O_3 is capable of inhibiting the cell proliferation of a human neuroblastoma cell line IMR-32 via cell differentiation and apoptosis. Signaling molecules such as Erk1/2 and PKC might play crucial roles during the anti-proliferation action of As_2O_3 . The study was supported by the Kadoorie Charitable Fund.

H0-06 Oral arsenic trioxide in the treatment of relapsed acute promyelocytic leukaemia

<u>W.Y. Au</u>¹, C.R. Kumana¹, M. Kou¹, R. Mak², G.C.F. Chan³, C.W. Lam⁴, <u>Y.L. Kwong¹</u> Departments of Medicine¹, Pharmacy² and Paediatrics³, Queen Mary Hospital, and Department of Clinical Pathology⁴, Chinese University of Hong Kong, Prince of Wales Hospital.

Introdution. Arsenic trioxide (As_2O_3) induces a remission in over 90% of patients with relapsed acute promyelocytic leukaemia (APL). To date, only the intravenous (i.v.) preparation of As_2O_3 has been used. We have recently developed an oral preparation of As_2O_3 that achieves blood levels of elemental arsenic comparable with those of i.v. As_2O_3 (Eur J Clin Pharmacol Oct 11, 2002 online). In this study, the efficacy and safety of oral As_2O_3 were evaluated.

Materials and methods. Twelve consecutive unselected patients with relapsed APL were treated with oral- As_2O_3 (10 mg/day) until remission.

Results. Eight patients in first relapse achieved a second complete remission (CR2) after a median of 37 days of oral-As₂O₃. Subsequent consolidation with idarubicin or oral-As₂O₃ plus all-trans retinoic acid (ATRA, 45 mg/m²/day) resulted in continuous CR2 in seven patients (median follow-up: 12 months). Four patients in second relapse (from CR2 induced by intravenous-As₂O₃) achieved CR3 after a median of 31 days of treatment with oral-As₂O₃/ATRA. After subsequent consolidation with oral-As₂O₃/ATRA, all had remained in CR3 at a median follow-up of 14 months. Patients in CR were negative for *PML/RARA* 3-6 months post oral-As₂O₃ treatment. Toxicity of oral-As₂O₃ was mild, including leucocytosis without the ATRA syndrome, skin rashes, headache and transient liver function derangement. Cardiac arrhythmias were not observed.

Conclusion. These results show that oral-As₂O₃ is a safe and efficacious treatment for relapsed APL.