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ABSTRACT

In this paper, we study the stability and the stabilisation of 213 di-
screte linear systems with multiple state delays. All of the new
resuits obtained are based on analysis of the Fornasini-Marchesini
state space model with delays and the resulting conditions are gi-
ven in terms of linear matrix inequalities (LMIs). A numerical
example is given to illustrate the effectiveness of the overall ap-
proach.

1. INTRODUCTION

The analysis of time-delay systems is a very important part of (li-
near) systems theory and has been a very active research area over
the past few decades. The interest in time-delay systems stems
from the fact that such delays occur often in, for example, electro-
nic, mechanical, biological, metallurgical and chemical systems
— see, for example, [10, H]. ’

‘The existence of detays is frequently a source of instability.
Much work has been reported on the problem of the stability of
standard, termed 1D here, linear systems with delays [4, 12] but
relatively little on the stability of 212 (rD) linear systems with
delays.

In this paper, we develop stability conditions for 20 linear
systems with multiple state delays and then establish some con-
nections between multidimensional delay and delay-free systems.
Based on the these results conditions for the existence of stabili-
sing controllers are developed. All of these conditions are formu-
lated in terms of linear matrix inequalities (LMIs) [2, 6], where an
advantage of using LMlIs is the fact that there exist efficient nume-

rical algorithms to solve them as demonstrated by the numerical

example which concludes this paper.

Throughout this paper, the null matrix and the identity matrix
with apprepriate dimensions are denoted by 0 and [ respectively.
M > 0is used to denote the fact that M is a real symmetric posi-
tive definite matrix. Also, delays hi,- - - , hq are termed noncom-
mensurate if 3 no integers 1, --- , g (not all of them zero) such

?
that Z {ih; = 0. The underlying delay differential system is ter-

i=1
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med commensurate if g = 1. We will also make extensive use of
the following well known result.

Lemma 1 (Schur complement) [2] For matrices 31, Tz, and X3
where £, > 0 and T3 = T¥ then

T3+ ITES, < 0 ’ (1)
if, and only if,
5 7 - I,
[22 -5, <0 or T 5, <0 2)

2. 2D LINEAR SYSTEMS WITH MULTIPLE DELAYS

Consider a 2D linear system with multiple state delays which can
be represented by the Fornasini-Marchesini state-space model [5]
with delays

2(i4+1, 4 1) =A12(i+1,5) + A2z(4, j+1)

1
+ 3 Awaz(i+ 1,7 — di)
k=1

52
+ Z Agtaz(i—dai, 7+1)
=1 (3)
+ Biu(i+1,3) + Bou(i, j41)
31
-+ z Birau(i + 1,7 — dix)

k=1

22 .
+ Z Bygqu(i—da, j+1)
=1

where z(4,7) € R™, u(i, j} € R™ are the state and input vectors
respectively, ¢, 7 € Z4, where Z, denotes the set of nonnegative
imegcrs, Ap, Bp (P = 1,2), Akd:Brka k¥ = 1, ..., 81, Azd,
Byg ! = 1,..., 82 are known constant matrices with compatible
dimensions, and s; andsz denote the number of delay terms in
each direction respectively. We also assume that0 < d1; < diz2 <
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- < dysy and 0 < dyy < dag < - - < das, and in this case the
boundary conditions are defined as

{I(i;j)=vij}sVi20; j=_d131$_d131+1:---10 @)
{z(3, f}=wi;}, Vi 2 0; i=—dasy, —das, +1,...,0

where voo == Woo.
With X, = sup{||z{i, §)|| : i+J =, 4,7 € Z}, asympiotic
stability of the model (3) is defined as follows.

Definition 1 (8, 5] The 2D linear system with multiple state de-
lays (3) is said to be asymproticaily stable if

lim X, = 0 for zero input u(i, ) = 0 and for any bounded
00

boundary conditions of the form (4},

2.1. Noncommensurate delays

In the case of noncommensurate delays, the following result cha-
racterizes asymptotic stability of the class of systems considered
in terms of an LMI condition.

Theorem 1 The 2D delay system (3} is asymptotically stable if 3
matrices P,Q > 0, Ur1,...,ULs, > O0and Uz,
.oy Uasy > 0 such that the foliowing LMI holds:

AT
A7
2 {P[ Al Ar Mg Az ]
A
2d )
P-Q-® -% 0 0 O
0 Q 0 0
- 0 0o o o | <0
0 0 0 £
where
N
A=[ Anig, Aza, s Arnga |, 1= Qu
k=1
53
Asa=[ Anig, Az2a, .-, Azga |, P2 =Y Qu
=1
e ®
Q =diag( Qa1, Qizs -+, Quy) Qi = Z Ui
a=1
sp—I+1

Qg = diag{ Q21, Qaz, ..., Q20; } , Qur= Z Usg
4=1

Proof: This is via a Lyapunov-Krasovskii approach. In particular,

suppose that V'(¢, £) denotes a function that expresses the energy

stored ai (2 + ¢, 7 + £) and consider the particular case when
VGO =2T(+ G+ OWeea(i+ 5 +8) (D

where Wee > Oisgivenand {, £ € Z4,{ > —d1sy, € 2 —das,.
Now introduce the following candidate Lyapunov functions for the

delayed terms:

Vi, (C,€6) =27 (i+C, j+E)Weez(i + (.5 +£)

) -1
+ Z Z 27 (i+¢, j+O Ui+, 5 +6)

k=10=—dg}

®)
Vi (€, 6) =27 (4 ¢, 5 +€)Weer(i+(, 5 + £)
89 -1
+5° % 2T (i48,5+8)Unz(i+6,+£)

(=1 §=—dy;

where W, > 0and U, Un > 0 are givenand (,§ € Z,¢{ >
~d1s,,€ > —d3,,. In order to determine the change of the energy
in the both sides of (3) consider the increment AV (3, ) where

AV(E,5) = Vi1(i,5) - Va, (1,0) = Vi, {0,1) 9

Now consider the result of substituting (7) and (8) into (9} and
define the augmented state vector as

t=[zT(i+1,7) 2T (.5+1) 2T (i+1,5—dn)
2T (41, 5—di2) ... 2T (41,5 —dis;)
2T {i—do1, j+1) 27 (i —daa, j+1) . ..
eT(i-dza,,, j+1) 2 i ]

where z; includes all states from z(i + 1,5 ~ 1)...z(i 4+ 1,7 —
dis; + 1) excluding those defined before and x, includes all states
fromz(i— 1,5+ 1)...2(i — d2sy + 1,7 + 1) but also excluding
those defined before. Then (9) can be rewritten as (using the same
notation as in (6))

AVE N =811 =37 (6TW,,0 - E)z (10)
where

e:[Al AzAldAdeO],

°-! an
E =diag{Wio, Wo1, 21, 2, 03, Q)

Now, if AV(4,5) < 0 for & # 0, then the 2D discrete linear
system considered here is asymptotically stable. In order to gu-
arantee that this stability condition holds, it is clear that IT < 0
must hold. Also the last two rows and columns in this matrix (i.e.
those which only consist of —{2s and —24) in (10) can be omitted
because they only contribute terms that are guaranteed to be nega-
tive definite. By again making use of (7) and (8) it is easily seen
that to guarantee the dissipative property (AV'(4,7) < 0) we can
choose

s1—k+l s3—i+1
Wiu=P, Q= z Uie, Gu= Z Uze, Wo1=@Q
=1 p=1

Wi =P-Q-Qu—..—Qu—Qun—...—Qu,

Remark 1 [t was shown in [9] (see also [3] and [1] } that there
exist connections between (linear) 2D delay-free systems and 1D
time-delay systems. These arise because the delayed signal in the
1D case can be viewed as a signal transmitted through another
dimension in the 2D framework. Theorem I here shows that the
same result can be established for 21 linear systems with multiple
delays. Hence, asymptotic stability of @ 2D linear system with m,
and ma delayed terms in each direction respectively is equivalent
to asymptotic stability of an m.D linear system where m = m, +
me + 2.
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2.2. Commensurate Delays

In what follows, we show that if all delays present in (5) are com-
mensurate then investigation of the stability properties of 2D delay
system can be equivalently treated as the stability investigation of
a 4D delay free system. The key to establishing this fact is the Ele-
mentary Operation Algorithm (EOA) developed by Gatkowski [7].
In general case, the notation associated with this area is very
cumbersome and hence for ease of presentation only we consider
the particular case of a 2D linear system of the form (3) with two
delays in each direction, i.e. we restrict attention to my = mg =
2. In which case it is clear that the associated characteristic po-
lynomial for stability is given by the determinant of the following
2D polynomial matrix
I—Avzi' = Aszy! — Aaz[ % — Agzyhek
— Asz{p" - Aszl_m‘

(12}

where k, 1 € R* and hy, hg, p1, p2 are natural numbers. Now
introduce the new variables z¥ = za, 25 = z4 and then rewrite
(12) as

T—AyzTt = Agzst — Agzy™ — Agag™

— A5z Pt — Agz ™.

Assume also that hy = 1, he = 2, p1 = 1, p2 = 2 which yields

IT— Azl — Apzgt — Ajzg! — Agz3?

(13)
- Asz‘;l - Aszzz.

Application of the EQA to this last 4D polynomial matrix now
gives

I 0 z tAs
0 I z3 ' Ag (14)
z;l z;l I—Alzfl—Agzz_l—Asz;l—Aazzl

which is equivalent to

I—Avzit = Aozyt — Aazg ' - Auzp! (15)
where
o 0 0 0 N ¢ 0 0
Al = 0 0 0 f 2 = 0 O 0 3y
0 0 A 00 A
. 0 0 0 . 0 0 —-45
Az= |0 0 —Ag4 ], As= 0 0 0
0 —-I A; -I 0 Ag

Here only elementary operations that preserve the matrix deter-
minant are used and hence it is straightforward to see that (13)

and (15) have the same determinant and hence the stability pro- -

perty for both system descriptions is the same. This result is easily
extended to the partially commensurate case. In particular, as-
sume that each delay dys, v = 1,...,m, is a multiple of one of
basic noncommensurate delays k1, ka, ..., Kk, and similarly for
din, h=1,...,ma20f ls,l2,..., 1. Then the previous method
exploiting this fact requires the investigation of an nD linear sys-
tem, where n = &1 + t2 + 2 whereas the method of Theorem
1 here requires the investigation of an mD linear system with
m=1mi +ma+ 2.

3. STABILIZATION 2D LINEAR SYSTEM WITH
MULTIPLE DELAYS

Consider a 2D linear system with multiple state and input delays
described by (3) and assume that the state feedback control law

u(i, j) = Kz(i, §). (16}
is used. The corresponding closed-loop system is

z(i+ 1,7+ 1)=(A1+B:1 K)z(t+1,7)
+ (Az+BaK)z(8,5+1)

51
+E(A1kd+31de)$(i+l,j—dm) a7

k=1

s
+Z(A214+Bzm-’{)-'ﬂ(i—d2hJ'+1)
=1

Definition 2 [f there exists K such that (17) is asymptotically sta-
ble, then the 2D delay system (3) is said to be stabilisable.

Theorem 2 Tke 2D delay system (3) is asymptotically stable if 3
matrices W, Z > 0, Z11,...,214, > 0,
Z21,y ..y Z2sy > Qand any N such that the following LMI holds:

-W AIW+BN
WAT+NTBT -T
WAL +NTBT 0
T, ]
11, 0
AW+ B3N Tia Toa
0 o 0
-Z 0 0 <0
0 —Z1a 0
0 0 —Zi

13)

where

Y =W-Z-Ri1~...—Ris ~Ro1—...—Ras,

Tig={ AuagW+BuaN, AizeW + BN,
oy Aisga+BigaN ],

Toi = [ Az1aW+Bz1aN, - AgzaW + BagaN,
oy AzepatBasaN |,

Z]_d Idiag(R[], Rlz, ey Rl.sj_); (19)

Zaaq =diag (Rm, Raa, ..., stz) ,
sg—k+1 s1—k+1
Z=WQW, Ru= Y Zip= » WUW,
f=1 =1
sz—1+1 ag—i+1
Ru= Y Zm= Y WUxuW,
8=1 8=1

If this condition holds, then the system is stabilised by feedback of
K=NwW"1

Proof: Using (5) and (16) and applying the Shur’s complement
(2), the closed-loop system is asymptotically stable if 3 matrices
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P,Q)O,Uu_,...,Ulal >0andUsz; ...,
Uzs; > 0O such that

-P PA+ PB1K
ATP+KTBTP -T
AFP+KTBTP 0
T, 0
T
T 0 20)
PA;+PB3K Tia Taa
0 0 0
-Q 0 0 |<o0
0 -0, 0
0 0 -

where
r=P-Q-% -%
Tia = [ PAna+PBuaK, PAj2a+FPBiaaK,
.., PAiya+PBy,aK ] ,
D24 = PAzia+PBa1aK, PAzq+PBaaK,
.y PAzpya+PB2uK |
Now set P = W ™! and apply the congruence transformation de-

fined by diag{(W, W, ..., W). Then employ the notation (19) to
obtain (18)

4. ANUMERICAL EXAMPLE

We illustrate the resulis developed in this paper via one example
where the computations involved have been undertaken using the
LMI Control Toolbox [6].

Consider the following 2D system of the type (3) with 4 delays
(for simplicity, we assume 2 delays in each directicn) described by

A,;[M 0.1] , Az=[0‘4 0.5] . Blz[O.S 0.5} .

0.4 0.9 0403 030.8
_[os02 _[0704 _[o706
B2_[0.6 0.3] ' A“d‘[o.s 0,5] ’ ‘412“‘[0.1 0.1] '

0.40.9 0 1.0 0.40.2
A21d=[ 0 01] 1 A22d=|:0'9 0_7] » Blld=[0.3 04] )

0.30.7 0.7 0.4] 0.6 0.
Blzd:[o.z o.s] le¢=[0_2 08]" B“"z‘:[o.z o.g]

Note that this particular example is unstable. Also the following
matrices solve the LMI condition (18) in this case

w— | 17828 —0.3422 Z_' 3.9047 -0.0398
T [ -0.3422 21173 |* “T| —0.0398 3.9436 |°

7,,=| 23288 0.0159]  _[3.0058 0.0478
10,0159 2.3133 | * “**~ | 0.0478 3.0491 |’

7,,=| 23288 0.0159] , _[3.0058 0.0478
17 0.0159 2.3133 | * “227] 0.0478 3.0401

and N:[

—0.6351 ~1.4445
—0.3656 —0.7135

Hence the system (4) is asymptotically stable independent of the
delays under the control law (16) with

—0.5028 —0.7635] ,

K= [—0.2734 ~0.3820

an

5. CONCLUSIONS

- This paper has considered particular aspects of the stability of

2D linear systems with multiple state delays, All new results are
expressed in terms of LMIs and hence their actual implementation
for numerical examples can, in principle, follow immediately. One
potential problem with this approach, however, is the fact that the
dimensions of the matrices involved in the LMI based conditions
could well be very large and hence numerical difficulties could
arise, This can occur, for example, when the system dimensiona-
lity is large (n >»> 1) and/or many delays are present. This aspect
is clearly one to which further research effort could be applied.
Ancther key feature of the stability tests in this paper is that they
extend in a natural manner to the design of stabilizing control laws
— a feature which is not available for cther stability tests in the
many particular cases of processes with 2D/n D linear dynamics.
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