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Abdmct- A general compensator for actuator saturation that 
includes existing ones M speeid cases is presented. The 
condyions that must be satisfied for the implementation of the 
compensator are given. It is shown that for a given system there 
uists M arbitrarily large number of compensators sua that the 
compensllted system b absolute stable. The renrY suggests that 
a compensator cm be derived from systeou that is known to be 
ahlute stable. If the system b unknown, then the compensator 
may have to be designed iteratively until the effective set-point is 
acceptable. 

I. INTRODUCTION 

Actuator saturation is a common problem in 
practical control systems, and if it is not being 
compensated properly, the closed-loop system can 
become unstable, In earlier works [I], anti-reset windup 
schemes are devi* specifically to unwind the integrator 
of controllers such as the PI or PID controllers. With 
the advent of microprocessors, more general 
compensation schemes [2,3] are devised. The algorithms 
are derived in discrete time and are generally unsuitable 
for implementation in continuous time. Further, these 
techniques are derived on an ad hoc basis, the effect on 
the performance and the stability of the closed-loop 
systems are little known. 

A general actuator saturation compensator which 
can be implemented in both continuous and discrete time 
is presented. The main contribution of this formulation 
is that it provides a framework to study the design of the 
compensator and the stability of the compensated system. 
Also, it is shown that some of the existing schemes [5.4] 
are included as special cases. The motivation for the 
new formulation is as follow. When the actuator 
saturates, the control cannot be fully implemented by the 
actuator. The difference between the unconstrained 
control and the actuator limit, denoted by 6, can be 
considered as a disturbance being injected into the 
closed-loop system. Through suitable transformation, 
the set-point is now altered by the transformed 
disturbance, giving the effective set-point. 

The alternation o f the  &-point occurs whenever the 
actuator saturates, irrespective whether a compensator is 
used. Using a particular Compensator merely specifies 
the transformation of the set-point. A useful outcome of 
this interpretation of actuator saturation is a general 
formulation of its compensation. Compensation for 
actuator saturation can now be implemented by adding a 
term inyolving 6 in the controller. The conditions that 
must be satisfied for the implementation of compensators 
using this formulation are discussed. Also, it is shown 
that there exists an arbitrarily large number of 
compensators such that the compensated system remains 
stable irrespective of the actuator limits. The result is 
useful for designing a compensator for a system with 
known transfer function. If the transfer function is 
unknown, then the compensator may have to be chosen 
iteratively until the effective set-point is acceptable. 

II. A GENERAL COMPENSATION SCHEME 

Let G(s) be a rational transfer function. The 
controller, in the input-output form, is given below. 

where y(s), w(s) and v(s) are respectively the output, the 
set-point and the control; R(s), T(s) and S(s) are rational 
functions in s. The leading coefficients of both the 
numerator and the denominator polynomials of R are 
assumed to be unity. The root of a polynomial is said to 
be stable if the real part of the root is non-positive, and 
asymptotically stable if the real part is negative real. 
The closed-loop system satisfies the following 
assumptions. 

A1 
A2 

The poles of G(s) are stable. 
The linear closed-loop system is asymptotically 
stable, i.e., the zeros of (R + GS) are 
asymptotically stable. 
The controller is stable, i.e., the zeros of R, and 
the poles of T and S are stable. 
Let u(t) be the output of the actuator given by 

A3 
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U- v(t) ' U- 

u(t) = v(t) U,, 5 v(t) U- (2) \ v(t) < U- 

where U, and U,, are the upper a d  lower limits of the 
actuator. When the actuator saturates. v(t) cannot be 
fully implemented. Tbe control that cannot be 
implemented can be interpreted as a non-linear 
disturbance &t). computed posteriori as s h m  below. 

Equation ( 1 )  can be modified as follows to 
include the effect of actuator saturation and its 
compensation [6] .  

R V  = T w  - S y  + P 6 ,  (4) 

where P is a rational function in s.  The argument s has 
been dropped for convenience. For discrete 
implementation, simply replaces s by z-' for the rational 
functions and by t for the variables. Choosing a 
compensator now reduces to choosing P. If P = 0, then 
the control is computed ignoring actuator saturation. 
Other choices of P are given in Section V. The choice 
of P is subjected to two conditions. The first is that it is 
realizable and the second. the compensated system 
remains stable. Dividing both sides of (4) by R, then 
the compensation scheme is realizable if the following 
condition is satisfied. 

A4 P(s)lR(s) < 00 . as s -. m 

The block diagram of the Compensated closed- 
The output of the loop system is shmn in Fig. I .  

compensated system is 

9 (5)  
GT 6 =  - 

R + G S  R + G S  
G T  G ( R + P )  

y = R + G S w +  

where w is the effective set-point given by 

I 
S 

Pig. 1 Closed-loop system with actuator saturation compensation 

- R + P  w = w + - 6 .  
T 

From (3, there is no actuator saturation if w is 
replaced by w [2]. The stability of the compensated 
system is determined by the term associated with 6 once 
the actuator saturates since the linear closed-loop system 
is asymptotically stable by A2. The poles of this term 
are given by the zeros of (R + G S) and the poles of P. 
The former is asymptotically stable from A2, hence it is 
necessary for the poles of P to be stable to ensure the 
stability of this term. Rearranging (5), 6 can be written 
as 

1 
R + P  

6 = - [ ( R + G S ) u  - T w ]  . (7) 

Clearly, 6 is asymptotically stable if and only if 
both the zeros of (R + P) and the term associated with 
U are asymptotically stable. Hence, (R + P) having 
asymptotically stable poles is a necessary condition for 
the compensated system to be asymptotically stable. 
These conditions are summarized in A5. 

A5 The zeros of (R + P) and the poles of P are 
asymptotically stable. 

The result discussed so far is all that can be 
obtained using linear analysis. Further results on the 
stability of the term involving U, a non-linear function, 
can only by obtained using non-linear analysis [7], as 
discussed in Section 111. If A5 is not satisfied, the 
compensated system may still be asymptotically stable 
for certain actuator limits, but not for all actuator limits. 

The stability of the effective set-point w depends 
not only on conditions given in AS, but also on the 
stability of the zeros of T. If T contains unstable zeros 
that have not been cancelled by that of (R + P), w 
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becomes unstable, though the compensated system is 
stable. It is mainly for this reason that compensation 
schemes are usually implemented using (4) instead of 
using directly the effective set-point. 

111. STABILITY OF THE COMPENSATED SYSTEMS 

The block diagram shown in Fig. 1 is first 
reduced to a standard form shown in Fig. 2. The 
modified block diagram consists of a linear block, GE 
and a non-linear block f(v), representing the actuator 
saturation defined below. 

Definition D1 The non-linearity f(v) is a real, 
continuous, single-valued, scalar function of the real 
scalar argument v, satisfying the following conditions, 

If f(v)/v = 1, there is no actuator saturation; and the 
smaller is the ratio, the more severe is the saturation. 
To derive T,.and G,, first rearrange (3), 

6 = U - f(v) . (8) 

Substituting (8) into (4), and rearranging gives 

f(v) 
T GS - P  v = - w - -  

R + P  R + P  

&from which, 

(9) 

GS-P (10) 
, G,= - .  T, = - T 

R + P  R + P  

The term T, can be ignored in stability analysis, since w 
is often set to zero and the term involving w is 
asymptotically stable if A3 and A5 are assumed. In the 
following, a system is said to be absolute stable if it is 
asymptotically stable irrespective of the actuator limits. 

Theorem 1 For a closed-loop system satisfying A1 to 
A3, with a non-linearity f(v) given by D1, there exists 
an arbitrarily large number of compensation schemes 
given by (4) with P satisfying A4 and AS such that the 
compensated system is absolute stable. 

Roof Let c, be a rational function such that the non- 

Fig.2 Simplified block diagram 

linear closed-loop system is absolute stable. From (lo), 
P is uniquely given by 

GS -GER 
P =  

1 +GE 

It is shown in the following that P satisfies 44 and A5. 
The poles of P is given by the zeros of (1 + G,) and the 
poles of G, S and R, all of which are stable since A1 to 
A3 are assumed. From (1 l), the zeros of (R + P) is the 
same as that of (R + GS) which are asymptotically 
stable from A2. Hence A5 is satisfied. Dividing (11) 
by R gives, 

GS 
R 

where G = - , 

Since GE, G and S/R are proper by assumption, hence 
P/R given in (12) is alsogroper. There exists an 
arbitrarily large number of Gg, and from (12), so is P. 

Remark 1 The result given in Theorem 1 is general and 
applies to other non-linearity such as deadband. 

Remark 2 Although the compensated system may be 
absolute stable, the transient response of the 
compensated system may not always be acceptable. 

Absolute stability is a stringent requirement for 
practical systems since actuator are often designed with 
spare capacity over the steady-state requirement. For 
this reason, compensator designed for stability over 
certain range of actuator saturation is of more practical 
interest. 

IV. COMPENSATOR DESIGN 
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There are two approaches to design a 
compensator. If G(s) is available, then P_ can be 
computed from (11) by first specifying G ,  which 
satisfies the conditions for absolute stable. If a design 
criterion less stringent than absolute stability is adopted, 
then P can be chosen by specibing-be phase margin of 
the compensated system. i.e., G,. In industrial 
applications where G(s) is not available, P can be 
chosen iteratively using tbe effeaive setpoint as a 
guideline. Equat~on (6) can be rewritten as 

where 

P can be expressed in terms of r as follow. 

P = T I ' - R  (14) 

If I' is chosen such that the poles of TI' are stable and 
that P satisfies A4 and A5, then a compensator can be 
chosen by specifying r. Note that, from (6), specifying 
r only determines partially w, since 6 is a non-linear 
function given by (3). Consequently, designing a 
compensator using this approach would naturally be 
iterative. 

V.  EXISTING SCHEMES 

A survey of actuator saturation compensation 
schemes can be found in [SI. The common ones are [4]: 
(i) the use controller output (UCO) scheme that ignores 
actuator saturation in computing the control, (ii) the use 
actuator output (UAO) scheme that uses the actuator 
output to update the control and (iii) the instantaneous 
set-point adjustment (ISA) that uses the adjusted set-point 
to update the control. The adjusted set-point is 
computed posteriori such that if the adjusted set-point is 
used, the actuator does not saturate. The choice of P for 
these schemes is shown in Table I .  Note that in Table 
I, to = T(s)/s", as s 4 m. where n is the larger of the 
degrees of the numerator and the denominator 
polynomials of T. 

VI. EXAMPLES 

- 
P 

TABLE I 
P FOR EXISTNG SCHEMES 

UCO UAO ISA 

0 1 - R  T/to - R  

Two' examples simulated on an analogue 
computer are presented here. The first illustrates the 
implementation of the compensators discussed 
previously, and the wond ,  on the design of a 
compensator for absolute stability. 

Example 1 Let G(s) = u,'/sz, a double integrator. The 
controller is given by 

Leto, = 1, K = 1, Ti = 4andTd = 2, thenpforthe 
schemes described previously are shown in Table II. 
Clearly, P satisfies A4 and A5. For actuator limits of f 
0.05, the output of the compensated system using 
respectively the UAO and the ISA schemes for a step 
input of 5 units are shown in Fig. 3. The output using 
the UCO scheme has not been shown since the 
compensated system is unstable. Clearly, using the 
UAO scheme yields the best result. It should be noted 
that since none of the schemes is an optimal design, it is 
not expected using the UAO scheme, or any other 
schemes would always yield the best result. 

TABLE II 
P FOR EXAMPLE 1 

UCO UAO ISA 

Example 2 Let G(s) = l/(s + 0.1)2, R(s) = s' + 5.2s' 
+7.25s, S(s) = 1 1 . 2 5 ~ ~  + 4.74s + 3.0125 and T(s) = 
2.41(s +0.2)(s+2.5)2. For the ISA scheme, P = 1.25, 
and 

. (16) 10 ( sz + 0.45 s + 0.30 ) 
G,(s) = ( S + O . ~ ) ~  ( s + 0 . 2 )  ( s + 2 . 5 ?  

The output of the compensated system is shown in Fig. 
4a for a s t e ~  inmt of 5 and actuator limits of f 0.1. A 
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[31 

.c.H 

Pig. 3 Closed-loop output using re.spdvely ISA and;UAO schemes 
161 

stable limit cycle is observed. If P is chosen such that 
G,(s) = 1O/(s + 0.1). then 

[71 
- 1O.s' - 53s3 - 66.45s' - 2.5s + 3.0125 . (17) P(s) = 

(s +O.l)(s + 10.1) 

The output of the compensated system is shown in Fig. 
4b. There is no limit cycles and the output reaches the 
set-point quickly. -Though better performance is 
obtained, implementing the compensator is more 
complex than that for the ISA scheme. 

VII. CONCLUSIONS 

A general actuator saturation compensator that 
includes existing compensators as special cases is 
presented. The existence of an arbitrarily large number 
of compensators such that the compensated system is 
absolute stable is also estabgshed. The compensator 
design is discussed and the results illustrated with 
examples simulated on an analogue computer. 
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Pi. 4a Closed-loop output using ISA scheme 
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Pig. 4b Closed-loop output using P given by (17) 
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