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Abstract 
Using a general saturation compensation framework for 
multi-input multi-output control systems subject to actuator 
constraints, a simple expression relating the singular values 
of the uncompensated system, the compensator and the 
compensated system is established. This singular value 
decomposition offers numerous possibilities in shaping the 
desired responses for the saturation compensated system. 
Two specific practical designs are proposed from the SVD 
analysis. Another two possibilities are exposed for further 
theoretical development. Simulated example demonstrates 
the feasibility and practicality of the proposed designs. 

1 Introduction 
In spite of the propositions of some unified compensation 
frameworks in the literature for multi-input multi-output 
(MIMO) control systems subject to actuator saturations [5 ,  
91, hitherto only a few specific designs of the compensators 
are proposed [1,7,8]. Most of these designs are based on 
time-domain considerations or optimization methods. The 
application of MIMO frequency domain techniques to 
constrained MIMO systems is rarely reported. 

Instead of the skeletal framework by [ 5 ] ,  a special 
formulation of the compensators [3]  is adopted below in 
order to establish a fundamental relationship between the 
uncompensated system, the compensator, and the 
compensated system. This shall enable analyses of the 
compensated system, as well as designs of compensators, in 
the settings of MIMO frequency domain properties. By 
appropriate shaping of the singular values, issues of 
satisfactory performance, robustness and stability of the 
compensated systems, can all be tackled simultaneously. 

In $2 below, a special formulation of general MIMO 
compensator is adopted to establish the fundamental 
relationship between the various sensitivity functions. 
Singular value analyses of the sensitivity functions are 
performed in $3, together with two specific practical 
compensator designs. Another two theoretical expositions 
are presented in $4. A simulated example illustrates the 
achievable results using the practical designs in $5. 

2 Compensation Framework 
Denote R"" the set of all real matrices with m-rows by n- 
columns. Then a linear MIMO plant can be described by 

i ( t )  = Ax(t) + Bu(t) 
y ( t )  = Cx(t) + Du(t) 

G :  
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where XEP' is the system state, y~R"xl  the plant output, 
U E ~ '  the plant input. AER"", BER"", C E P ,  D E P .  
As usual, assume (A,B) controllable and (A,C) observable. 
The transfer function of the plant, in Laplace transform 
variable s, is G(s)=C[sZ-A]-'B+D. 

The linear controller is described by 

} (2.2) 
i c ( t )  = A,x,(t) + B,e(t) 
v(t)  = Ccxc(t) + Dce(t) 

K :  

where x c e p '  is the controller state, VEP' the controller 
output. A,EP, B,EP, c,EP, D,EP. The control 
error is 4s) = w w  - y(s) (2.3) 
where eERmrl, WEF' is the reference setpoint. F,,,(s) is the 
transfer function of the setpoint filter, so that (2.2)-(2.3) 
forms a 2-degrees of freedom controller, whose transfer 
fknction is K(s)=C,[sZ-A,]~'B,+D,. 

The i-th actuator output is constrained by 

ui(t)=sat [ v i ] =  vi , uimin < vi < uimax (2.4) 
% m a  * vi 2 Uimm 1 Uimin vi 5 Uimin 

where limits tui max, uimin} are assumed known, b' i=l -n. 

Fig. 1 MIMO systems with saturation compensator 
The saturation compensated system is shown in Fig.1, 
which is a special form of a unified framework [ 5 ] .  The 
controller output in Fig. 1 is given by 

v = K [ F w w - y ] + P 6  (2.5) 
where s(t) L u ( t ) - v ( t )  (2.6) 
and the compensator is defined as 

} (2.7) 
X p ( t ) =  Apxp(t)+Bp 6(t) 
v p ( t )  = Cpxp ( t )  + D p  S(t) 

P :  

with vp( ER"')=PS, being the compensator output. A,ER"P, 
B,ER"", CpcR"P, DpsR"". Again let (Ap,Bp) controllable 
and (Ap,Cp) observable, so that there is no hidden dynamics 
within P. Except integrators, all eigenvalues of AP are 
assumed asymptotically stable. The transfer function 

needs not be diagonal. In which case, there will be coupled 
compensation from cross-saturation terms. 

P(s)  = Cp[  sZ- A ,  ]-'Bp + D, (2.8) 

0-7803-4990-6/99 $18.00 0 1999 AACC 2506 

http://hkumea


-+Jy-+J W pJ-- Y 

Fig.2 Equivalent system of Fig. 1 for analysis and design 
Using (2.6) and from y=Gu, (2.5) becomes 

v = KF, W - K G  U +  P [ u - V ]  = FT W - G ,  U (2.9) 

(2.10) 
F,(s) = [ I +  P(s)]-' K(s)F,(s) 

G , ( s )  = [ I + P ( s ) ] - '  [ K ( s ) G ( s ) -  P(s)]  
where 

The closed-loop system representing (2.9) is shown in 
Fig.2. Obviously [Z+P(s)] must be invertible for (2.10) to 
exist. Its system output is given by 

(2.1 1) 
y 4 y o + A y  ; yo = [ Z + G K ] - ' G K F ,  w 

Ay = [ Z + G K ] - ' G [ Z + P ] S  
yo is the unconstrained linear system response and Ay is the 
output variation due to the saturation disturbance S. Even if 
the system is uncompensated, i.e., P=O, Ay in (2.1 1) is still 
nonzero unless &O. Subsequently, the purpose of saturation 
compensation is to alleviate, or minimize, the variations of 
Ay by proper selections of P, assuming that the linear 
system design [I+GK]"GKF, is satisfactory. For 
asymptotically stable saturation systems, s(t)+O as t+m. 

Since (2.7) is always realizable, the only conditions so 
far P has to satisfy are 
(Pl) poles of [I+GK]-'G[I+P] are asymptotically stable; 
(P2) poles of [I+P]'' are asymptotically stable. 
(Pl) is to ensure Ay(t)-+O as t+m, so that the saturation 
effect dies out and y(t)+yo(t) as f+m. yo@) may not 
approach w(t) in the linear system design. (P2) is only 
necessary when global stability of GE in (2.10) is being 
considered. 

For the system configuration shown in Fig.2, it is clear 
that issues on performance, stability and robustness of the 
compensated system is entirely vested with the equivalent 
system GE. Results from analyses of G ,  shall provide 
valuable information on how to design the compensator P. 
From (2. lo), 

(2.12) 
Define the sensitivity functions 

[ I  + G ,  (s)]  = [ I  + P(s)]-' [ I  + K(s)  G(s ) ]  

SKG A[Z + KGI-', SGE L I [ Z  + G , ] - ' ,  S p  h[I + PI-' (2.13) 

Thus (2.12) gives SG, = SKG si' (2.14) 
Notice that SKG is the input sensitivity of the linear system 
[ 6 ] ,  in contrast to the output sensitivity, SGp[Z+GK]-'. 
Unless the system is normal (GK=KG), otherwise S K G X S , , .  
Furthermore, linear system designs mostly consider SGK; 
which leaves behind some space for maneuvering when SKG 
differs significantly from SGe 

(2.14) relates the sensitivity function of the 
compensated system with that of the uncompensated one, 

and that of the compensator. This fundamental relationship 
shall be repeatedly cracked to yield results for the design of 
saturation compensators in the following sections. 

3 Analysis of Singular Values 
This section looks into the sensitivity functions, established 
above in (2.14), and their singular value decompositions. 
Discussions on characteristic loci, A[G,&w)], of the 
compensated system using (2.12), are omitted in this work 
because firstly KG(jw) shares the same nonzero eigenvalues 
as GK(jw) and secondly, analysis of characteristic loci does 
not always give conclusive results. 

A simple compensator is immediately obtained fiom a 
usual design consideration to minimize measurement noise 
propagation [ 6 ] ,  that the sensitivity function should be 
around unity. Pushing this idea to the limit with the 
equivalent system, in requiring that every singular value 
o[sGE]=l, then from (2.14), 

SG, I Si '  3 S p  =SKG (3.1) 

giving P = K G  (3.2) 
If KG is neutrally or asymptotically stable without unstable 
pole-zero cancellations, then P in (3.2) is a perfectly 
legitimate choice of a compensator for the configuration 
shown in Fig.1. Both conditions (Pl)-(P2) are 
automatically satisfied by the linear designs. A practical 
example of P given by (3.2) is demonstrated in $5. 

Obviously, the requirement that all singular values of 
SGE be unity is too extreme, nor is it necessary. Let i5 [&GI 

(-ax{ of&]}) be as shown in Fig.3, with an &-norm 

0 

at frequency w,. If an ideal filter can be found so that it just 
removes all the gains of 5 [S~&ci~)]>odB (Fig.3), then 
LT [SG,&w)]<l, Vw. This modification can be expected to 
produce satisfactory saturation compensation results. 

- 

To shape a[&], let the SVDs be [6] :  

for some unitary matrices {UKG, VKG, Up, V,, UGE, VGE} and 
singular values {&G, &, ZGE}. The complex conjugate 
transpose is denoted by (.)". From (2.14), 

= [ ZKG V& I [ u p  ~p vpH I-' 
= CKG vh v p  X i '  up" (3.5) 

P ( S )  = Po(4,.*.,Po(S) 1 (3.6) 
so that C p  = =P I (3.7) 

If the same compensator po(s) is used for each loop without 
cross-compensation, then the overall compensator is 

where LT;'=~ l+po(jw)l. Thus, (3.5) becomes 

giving =GE = O-d ' K G  (3 -9) 

2507 



In this m m e r ,  each o[SKc] is modified by the same gain 
reduction a,. The restriction that each o[&] cannot be 
separately specified shall be discussed in 54. 

c4 a, 
Fig.3 Determination of notch filter parameters 

More fiequently, prefect cancellations as depicted by the 
ideal filter (Fig.3) is not realistic and some compromise has to 
be settled for. One approximation to the ideal shape would be 
a notch filter F,,-'(s), defined as 

(3.10) F,-'(s) = ( s + w ,  l2 
( s + a  w, ) ( s + w ,  / a  ) 

and choose the compensator po(s) as 

(3.1 1) 
[ 2 - ( a + l / a ) ] w ,  s 

( s + a w , ) ( s + w , / a )  
po(s) = FiI(s)- 1 = 

Let k be the gain reduction of Fn-'(s=jw,,), then 

a = k-'[1+.\11-k2 1 (3.12) 
Determination of the filter parameters { qw,} is illustrated in 
Fig.3; from which it is clear that some fine tunings may be 
needed to ensure the notch is properly matched. By choosing 
(3.11), two independent degrees of freedom, namely, 
frequency w,, and gain reduction k, are imbedded to tune for 
the most appropriate settings, according to the severity of the 
actuator saturation. 

A digital equivalent in form of (3.10) is 

(3.13) 
( l -pz- ' )2  

( l - a z - * ) (  l - p z - ' )  
F,-l(z-l) = 

with z-' as the backward shift operator. Let the sampling 
interval be h, the filter parameters are related to the discrete 
frequency, Olw,,hln, and gain reduction k, through the 
following expressions: 

1 - cos(w,h) 
cos(w,k) = - 2p a p =  (3.14a) 

l + p 2  sin(w,h) 

and with c=cos( U>), s=sin( U$) and k,=[k( 1 +s)]-', then 
2s 1 - a c  c - a  

I + S  1 - 2 a c + a 2  1 - a c  
(3.14b) k = -  3 P = -  

p = c [ l -  sk,] - s Jk:  -[1- SkJ (3.14d) 
That is, given {w&,k} for Fig.3 and {a,fl,p} in (3.13) are 
uniquely determined and vice versa. The compensator 
corresponding to Fn-'(z-') in (3.13) is then given by 

The unit delay in p0(z") ensures realizability of (3.15). 

4 Further Designs of Compensators 
The two compensator designs in (3.2) and (3.6), withp, given 
in (3.11) or (3.19, are simple and immediately applicable. 
On the other hand, the inherent restrictions, of either forcing 
O[SCE]d or making Z[SCE]<1 alone, do not trade off 
between SCE and the complementary sensitivity function (Z- 
SCE), nor take into account the spread between 5 [SGE] and 
_a [SGE] (=min{ o [ S G E ] } ) .  If the condition number, 
cond(SGE) (= i? [SCE]/ _a [SCE]) is too large, then the 
saturation effects will be difficult to alleviate. This is made 
clear from (2.1 l), 

Ay = G [I+ KC]-' [I + PI 6 =  G SGE 6 (4.1) 

i.e., 1 I c o n d ( G S G E )  5 cond(G) cond(SGE) (4.3) 
Therefore the minimum condition number for the saturation 
dynamics of (4.1) is just that of the open-loop plant, if the 
compensator is chosen such that cond(ScE)=l, i.e., all the 
singular values of SGE are equal. 

This section discusses two expositions for the general 
question on how to design the compensators for given 
specifications of the singular values of ScE(s). The 
developments are more of a theoretic interest than 
immediate applications. 

Assume a desirable ZcE is known and specified for SCE. 
Then in theory, the designs of compensator P may be 
achieved in either of the two following manners. 

Design I 
Let I, be the skew-identity matrix, i.e., the 90" rotation of the 
identity matrix about its centre. Z, is unitary and I:d. 
Geometrically, it flips a matrix left-right Vriplr) or up-down 

(all a[SGE] may be equal) 

vlipud). 
In (3.51, if v,," V F Z ~ ,  i.e., 

Vp =VKGI, =$iplr (VKG ) (4.4) 
then 

0 
- 
 KG 

0 EKG [P * * .  3 a; 0 

0 0;' 
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= diUg {  KC 5;' , ' * ' , KG _Oil  } (4.5) 

and sG, = cKGP UP" (4.6) 
so that Z;;,=&Gp up to some reordering; each o~=o,JoGE is 
individually determined and ZP=diug{ qi}, i=l . . .n. By 
choosing Up=UKG, Sp is obtained as 

and the compensator P=S,-'-I. 
While theoretically Sp of (4.7) exists, its physical 

realization is usually not feasible because of the irrational 
dependence of U&S) and VKG(S) on s. Approximations shall 
have to be resorted to [6,4]. Further developments are needed 
in the exploration of realizing the compensator thus obtained. 

s p  = x p  flipud(~,&) (4.7) 

P using 
J(lOOO)= 

Design I1 
~n (3.51, if vKGH V ~ I ,  SO that 

(all o[sGE] are unequal) 

SCE = U, cKG c;' U: (4.8) 
and C G E  = C K G  C: = diug{ E , ~ ~ , - - - , _ O ~ ~ E ; '  } (4.9) 
It is emphasized that in ( 4 3 ,  each a[&] can be made equal 
SO that cond(&E)=l. However, in (4.9), cond(SGE) is always 
greater than unity unless COnd(&G)=Cond(sp)=l. Thus in 
general, each o[&E] cannot be made equal using (4.9). 

Which leads to s p  = uKG CP VA (4.10) 
where Cp=diag{ ~ ~ i = ~ K ~ n - j + i ) l ~ G E ~ n - i + l ) ,  i=l . . A } ,  and the 
compensator P=S~-'-I=V,,C~' uKGH-r. 

As with (4.7), S, of (4.10) has difficulties in its 
realization. This design gives a Reverse-Frame-Normalizing 
compensator, very much like the RFN controller in [4]. With 
slight modifications in the least-square projection procedures 
of [4], a realizable approximation of Sp can be obtained. 

(5.3) KG optimal I b-16dB 
17.75 16.31 15.77 I 14.63 

Remark 
In (4.l), if GSGE is diagonal, then all the saturation effects 
are confined to each loop only. Barring this, cross- 
compensation terms in P will be required. Conversely, P 
may be chosen so that it diagonalizes GSGE, giving 
Ayi=Hi(s)b;-, i=l . . .n, and each Hits) is individually specified. 
Example of Hi(s) is ui/(l+sTi), with gain ai and time 
constant Ti properly tuned to suit saturation levels. 

In compensator designs from singular value 
decompositions, it is implicitly assumed that the system 
directions, { UKG,VKG,. . .}, remain unchanged. This however 
is not the case in the presence of saturation and the 
preservation of control directions is important [5,7]. A 
usual practice is to insert a directionality block in front of 
the actuators, see [7] for details (Fig.1). This method is 
adopted in the following example. 

5 Example 
The following example was used in [7] to show the 
application of an optimal MIMO discrete compensator, 
developed through elaborate arguments. Comparisons using 

the two simple designs in $3 will be made against the 
optimal dynamic compensator to show that, even without 
considering optimality, these SVD designs can produce 
highly compatible results as well. 

9.853e - 1 9.706e - 3 9.737e - 5 9.682e - 3 
1.956e- 2 9.706e - 1 1.95 le - 2 .936e - 4 j l  9.705e - 5 4.804e - 3 9.802e - 1 9.657e - 3 
9536e-3 -1.436e-2 -1.448e-4 9.513e- 1 

9.926e - 3 1.969e - 4 9.901e - 3 4.796e - 5 
8.84 le - 5 9.952e - 5 9.989e - 3 1.756e - 2 

The open-loop plant is described by 

(5.la) 

(5.lb) 

I 
B = [  1 

0 2.4 -3.1 1.0 
1.0 6.0 -0.5 -2.8 

L L J  

and the linear controller is 
0.9737 0.01410] , c, = [-1 1 1  

(5.2a) 
= [ -0.07108 1.015 2 -1 

-0.2993 0.030261 , 0, = [" 01 
(5.2b) 

Bc = [ -0.6821 0.1081 0 0  
The reference input is w=[0.3 O.3lT and all control bounds 
are * 1. The uncompensated system is unstable [7]. 

A plot of 5 [&G(e'@)] is shown in Fig.4, with an H,- 
norm of 14.96dB at frequency w,,h=O.02666 [2]. Notch filter 
(3.13) is applied with ( ~ 0 . 9 9 7 5 ,  P;-0.6422, p0.8602) for 
b-12dB at wh-0.025. IFn-l(e'@)I is shown in Fig.4 with 
5 [SGdegd)], whose H,-norm is 2.98dB at wJ~O.0268. The 
resultant compensator from (3.15) is 

-1.36512-' + 1 .3805~-~  
1 - 0.35532-' - 0 .6406~-~  

P(z-') = 
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6 Conclusion 
This paper studies the actuator saturation compensation of 
MIMO systems through singular value decompositions. By 
establishing a basic expression relating the sensitivity 
fimctions of the uncompensated system, the compensator and 
the compensated system, four compensator designs are 
proposed. Two simpler ones are of immediate practical 
success. The other two are more complicated and many 
possibilities exist for their approximate realizations. A 
simulated example shows that the two simple designs can 
produce highly compatible results compared with an 
elaborate optimal dynamic compensator. 
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