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Abstract: This paper describes an on-line fault detection scheme 
for a class of nonlinear dynamic systems with modelling 
uncertainty and inaccessible states. Only the inputs and outputs of 
the system can be measured. The faults are assumed to be 
functions of the state, instead of the output, and the input of the 
system. A nonlinear on-line approximator using dynamic recurrent 
neural network (DRNN) is utilised to monitor the faults in the 
system. The construction and the learning algorithm of the on-line 
approximator are presented. The stability, robustness and 
sensitivity of the fault detection scheme under certain assumptions 
are analysed. An example demonstrates the efficiency of the 
proposed fault detection scheme. 

Keywords: nonlinear system, fault detection, recurrent neural 
network, observer. 

1. Introduction 
The growing need for effective fault detection and isolation (FDI) 
in complex systems have attracted a lot of attention. In recent 
years, model based FDI methodology has been investigated in 
many aspects and several kinds of FDI schemes have been 
proposed. These include unknown input observer [ l ,  21, 
eigenstructure assignment [5], and others. Almost all the fault 
detection studies mentioned above assume that the nominal model 
of the plant is linear and the failures are modelled as external 
additive inputs that are functions of time. These assumptions allow 
the use of linear system theory to design and analyse FDI 
architectures. However, most practical systems are nonlinear in 
nature and most failures are better described as nonlinear functions 
of the state and the input variables. Yang and Saif [13] 
investigated FDI for a class of nonlinear systems using adaptive 
observer. The approach involves considerable computational 
complexity. Zhou and Bennett [15] utilised off-line trained neural 
network as approximator to design a robust adaptive observer for 
FDI. Vemuri and Polycarpou [lo] proposed a FDI scheme for a 
general class of nonlinear systems that uses an on-line 
approximator. Compared with off-line approximators, the on-line 
approximator does not require training and is more adaptive. 
However, in [lo] it is necessary to assume the existence of a local 
diffeomorphism to transform the system into a new coordinate 
system. In the new coordinate system, the failures can be modelled 
as function of the output, instead of the state, and the input of the 
system. Even though necessary and sufficient conditions for the 
existence of such transformation are usually satisfied in practice, it 
is difficult to find such one. 
This paper presents a FDI scheme for nonlinear systems that uses 
a dynamic recurrent neural network (DRNN) based on-line 
approximator. Faults of the system can be detected by the on-line 
approximator even in the presence of modelling uncertainties. The 
on-line approximator can also be used for fault isolation and 
identification. When there is no fault in the system, the output of 
the on-line approximator is very close to zero. If faults emerge, the 

output becomes large enough to indicate the existence of faults. 
The learning algorithm of the on-line approximator is proposed in 
this paper. Also, the stability, robustness, sensitivity and other 
properties of the proposed FDI scheme are analysed. 
Section 2 of this paper describes the problem to be addressed. In 
section 3, Lyapunov theory is used to prove the stability of the 
proposed on-line approximator. Robustness and sensitivity of the 
approximator are also analysed. A practical fault detection scheme 
is then introduced. In section 4, an example is used to show the 
effectiveness of the proposed FDI scheme. 

2. Problem Formulation 
A nonlinear dynamic system is described as: 

where x E R" is the state of the system, U E R" is the input of the 
system, y E R' is the measurable output of the system, A E R""" , 

B E  Rnxp and C E R"" are constant matrices. 
f ,y ,  : R" x R" -+ R" , @ : R" x R" + R P  are smooth vector fields 
with f representing the nonlinearity of the system, y, 
representing the bounded modelling uncertainty, and & 
representing the failure of the system. y : R -+ R is a function 
representing the time profile of failures. For an abrupt failure at 
time T , the function y takes the form of a step function. For 
incipient failures, y is a ramp-type function. Many practical 
dynamic systems can be represented by equation (1) which 
describes a particular kind of nonlinear system. In equation ( I ) ,  the 
failures are assumed to be functions of the system's state and 
input. This assumption is valid for most cases. In [lo], the 
nonlinearity f and the failure @ are both functions of the input 
and output variables. Under this condition, it is unnecessary to 
estimate the state of the system, so the problem becomes simpler. 
Actuator fault and component fault can be easily modelled by the 
failure representation formulation given in equation (1). For sensor 
faults the method provided by [2] can be used to transform the 
faults so that they can be represented by equation (1). A nonlinear 
robust fault detection scheme for the dynamic system model 
described by equation (1) is required. Before continuing with the 
analysis, the following assumptions are proposed for the nonlinear 
system represented by equation (1 ). 
Assumption 1: The system states remain bounded afrer the 
occurrence of a failure, i.e., x ( t )  E L , .  
Assumption 2: The input of the system U is bounded, i.e., 
l l u l l  u d .  

Assumption 3: The matrix pair ( A ,  C )  is observable. 
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Assumption 4: The nonlinearfunction f is Lipschitz in x with 

Lipschitz constant 7 , i.e., 11 f (x. U) - f (X, u)II < vllx - 
The normal model of a system represented by equation (1) is: 

, 

x = Ax + f ( x . u )  + p ( x , u )  
y = c x  (la) 

If the uncertain term, p(x.u)  , produced by parameter error and 
other disturbances, is bounded by a known value, the following 
assumption can be made. 
Assumption 5: The uncertainty p is bounded, i.e., 

Ip(x.u)I<po, V ( x , u ) ~  R" x R" 
where po is a known constant. 
It is sometimes difficult to have a priori knowledge of po . In this 
case, p(x,u) have to be modelled using empirical input-output 
data of the normal system. Zhang et al. [14] proposed an approach 
to estimate the unknown nonlinear term using artificial neural 
networks. Tu and Stein [9] suggested a method for model error 
compensation. 

3. Fault Detection Scheme 

3.1 Definitions 
The following definitions will be used in this paper. The 2-norm of 

a vector x E R" is defined as 11x11, = 4.: +. .. + x i  and the 2- 

norm of a matrix A E R""" as 1/41, = ,/= =umax[A] , where 

A,, [.I and Amk [.] are the largest and smallest eigenvalues of a 
matrix respectively and a,,,, is the maximum singular value. 
Given A = [ n V ] ,  the Frobenius norm is defined as 

llAllf = 4 5  = ,/= with tr(.) the trace operator. The 

Frobenius norm is compatible with the 2-norm. therefore 
IIAx11, I llAllFIIA1, with A E R""" and x E R" . The following 
convention shall be adopted for the vector and matrix norms 
unless specified otherwise: llxll:= llxllz , and llAll:= IIA11, . 

3.2 Nonlinear state estimation and error equation 
Equation (2) below represents an observer that estimates states for 
the system given in equation (1). 

} (2) 
i = A i + f ( i , ~ ) + B [ y ( f - T ) 4 ( i , u ) - ~ ( t ) ] +  K ( y - C i )  
j =c i  

i and j denote the estimates of the state x and output y .  
K E  RnX' is the observer gain vector, so chosen that the 
characteristic polynomial A - KC is strictly Hurwitz. &.) is the 
estimate of @(.) in terms of i . The robustifying vector v( t )  , yet 
to be defined, is a function that provides robustness in the face of 
bounded disturbances [4]. The bounded modelling uncertainty 
p(.) is not included in equation (2). 
Denote the state and output estimation errors as x" = x - and 
y" = y - 9 respectively and let A, = A - KC , the error dynamic 

equation can be derived from equations (1) and (2) as: 

XL =4x" + f (x  U) - f (2 U) + qxx U) + mt - r)@Kx.u) - -&ZUN+ 

?=a 

In equations (2) and (3). &.U) is the output of an on-line 
approximator that uses an artificial neural network to model the 
fault function @(x,  U) . 
@(x.  U) can be modelled using neural network as: 

/ i  ( x ,  U) = wjTcrj (x ,u )  + E ~ ( x , u )  i = I,..., p (4) 
where Wi and ai are the optimal weight vector and the activation 

function vector of the i'* neural network with proper dimension 
respectively. The W; 's are bounded by a known value, i.e., 

llWiIIF I WjM [4]. ~ ~ E ; ( x . u ) I I < E ~  is the bounded error. It has been 
proved theoretically that E ; ( . )  can be as small as possible for a 
sufficiently large neural network. For radial basis function neural 
network, equation (4) is accurate, but for multi-layer sigmoidal 
neural network there is a high-order error [6]. 
In the following discussion, unless stated otherwise, i = l,..., p . 
The neural network weights are tuned on-line, with no off-line 
learning required. The output of the on-line approximator ii ( i . u )  

is W:a;(;,u) where W is an estimate of the optimal network 
weight matrix W in equation (4). Note that the neural network in 
the approximator is a recurrent one since one of the input variable 
to the network, i , is obtained from the output of the network. 
Equation (5 )  below is obtained from equation (4) and the output of 
the on-line approximator. 

( 5 )  bi (x ,u )  - 4; ( i , u )  = w:'oi (x ,u )  - w:ai ( i , u )  + E; (&U) 

Adding and subtracting W : U ; ( ~ , U )  in equation (5) gives: 

@i (x ,u )  - 4; (;,U) = @:a; (%U) + w; ( t )  + E i ( X , U )  (6) 

where $; = Wi -I?;, w ~ ( ~ ) = W , ~ ( - ; ( ( X , U ) - - ~ ( R U ) ) .  Note that 
W; is bounded and the activation function matrix ai is also 

bounded, therefore wi ( t )  is bounded, i.e., llw; S pi where pi 
is a constant. Substituting equation (6) into equation (3) yields: 

?=A,?+ f ( x , u ) - f ( i , u ) + p ( ~ , U ) +  

(7) 
@'ap (;,U) + w p  ( t )  + cp (x.u)  

B[y( t  - T )  

y"=G 

3.3 On-line learning algorithm and stability of on-line fault 
approximator 
The on-line neural network approximator in equation (7) uses a 
dynamic recurrent neural network. Theorem 1 below gives the 
training algorithm for this network. 
Theorem 1. Suppose the class of nonlinear dynamic systems 
described by equation (1)  satisfies assumptions 1-5, and suppose 
also there is a positive definite symmetric matrix P such that 

P B - ( T C ) ~  = o ( 8 )  

where T E Rp"' is an arbitrary matrix and P satisfies the 
Lyapunov equation 

(9) 
where Q is a positive definite symmetric matrix. 
If the following equation is satisfied 

ATP + PA, = -Q 
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then the state estimation error x" and the neural network weight 
estimate error @ in equation (7) are uniformly ultimately 
bounded (UUB) 141 ifthe robustifying term v ( t )  is given by: 

(1  1 )  
]Til . _  v i ( t ) = - p i  . _  r - l ; . . , p  
Y i  

and the neural network weight tuning is given by 

iti = rioi(i,u)$ -ki/j$-iiti i = I , . . .  * P  (12) 
where ti= and Ti are the entries of 7, ri and k,  are a 
positive definite symmetric matrix and a scalar to be selected 
respectively. 
Proof: At first suppose that the uncertainty p(x ,u)  is zero, i.e., 
po = 0. Without loss of generality, y( t  - T) is supposed to be 1. 
Consider the Lyapunov function candidate 

i=l 

PEP' > 0 satisfies equations (8) and (9). Q is a positive 

definite symmetric matrix. The time derivative V then becomes: 

(14) 

(15) 
Evaluating equation (15) along the trajectories of equation (1 1) 
and ( 12) gives 

V 5 -(Afin (Q) - 27A- (P))llZllz + 2 2 l 7 ~ ~ l r ~ r  + kitr(cT (Wi - ci))l 

Since 1111 s I I T c I I ~ I I . " I I ,  from equation (IO), 

i=l 

(16) 

Also 

Substituting equations (17) and (18) into (16) gives: 

(18) 

From equation (19), V will be negative if 

or 

and equation (21), V can still be guaranteed to be negative. Hence 
11x"11 and [/WillF are still UUB. 

From the above proof, the boundedness of the state estimation 
error is given by equations (20) or (23). If the value of A,,,,,, (Q) is 
sufficiently large, the estimation error will be small. This can be 
achieved by a suitable choice of observer gain K . From theorem 
1, the on-line learning algorithm for the dynamic recurrent neural 
network can be expressed as: 

where AWi is the weight adjustment and 6 is the learning rate to 

be specified. The initial value of Wi can be chosen as zero or any 
small value. Note that equation (24) is simply the discrete form of 
equation (12), a properly chosen 5 can guarantee the stability of 
the approximator. 

3.4 Robusmess and sensitivity of the on-line fault approximator 
Robustness analysis investigates the behaviour of the on-line 
approximator in the presence of modelling uncertainties prior to 
the occurrence of any faults. Sensitivity analysis examines the 
behaviour of the on-line approximator after the occurrence of a 
fault and characterises the class of faults that can be detected by 
the fault diagnosis scheme [IO]. 
Without loss of generality, suppose the output matrix C is equal 
to [Ilxr Olx(n- l )J ,  where I,,, and Olx+/) are unit and zero 
matrices respectively. As described in [IO], the learning algorithm 

AW; =~(rioi(;,u)y~ -/+ilr-i@i) i = I,... , P  (24) 
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of equation (24)  can be changed to equation (25) below in order to 
keep the robustness and sensitivity of the on-line approximator. 

In equation (25), p and 2 are positive constants such that 
Ilexp(A,t)ll, 5 pexp(-k)  . By using the learning algorithm 
depicted in equation (25) the output of the approximator will be 
non-zero only after the occurrence of faults. This decreases the 
false fault detection ratio. 

3.5 A practical fault detection scheme 
In order to guarantee the stability of the on-line learning 
algorithm, equations (8) and (10) must be satisfied. Equation (10) 
is derived from the Lipschitz nonlinear function f ( x , u )  . In fact, 
equation (10) guarantees the stability of the observer for the 
following nonlinear system. 

(26) 

f ( x , u )  is supposed to be a Lipschitz nonlinearity with Lipschitz 
constant q as in Assumption 4.  Equation (10) is a well-known 
result introduced in [8] and has been used and extended by some 
other scholars [7][11]. However, equation (IO) is very difficult to 
testify after equation (8) is satisfied, especially when the Lipschitz 
constant q is big. Moreover, this equation is only a sufficient 
condition, not a necessary one. From the proof for theorem 1, it 
can be seen that equations (8), (11 )  and (12) are used to guarantee 
the stability of the on-line approximator, and equation (lo), the 
stability of the Lipschitz function f ( x , u )  . Since equation (10) is 
difficult to check, the following design steps are proposed for a 
practical fault detection scheme. 
(1) Check whether K, P , Q  and T can be found to satisfy 

equation (8) and (9) .  If there is no suitable K ,  P, Q and T , 
the proposed fault detection scheme cannot be used. 

(2) Use matrix K to design the observer. From one group of 
input and output datum (under normal condition without 
faults) test whether the observer is stable. If not, choose a 
new K and start over from step (1). 

( 3 )  Design the nonlinear observer described in equation (2) for 
the system. The observer gain matrix K is the same as that 
in step (2) .  

( 4 )  Use the on-line dynamic recurrent neural network 
approximator to approximate faults. The on-line learning 
algorithm is given by equation (24).  

Although the above method cannot guarantee the existence of an 
on-line approximator, it avoids the complexity of testing 
mathematically whether equation (IO) is satisfied. 

I x = Ax + f ( x ,  U) 

y = c x  

4. Example 
Consider a DC motor model given in [ 121. 

where R,  =50 R , L, =20 H R, =3.8 a La =OS H , D =0.042 

Nms/rad, and J =0.4 kgm2 . The system measurement equation is: 

t Suppose the input voltage V = 100+ IO* sin(--n) . For this motor 

model, the following three simulations were carried out. 
(1) Verification of stability and accuracy 
A nonlinear observer was designed for the motor model. 
Substituting the values of the parameters into equation (27), 

15 

1 1 0  0 -2.5 0 
matrices A = [  0 - 7.6 0 ] *  '=[o 0 11 and 

0 0 - 0.105 

were obtained. The observer 

0.5525 i , i o  

O . Simulation results gain matrix is chosen as 

showed that the observer is stable and accurate. (Because of space 
limited, we do not show the simulated results). 

K = [ !  0 ] 
9 .a95 

nonlinearity 

( 2 )  Fault with no system uncertainty 
Suppose that there is a 15% increase in the parameter M , but no 

uncertainty in the system. Since there are no faults in the first 
entry of equation (27). there are two non-zero terms in the fault 

. Observer gain matrix K is the same 

10 1 1  
as that in the last simulation. The matrices P and Q are chosen 

as = [; :] and e = [ ;:i E], and PB = CT . Note 

0 0 1  

that f(.) is local Lipschitz for this example. Also, using the 
proposed design method, there is no need to check whether 
equation (10) is satisfied. In this simulation B-spline neurofuzzy 
network is used to approximate the faults. Ten second-order B- 
spline basis functions are used for each approximator. The faults 
are supposed to be suddenly happening at t = 2.5s . The on-line 
learning algorithm described by equation (12), with 
r, = diag(0.45) , r, = d i ~ g ( 0 . 3 9 ) ~  k ,  = 0.02 and k ,  = 0.02, is 

used to train the network and the observer. Figure 1 displays the 
outputs of the two on-line approximators (solid line) and the 
simulated fault nonlinearities (dotted line). From figure 1 it can be 
seen that the outputs of the on-line approximators can approximate 
the fault nonlinearities very well and the fault can be detected 
easily by using a proper threshold. 

(3 )  Fault with bounded system uncertainty 
In the previous simulation, the uncertainty term p(x,u) is assumed 
to be zero. In this simulation, the modelling uncertainty vector in 

the system is random but bounded by po = 2.5 . The on-line 

learning algorithm represented by equation (25) is used. p and A 
are chosen as 1.0 and 2.5 respectively. Although matrix C is not 
in the form used to derive equation (25), the two output errors can 

be denoted as E(p0(1)+q0(2)) and kp0(3) , where po(i),i = 1.2.3 

[:::I 
a a 
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is the irh entry of p,, . The parameters used in the previous 
simulation are used to train the network. In figure 2, the outputs of 
the on-line approximators (solid line) and the faults are shown. 
From figure 2, i t  is observed that before the occurrence of the 
faults, the outputs of the on-line approximators are zero though the 
uncertainty of the system is non-zero. This indicates the robustness 
of the on-line approximator and also decreases the false fault 
detection ratio. Compared with the previous simulation, the 
outputs of the approximators do not match the faults very well. 
This is because the on-line approximator has to trace not only the 
faults but also the uncertainty. 

Time (s) Time (s) 

Solid line: approximator; Dotted line: fault 
Figure 1 Fault and its estimation with no system uncertainty 

I I .  i 
0 2 4 e o  o a 4 e a  
’ .a 

Time (s) Time (s) 

Solid line: approximator; Dotted line: fault 
Figure 2 Fault and its estimation with system uncertainty 

6. Conclusion 
A fault detection scheme for nonlinear systems with inaccessible 
state has been proposed. This scheme only makes use of the input 
and output of the system. An on-line approximator based on 
dynamic recurrent neural network predicts the faults in the system. 
Stability analysis, learning algorithm and other properties of the 
approximator are described in the paper. The proposed fault 
detection scheme is different from that presented in [lo] which 
used a local diffeomorphism to transfer the nonlinear system into 
another, simpler, system. This kind of diffeomorphism does not 
always exist and, even if it exists, is difficult to find. The proposed 
scheme avoids using such a local diffeomorphism. Of course some 
other assumptions must be existed for the systems. 
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