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Abstract 
A model reduction method for stable delay sys- 

tems under L2 optimality is introduced in this pa- 
per. The reduced models may take the form of either 
a stable finite dimensional system or a delay system 
with reduced order finite dimensional part. Based on 
the Routh parametrization of stable systems, the two 
cases are studied under a unified framework of uncon- 
strained optimization. Numerical examples are used 
to illustrate the effectiveness of the proposed method. 

1. Introduction 
Model reduction has been a popular research area and 
has attracted a lot of attention in the last few decades. 
Various model reduction methods have been proposed 
and algorithms of diverse complexity have been pre- 
sented. The choice of error measures for model reduc- 
tion is often a compromise between their physical sig- 
nificance and the associated mathematical or compu- 
tational tractability. The most commonly norm used 
for measuring model reduction error is the L2 norm 
[2,5,6,9,17] . The importance of this error criterion 
is that the L2 norm of a system is the expected root- 
mean-square value of the output when the input; is a 
unit variance white noise process. A well-established 
approach for treating Lz optimal model reduction is 
to establish and utilize the necessary conditions for 
optimality [5,10,16,17] . However, many of the algo- 
rithms derived lack the proof of convergence except in 
some special cases. The solution technique often ap- 
plied in optimal Lz model reduction recently is based 
on parameter optimization [4,9,18-201 . The main dif- 
ficulties in formulating an effective solution procedure 
for any optimal L2 model reduction is the preserva- 
tion of stability in the reduced order models when the 
original models are stable. This complicates the op- 
timization process by imposing certain constraints to 
the optimization problems [4,9,20] . 

In many engineering applications, control systems 
cannot be described accurately without the introduc- 
tion of delay element(s). A class of delay systems 
with delay in an input-output sense takes the form 
* 
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exp(-sTd)G(s), where G(s) is a stable strictly proper 
real rational transfer function matrix, and Td is the 
delay time. Many methods have been proposed to ap- 
proximate exp(-sTd)G(s) by using the Pad6 approx- 
imants of exp(-sTd), for example, Johnson et al. [ll] 
, Marshak et al. [14] , and recently Lam [12] . How- 
ever, when time delay systems are approximated by 
finite dimensional systems, the order of the reduced 
models, in many situations, have to be high for good 
approximations. If a time delay, of different delay time 
value, is also permitted in the reduced model, the ap- 
proximation might be substantially improved and the 
original system can be approximated with fewer pa- 
rameters. Xue et al. [18] and Yang et al. [20] pro- 
posed methods to obtain a reduced order time delay 
system of the form exp(-sTd)G(s), where G(s) is a 
finite dimensional system with order lower than G(s) 
and Td > 0, based on parameter optimization under 
the L2 criterion using a gradient-based method and 
the genetic algorithm respectively. It is worth noting 
that in [18] , the Lz error measure is only approxi- 
mately minimized and the method also fails to ensure 
the stability of the reduced models. In [20] , though 
the stability is ensured, the formulation imposed con- 
straints on the admissible class of reduced models. 

In this paper, a novel method is proposed to o b  
tain reduced order models for SISO delay systems of 
the form e*(-sTd)G(s). Two cases will be treated 
in a unified formulation. Namely, the appr-pimation 
may take the form exp (-sT~)G(s) with G(s) finite 
dimensional and r d  = 0 or ‘rd > 0. The proposed 
method is based on the Routh parametrization of sta- 
ble systems which leads to an unconstrained optimiza- 
tion procedure. The optimal parameters are obtained 
by minimizing the L2 approximation error through a 
gradient-based method. The formulas of the L2 error 
measure and its gradients are explicitly expressed. 

2. Problem Formulation 
Consider a linear time-invariant system with delay 
time T a  > 0 described by 

G ( S )  := exp(-sTd)G(s) (1) 
where G(s) is a stable linear finite-dimensional SISO 
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system with minimal realization (A, b, c), that is, 

with A E Etnx", c and b € E t n x 1 .  The optimal 
L2 model reduction problem 2 to find an mth order 
stable reduced order system G(s) with delay r d  2 0, 

G(s) = exp(-s.rd)G(s) where G ( s )  = E ( s I  - X)-'G 
with 2 E RmXm, EdR1x" and k R m X 1 ,  such that the 
Lp error 

E = exp(-sTd)G(s) - exp(-srd)G(s)ll, 

is minimized. To solve the optimal L2 model reduction 
problem for G(s), a parametrization of the stable re- 
duced order systems is employed and then a gradient- 
based unconstrained optimization method to obtain 
the optimal parameters is applied, 

Suppose that the stable linear G(s) is expressed as 

G(s) = C ( S I  - A)-'b 

II 

- 

1 
2 
777%- 1 

O J  

Hutton and Friedland [8] studied the Routh approxi- 
mation by expanding e ( s )  in continued-fraction form 
given by 

I 

b =  

X 
1 - 

G(s) = 
l+a1s+ a2s+ 

- 1  
7 
0 
: 
0 

- 0  

+& 

+A 
where a( and pi ( i = 1,2, . . . , m) are scalars ob- 

tained from the alpha and beta Lakles. A state-space 
realization of G(s) (see [7] ) is ( A ,  b,E) with 

where 

With these properties, we have a parametrization 
method, using two parameter vectors 7 and p, where 

T 
-y = [ y1 y2 ... . . .  r,] > Y i f O  

pm 1' p = [ p1 p2 ... ... 

to describe all stable strictly proper z(s). Since Td is 
also required to be nonnegative in the approximation, 
it is expressed in terms of r such that Td = r2. With 
this and the Routh parametrization of stable systems, 
the following unconstrained optimization problem 

7>P,T 
min E2 (3) 

is formulated. It can be easily seen that the set of 
optimization parameters is open and dense in R2m+1. 

Remark 1 It is known that the Schwarz canonical 
realization [13] of G(s) is similarity equivalent to the 
Routh canonical realization. Thus, the idea of the 
present development is also applicable to a Schwarz 
realization parametrization. 

3. Error and Gradient Formulas 

3.1 Error Expression 

Let g ( t )  and z(t) be the impulse response of exp(-sTd)G(s) 
and exp(-s.r2)G(s) respectively, then 

Since 

and 

Hence, E can be obtained by the sum as follows, 

where El 2 0 and E2 1 0 are given by 

E2 = E? + E; (5) 

$ = a ,  , i = 1 , 2  , . . . ,  m for r2 5 Td, and 
In the case where E(s)  is restricted to have numerator 
polynomial of degree T ,  then one can simply take Pa = 
0 for i = 1,2 , .  . . , (m - r )  .The following result relates 
the stability of G(s) to the signs of the parameters. 

Proposition 1 
and only i f  ai > 0, i = 1 ,2 , .  . . ,m. 

El ;= /E 
E2:= /- 

[8] e(s) is asymptotically stable i f  
for T2 > Td. 
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Theorem 1 
reduction error between g(s) and g(s) is given by 

With the notation ajove, the L2 model 

$T2 > Td 
(6) 

A P I + P I A T + b b T  = 0 (7) 
AF0+FJT+bLT = 0 ( 8 )  
X F 2 + 4 2 + i ; L T  = 0 (9) 

where PI, FO and F 2  are respectively the solutions of 

Proof: Notice that PI a5d F2 are the controllability 
grammians of G(s) and G(s) respectively. For r2 5 
Td, we have ET given by 

= EF~F - Eexp(Z& - T 2 ) ) F 2  eXp(zT(Td - 7 2 ) ) ~  

where 
m 

exp(xt)i;i;T exp(xTt)dt 

satisfies the Lyapunov equation (9). And for E; in 
(5), we have E$ given by 

Sm (cexp(A(t - Td))b - Eexp($t - r2))6) 
Td 

cexp(A(t - Td))b - zexp(X(t - ~ ~ ) ) i ; ) ~  dt 

where P satisfies 

[ t  l ] p + p [ t T  
] [ bT gTexp(ZT(Td - r2) )  ] = 0 [ exp(x(Td - r2))g 

Suppose 

therefore (10) becomes 

= E F 2 F  + C P l C T  - 2cPoF 
Now if we let 

then from (ll), PO satisfies (8). The result for T~ 5 Td 
follows. The case with r2 > Td also follows similary 
and hence omitted. 

3.2 Gradient Formulas 

Po = 17, exp(xT(Td - 7 2 ) )  

From (6), for r2 < T d ,  the partial derivatives of 
E2 are given by 

. ,  
aE2 
87- (15) - = -4TCPo exp(zT(Td - T2))XTF 

for z = 1 , 2  ,..., m. While for 7' > T d ,  the partial 
derivatives of E2 are 

I 

aFoq 
- -2cexp(A(r2 - Td))-c + c-c (16) dE2 

ari ayi 8% 
-- 

. "  

- dE2 = - - 4 7 ~ e ~ p ( A ( ~ ~  - !&) )&OF (18) a7 
for i = 1,2, .  . . ,m where $& and $$ are obtained 
from 

(20) 
On the other hand, E, and are given by 

ai; - -ge l ,  2 - = O ,  ai; i = 2 , 3  ,..., m - -  
8% 71 &i 

~2 = exp(i(Td - ?))Fz exp(P'(Td - T 2 ) )  where e;, i = 1,2, .  . . , m is the i th standard basis vec- 

Substitute E; and E; i n p  ( 5 ) ,  and notice the rela- 'Or Of IRm* 

a direct method expressed in the following equation 
, [15, Proposition 4.101 gives As for aexP(A(Td--TZ)l 

tionship between P 2  and P 2 ,  we have E2 given by 

Pl Po 

ayi 

A ( T d - ~ 2 )  a(A(Td-7' E F 2 F  - Eexp(X(T, - 7 7 p 2  exp(ZT(T, - r")F 
ayi )) ] = 

A(T, - 7 2 )  
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[ exp(X(: - r2)) 'exp(A(*d-~')l ' 7 ,  4.2 Numerical Examples 

Example 1: Consider a delay system [12] with trans- 
fer function given by 

exp(X(Td - r2)) 

In (211, only 8 e x ~ ( $ , ~ - T 2 ) 1  is unknown and it is easy 
to obtain. 1 

G(s)  = - (. + 1)2 exp(-s) 

I 

6 I 0.0186 
7 I 0.0132 

4. Algorithm and Examples 
With the expression of E2 and its gradient formulas, 
existing gradient-based globally convergent optimiza- 
tion methods [3] can be applied to solve the uncon- 
strained optimization problem (3). Though one can- 
not guarantee that local optimal solutions are in fact 
global, numerical tests indicated that the algorithm 
given below is effective when the initial choice of 7, P 
correspond to a good initial approximation model such 
as, for example, a Routh approximation. 

1 

0.0200 I 0.0114 
0.0146 I 0.0080 

Remark 2 It can be seen that r = 0 is a solution of 
' (15) or (18), so i f  T = 0 is chosen as the initial value, 
an mth finite dimemional approximation z ( s )  of time 
delay system G(s) is obtained. I n  this case, it is not 
necessary to constrain m < n. 

10 
11 

4.1 Model Reduction Algorithm 

In this subsection, a model reduction algorithm is sum- 
marized as follows. 

0.0064 I 0.0074 0.0037 
0.0053 1 0.0062 0.0030 

Step 1 Generate the initial d u e s  of 7, p and r . 
(a) Set T = 0 for obtaining a finite dimensional 

approximation: Form a finite dimensional ap- 
proximation model of G(s) based on Pad6 ap- 
proximation of exp(-sT) [l] and then obtain 
initial values of y and P from the Routh table. 
Or 

(b) Set r2 = Td for obtaining a reduced order sys- 
tem with delay: Obtain an mth order Routh 
approximation from G(s) and then obtain ini- 
tial values of y and P from the Routh table. 
(Notice that the left-derivative of E with re- 
spect to 7 is used for calculating the initial 
gradient .) 

Step 2 Obtain the optimal parameters 7, P and T by 
solving problem (3). 
(I) Calculate the objective function E2 of prob- 

lem (3) by (6), (7), (8) and (9), where x,  
b and E are given in (2). 

(11) Obtain the gradients of E2 with respect to 
7, P and given by (13L 04) ,  (15), (16), 
(17) and (18) via (19), (20) and (21). 

(111) Find the optimal parameters y, P and T .  

Step 3 Form the optimal finite dimensional approxi- 
mation or reduced order delay system by sub- 
stituting the optimal y and /3 into (2). 

- 

The objective of this example is to obtain finite dimen- 
sional models G(s) to approximate G(s)  and T = 0 is 
k e d .  

For different orders of reduction, the corresponding 
optimal La errors E obtained by the proposed method 
are summarized and compared in Table 1. 
and are the L2 errors given in [12] correspond- 
ing to the cases where exp( -sTd) are approximated by 
the [r - l/r] =: Rg-l/,.l and [./.I =: R[,/,.] Pad6 a p  
proximants of exp( -sTd) respectively with T = n - 2. 

I 5 I 0.0293 I 0.0295 I 0.0177 1 

8 I 0.0099 I 0.0112 I 0.0059 
9 I 0.0079 I 0.0090 I 0.0046 

Table 1. Comparison of approximation errors 

The frequency response errors IG(jw) - R[,.-~/,.I ( jw)G(jw) I 
I G W )  - R[,./ , . ](+JW4/ and l G W  - m w ) l  , over 
w E [4,100] for m = 10 is shown in Figure 1. It is ob- 
served that the E is significantly smaller when com- 
pared with the Padi! approach. 

Example 2: Consider a time delay system [IS] given 
bY 

( s  + l)(s - l ) ( s  + lo) B(s) = (9 + 2)3(8 + 3)(s + 4) exp( -0.5s) 

The delay system is to be approximated by exp(-sTd)z(s) 
where g ( s )  is second order. The reduced time delay 
system is 

0.2032s - 0.2365 - 
exp( -0.6371s) '(') = s2 + 1.6704s + 2.4444 

Its associated L2 error is 0.0414. In [18] , six approx- 
imation models with delay for m = 2 are given. The 
one with the smallest La error calculated by (6)  is 

0'3016s - 0'3075 exp(-0.6823~) G2(s) s2 + 2.4228s + 2.9518 
which corresponds to an LZ error equals 0.0571. The 
present approach gives a smaller L2 error. 
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5. Conclusion 
In this paper, a new model reduction method for time 
delay systems has been presented. A stable finite di- 
mensional system or a delay system with reduced or- 
der fmite dimensional part can be obtained to approx- 
imate a stable time delay systems with L2 optimality 
via an unconstrained gradient-based optimization pro- 
cedure. The effectiveness of the approach is demon- 
strated via numerical examples. 
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