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Abstract 

This paper considers the problem of finding a pertur- 
bation matrix with the least spectral norm such that 
a matrix-valued function becomes singular, where the 
dependence of the function on the perturbation is al- 
lowed to be nonlinear. It is proved that such a prob- 
lem can be approximated by a smooth unconstrained 
minimization problem with compact sublevel sets. A 
computational procedure proposed based on this result 
is demonstrated to be effective in both linear and non- 
linear cases. 

1 Introduction 
Many control systems are subject to perturbations in 
terms of uncertain parameters. An important quantita- 
tive measure of stability robustness of a system against 
such perturbations is what is called the real or complex 
stability radius, depending on the nature of perturba- 
tions in concern. The computation of a stability radius 
is a subject which has attracted a lot of interest over 
recent decades, see e.g. [l, 2, 3, 4, 5 ,  61 and references 
therein. 

Given a stable matrix A ,  the general stability radius 
problem is to determine a real or complex perturbation 
matrix A with a minimum spectral norm such that the 
perturbed matrix A + S(A)  becomes unstable, where 
S(A) is a mapping describing the structure of the per- 
turbation. It is well known that the basic subproblem 
of this problem is to determine a perturbation matrix A 
with a minimum spectral norm such that A - j w + S ( A )  
becomes singular at each given frequency w. This leads 
to the general linear algebra problem of determining 
a A with a minimum spectral norm such that R(A) 
becomes singular for a given mapping R(A). 

Although the special case where R(A) is of the form 
I - A M  has been successfully and completely treated 
recently by Qiu et al. in [5 ] ,  the problem has yet to be 
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solved in the general case, including such a simple case 
where R(A) is of the form I + GlAH1 + G2AH2. It 
should also be mentioned that a nonlinear R(A) natu- 
rally arises when the dependence of a system matrix on 
uncertain parameters is nonlinear. 

2 Problem Formulation 
Throughout this section, it is assumed that R(A) : 
RmxP H Pxn is a continuous mapping with 

h(A) 4 det(R(A)R*(A)) (2.1) 

The problem to be considered in this paper can be pre- 
cisely stated as follows: 
Problem P: 

minimize J (A)  4 IlAll 

over C 4 {A E Rmxp I h(A) = 0) 

This problem is obviously very general as the map- 
ping R(A) is allowed to take various forms. A typical 
linear form of R(A) could be the following 

N 
R(A) = I + C G i A H i  

i=l 

In the special case where R(A) = I - AM, the problem 
has been tackled in [5] by converting it into the problem 
of minimizing the second largest singular value of a cer- 
tain matrix defined on the interval (0, 11. Specifically, 
it has been shown there that 

min{llAll I det(I  - AM) = 0} 
1 

where a 2 ( . )  denotes the second largest singular value. 
A procedure has also been proposed for computing a 
worst real perturbation A after a minimum is found. 
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One nonlinear example of R(A) is given by which implies that A; E ck. Thus, one has 

N 

R(A) = I + ( G ~ A H ~ ) '  
i = I  

although more complicated forms can easily be envis- 
aged. 

It should be emphasized that there is no loss of gen- 
erality in restricting A to be real in the above problem 
formulation. This is because a complex A can be rep- 
resented by a real matrix of larger size formed by the 
real and imaginary parts of A. As such, Problem P is 
closely related to the general complex stability radius 
problem as well. 

Quite obviously, Problem P is a nonsmooth and con- 
strained minimization problem, which is generally dif- 
ficult to solve. On the other hand, a global minimum 
for the problem does exist unless the set C is empty. 
Our main result to be presented below shows that Prob- 
lem P can be arbitrarily approximated by a smooth and 
unconstrained minimization problem. ' 

Theorem 2.1 Suppose that R(A) is continuous in 
PmxP with E nonempty. Let a function Jk(A) : 
P m x P  C )  P be defined by 

Jk(A) fk(A) + kh(A) (2.2) 

with 

fk(A) A {trace [(A'A)k]};" (2.3) 

If J* is the global minimum for Problem P, then there 
holds 

J* = lim min J k  (A) 
k-tm 

Proof. 
It is known that for all k 2 1 and A E PmxP, 

Ji 2 fk(A;) 2 J(A;) 2 J(Ak) 

This together with (2.5) establishes that 

J(Ak) 2; Jl 5 fk(A*) (2.7) 

Quite obviously, { J(&)} is a nondecreasing sequence 
bounded by J(A*)  from above as ckl 2 C k Z  for kl < 
kz. As a consequence, there exists a convergent subse- 
quence {Ank}, whose lirnit is denoted by A,. From 

h(A,,k) I a/nk 

and the continuity of h(A), it follows that Am E C, 
leading to 

lim J(&) = lim J(Ank)  = J(Am) 2 J(A*) 
k-tm k-tm 

Hence, there holds 

The theorem is immediately concluded from (2.4), 

From the above proof', we immediately conclude the 
following result, which says that an optimal solution to 
Problem P can be arbitrarily approximated by a global 
minimum point of Jk (A)i provided k is sufficiently large. 

(2.7), and (2.8). 0 

Corollary 2.1 Adopt the same assumption and nota- 
tion as an Theorem 2.1. If A; is a global minimum 
point of Jk(A), then there hold 

lim J(A;) = J' (2.9) 

lim h(A;) = 0 (2.10) 
k - t m  

k + c c  

J(A;) 5 minJk(A), V k  2 1 (2.11) 

NOW with A* denoting an optimal solution to Prob- 
lem P and J i  = min Jk (A) ,  it is apparent that 

In this section, R(A) vdl be assumed to be smooth, 
which is usually the case in practical applications. This 
smoothness will be exploited to suggest an efficient pro- 
cedure for solving Problem P, whose optimal solution Ji 5 fk(A*) (2.5) 

..a 

can be approached by minimizing the cost function 
Jk(A) with sufficiently ]large k by Theorem 2.1. In two Next, let A; E I w m X p  be such that Ji = Jk(Ai) and 

let Ak be a global minimum Point Of J(A) Over the set specific cases, we will giYYe a closed-form formula for the 
gradient of Jk (A).  

Jk(A) can be found to Ibe 
Ck {A E Rmxp 1 h(A) 5 Cr/k} By straightforward calculations, the gradient of 

where a is such a constant that 

fk(A*) 5 0, v k  2 1 

Combining (2.5) with (2.6) yields 

h(A;) 5 Ji/k 5 alk 

Of course, the formula for the gradient Vh(A) cannot 
be obtained unless R(A) is known. In the following two 
cases which each cover the case treated in [5]: 
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Case 1: R(A) = F + xEl G ~ A H ~  

Case 2: R(A) = F + AM1 + AM2AT 

it can be established that 

Vh(A) = @(A) + G(A) 

where 
N 

@(A) = xGfadj(R(A)R*(A))R(A)H; (3.1) 
i=l 

for Case 1 and 

Q(A) = adj(R(A)R*(A))R(A)(M; + AM;) 
+ R*(A)adj (R(A)R* (A)) AM, (3.2) 

The gradient vJk(A) can be used to form the gradi- 
for Case 2. 

ent flow 

1 A(t) = - [fk(A)]1-2k A (ATA)k-l - kVh(A) I (3.3) 

which enjoys several nice properties listed below. 

0 The ODE (3.3) has a unique solution A( t )  on the 

0 Any solution A(t) to (3.3) converges to a connected 

interval [0, CO) for any initial condition. 

set of critical points as t goes to infinity. 

0 The cost function Jk(A) is nonincreasing along any 
solution A(t) to (3.3) and is strictly decreasing 
when A(0) is not a critical point of Jk(A). 

These properties, which follow from the compactness 
of all the sublevel sets of Jk(A), suggest that a mini- 
mum of Jk(A) can be found by solving the ODE (3.3). 
Whether the obtain minimum is local or global may 
depend on the choice of an initial condition for (3.3). 
However, the global minimum must result regardless of 
the choice of a starting point if there is no other mini- 
mum. 

Certainly, the ODE (3.3) can be easily integrated us- 
ing an appropriate numerical routine, e.g., in Matlab on 
a digital computer as only standard matrix operations 
are involved. In the meantime, analog computing has 
recently gained renewed interest in view of advances in 
neural networks which allow massively parallel process- 
ing. As a result, it has recently become increasingly ac- 
ceptable to make use of ODES for solving various prob- 
lems such as optimization and linear algebra problems, 
see e.g. [7, 81 and references therein. 

We end this section by proposing the following gen- 
eral procedure for solving Problem P. The convergence 
of the algorithm is essentially guaranteed by Theo- 
rem 2.1. 

Step 1 Choose an initial integer k and a point A0 E 
E%mxp. 

Step 2 Seek a minimum point A of the cost function 
Jk(A) by finding a limiting solution to the ODE 
(3.3) with the initial condition A(0) = Ao. 

Step 3 If both I det(R(A))l and fk(d) - J(&) are less 
than a preset value, stop; otherwise, go back to 
step 2 with a larger k and A0 = A. 

Remark 3.1 In the second step, a general-purpose 
globally convergent search algorithm given in [9] could 
alternatively be employed to  f ind a minimum point A of 
the cost function Jk (A). 

Remark 3.2 In order t o  achieve computational e f i -  
ciency as well 0s t o  avoid numerical problems associated 
with large I C ,  the gradient of fk(A) should be computed 
as follows 

where A is assumed to  have the singular value decompo- 
sition A = USVT and s k  results f r o m  replacing every 
diagonal element si of S by (&) 2k-1.  

4 Examples 
Example 1: Assume that R(A) = I - A M  where 

M = [  2 + j  1 2:j1 

As was indicated in [5], this case leads to the nonsmooth 
behavior of the cost function introduced there, which is 
defined to be the second largest singular vaule of an 
augmented matrix associated with M .  

Let us implement the algorithm proposed in the last 
section to find a worst real perturbation which makes 
R(A) singular. The details of the implementation are 
described as follows. We use a randomly generated ma- 
trix A0 as an initial condition for solving the ODE with 
IC = 50. Figure 1 depicts the norm of the solution A1 ( t )  
to the ODE as t goes from 0 to 0.14. By using the fi- 
nal value A1(0.14) as an initial condition, we continue 
to solve the ODE with k = 100 to obtain the solution 
A,(t) on [0, 0.51. The norm IlA,(t)ll as a function o f t  
is depicted in Figure 2. With A2(0.5) as a new starting 
point, the two solutions &(t)  defined on [0, 0.0071 for 
k = 1000 and A4(t) on [0, 0.0031 for k = 3000 are ob- 
tained by repeating the same process. Figure 3 shows a 
concatenation of the two functions IlA,(t)ll and IlA4(t)ll 
on the combined interval [0, 0.011. The initial value A0 
and the values of the four solutions at the end point of 
the respective intervals are given in Table 1 along with 
their norms as well as their corresponding determinants 
of R(A). As is seen, the last matrix in Table 1 is iden- 
tical with the worst perturbation obtained in [ 5 ] .  The 
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total time taken to complete the whole simulation on 
an HP workstation is 12 seconds. 

Table 1. Properties of initial, intermediate, and final 
perturbation matrices. 

R I IlAll I Idet(R(A))l 1 A 

r.3332 0.2357 -0.23551 0.3332 

0.2357 0.3333 1 0.3333 -0.2357 

1 (“‘“ ~ : ~ ~ ~ ~ l ,  1 0.7650 1 1.6394 1 
0.0330 0.2822 -0.1649 o,4538 

0.3385 0.2471 

o.4082 0.0002 

0.0001 o.4082 

0.0023 

Example 2: Consider R(A) = I - A M  where 

taken from [5]. There, an optimal solution to Problem P 
was found to be 

1 0.3333 -0.2981 
0.2981 0.3333 A * =  [ 

and its norm i.e. the optimum is 0.4472. To test our 
algorithm, we use the randomly generated matrix 

A, = p.4337 0.1160] 
0.7092 0.0781 

as a starting point and numerically solve the ODE (3.3) 
successively for IC = 50,280,560,840 to obtain a se- 
quence of 148 perturbation matrices. Figure 4 displays 
three curves associated with I det(R(A))l, llA - A*ll, 
and IlAll - IlA*ll, respectively. It is clear that the se- 
quence converges to the optimal solution while the se- 
quence of corresponding norms converges to the mini- 
mum. The actual time taken to complete the simulation 
is about 10 seconds. 

Example 3: Consider a nonlinear R(A) given by 

l + j  2 R ( A ) = I - A  

Note that without the quadratic term the minimum 
for Problem P was found to be 0.4472 in [5]. By invok- 
ing our algorithm with the randomly generated starting 

point 

0.07‘745 0.10237 
0.76290 0.57027 1 

a worst real perturbation is found to be 

A* = p.02751 -0.337751 
0.37673 0.03563 

with IlA*li = 0.37854 and 1 det(R(A*))l = 5 x low6 

5 Conclusions 
This paper has proposed. a unified approach to solv- 
ing the real and complex: stability radius problems in 
the face of nonlinearly structured perturbations. It has 
been proved and verified with numerical examples that 
an optimal solution can be approached by solving a 
smooth and unconstraine’d minimization problem. 
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Figure 1: The norm of the ODE solution versus t E 
[0, 0.141 for ,k = 50. 
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Figure 2: The norm of the ODE solution versus t E 
[0, 0.51 for IC = 100. 
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Figure 3: The norm of the combined ODE solution ver- 
sus t E [0, 0.011 for IC = 1000, 3000. 
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Figure 4: Convergence of a sequence of ODE solutions 
to  a minimum point. 
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