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Abstract 
Dead-zone inverse methods have been used in 

adaptive control schemes to compensate for systems with 
an unknown dead zone. The problem with these 
techniques is that steady state error may still exist. It is 
shown in this paper that controller with integrating action 
can be used to remove steady state error arising from the 
unknown dead zone. By treating the effect of an 
unknown dead zone as a bounded disturbance being 
injected into the system, a plant parametrization that is 
linear in a set of unknown parameters is developed and 
the estimation algorithm is proposed. A novel feature of 
the adaptive controller proposed here is the integrating 
action in the controller. Stability analysis shows that the 
adaptive scheme ensures boundedness of all closed-loop 
signals and eliminates traclung errors. As illustrated in a 
simulation example, the proposed adaptive controller is 
simple to implement and accurate tracking can be 
achieved. 
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1. Introduction 
Dead zone is a common nonlinearity in actuators such 

as hydraulic servo-valves. The difficulty in compensating 
for dead zone is that its parameters are generally unknown 
and may vary with time. However, it is well known that 
without suitable compensation, the response of a system 
designed assuming the system is linear can deteriorate 
rapidly, leading to steady state errors, oscillatory response 
or even instability. To compensate for dead zone, a direct 
adaptive control has been analyzed by Recker et al. [ 11. 
A recursively updated dead zone inverse is introduced in 
front of the dead zone to minimize the effect of the dead 
zone. Tao and Kokotovic [2, 31 extended the method 
from full state measurement to a single output 

measurement. Recently, Recker et al. [4] extended the 
direct approach to an indirect one for discrete systems. 
The limitation of using dead zone inverse is steady state 
errors can still arise. This is because the estimated dead 
zone parameters are not unique, and consequently may 
not converge to their true values. As the dead zone 
cannot be eliminated completely using the estimated dead 
zone inverse, steady state errors may exist, as discussed 
later in this paper. 

A general compensator for known systems with 
unknown dead zone is proposed in [5]. The motivation 
for the general dead zone compensation is that the 
difference between the controller output and the dead 
zone actuator output can be considered as a disturbance 
being injected into the system. Dead zone compensation 
is then achieved by adding a term involving the 
disturbance to the controller. With a suitable choice of 
the compensator, steady state error can be eliminated and 
the transient response and the stability of the compensated 
system be improved. 

In this paper, the approach proposed in [5] is extended 
to adaptive control. Instead of using the dead zone 
inverse, a controller with integrating action is proposed to 
eliminate the steady state error arising from the dead 
zone. The approach proposed here not only has the 
stability properties discussed in [ 1-41 but also eliminates 
the steady state error, which is not always possible in the 
other approaches. 

This paper is organized as follows. In Section 2, the 
control problem is formulated. The linear parametrization 
of the plant and a parameter estimation algorithm are 
discussed in Section 3. The computation of the controller 
parameters using the estimated plant parameters and the 
stability analysis of the system are given in Section 4. An 
example illustrating the results is given in Section 5. 
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2. Problem Formulation 
Consider a system consisting of a linear time invariant 

plant - B1(s) and an unknown dead zone, as shown in 

Fig.1. The dead zone can be expressed by two parts: 
deadzone given by 

A,@) 

v ( t )  - br v(t)>br 

V I  = 1 0 b,<v(t)<br (2.la) 

~ ( t )  - b, v( t )<b,  

and gain 

mr v(t) L 0 

m, v(t)<O 
(2.1 b) 

where m, m, > 0 .  (2. la) implies control cannot be fully 
implemented by the actuator and can be interpreted as 
introducing a nonlinear disturbance 6‘ in the system, 
where ijl is defined as, 

-br V( t )  L br i -b, v( t )<  b, 

6 ’ = v - v ’  = -v(t) br<v(t)<br (2.2) 

The output of the system is now given by, 

where B(s) = kJl,(s), A(s) =AI@) and is Laplace transfer 
variable. It should be noted that if m, + mr, the 
parameters of B(s) is not constant at v(t)=O point. 
Suppose the system satisfies the following assumptions, 

S1 The piecewise linear nonlinearity is in the span of 
the control; 

S2 Except point v(t) = 0, B(s)/A(s) is linear with unknown 

coefficients but known number of poles n and zeros 
m; 

S3 The zeros and the poles of B(s)/A(s) are stable; 

S4 A(s) and B(s) are coprime, and A(s) is monic. 

The control objective is to design a feedback control v(t) 

such that the closed-loop signals are bounded and the 

plant output y(t) tracks the output ym of the reference 
model, 

(2.4) 

where A,,, = (s + a,)@ + a&,,, is monic polynomial of 
degree ( n + 2 )  whose roots are the desired poles of the 
closed-loop system; Bm is a polynomial with stable roots 
of degree m; uc is input. 

3. Plant Parameter Estimation 
To estimate the plant parameters in (2.3), a 

parametric model is first derived as following. Because of 
the specific characteristic of 6’(t), i.e., it is a constant 

is introduced in (2.3) and when Iv(t)l L max{br, -b ,} ,  - 

the linear parametrization can be obtained as, 

S 

v, = CP“ 0 + 11 (3.1) 

where 

and A(s) is a Hurwitz polynomial of degree (n+ 1). The 
advantage of introducing s/A(s) is that it has a differential 
effect and 

(3.2) 

Hence, the influence of S’(t) on parameter estimation is 
eliminated when v e (bp b) .  In the following, supposed 6 
is the known upper bounds of br, -b,, 8 is estimated only 

when Iv(t)l t b. As shown in assumption S2 in section 2, 8 
is constant in the adaptive duration. 

Consider the cost function 

1 
2 

J(e, t )  = -e -*‘(e - eo)‘QO(8 -eo) + 
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where Q, = Q: > 0, 2 0 and 8, = O(0); m is designed as 

m 2 = C, +c2n; with c,, c2 > 0 such that -, - E L-. For 

(3.4) is, 
- 

(3.6) 
dV E2m c p t l  

m m  dt 2 
- < -(- + o+Tey(v) 

the plant parametrization of ( 3 4 ,  the switching-0 least- where o+Te = o(llel12 - 6'8) r ollell(lpll -MO +MO - 11811) 
squares law in [6] with the dead-zone modification is as from (3.4b). Since o(llO(l -MO) 2 0 and MO > ll@ll, it 

follows that a+% 2 0 .  Hence, follows, 

- 
(3.4), ll6ll E L ] ,  which implies that "0dt exists and 

'v(t)" ', P(O)=Q;'< R, and R, is a - s, 
iim,_e = e.  0 0 others 

where f(v)= 

constant that serves as an upper bound for P(t). 

where 

- 
(3.4b) 4. Controller Design and Stability Analysis de - = -zyCpE + oe) f ( v )  

dt A block diagram of our adaptive system is shown in 
Fig. 2, where the controller can be expressed as, 

(3.4c) (4.1) 

0 
= (c-1) I 0, ! (JO 

with the design constant 
finite positive integer. 

where ?(s), &), &s) are calculated from the estimated 
parameters of A(s) and B(s), as discussed in the 

0, MO' 118'11, and any following; Ap is monic, HurWitz polynomial with degree 
The modified of deg(2). The output can be obtained from Fig.2 

as, 

if llell' No 

algorithm has the following properties: 

Theorem 1 The switching- o least-squares law with dead 
zone modiJication (3.4) for the system with unknown dead 
zone guarantees: 
(i) E ,  Ens, e, 0 E L _ ;  

(ii) E, Ens, 0 EL,; and 

(iii) 6 E L , ,  limt-_e = 6. 
Proof: Consider the function, 

- 

where + = 0 - 8'. Following the proof of the switching-o 
least-squares law in [6] and considering q =O in the 
parameter adaption, (i) and (ii) can be obtained directly. 
Furthermore, the time derivative along the solution of 

(4.3) 

It can be seen that even if the system is stable and 
lim,-- v(t) = constant, the steady state error may not be 
eliminated since limt-- 6' + 0 may not be guaranteed. To 
solve the problem, Theorem 2 is proposed. 

Theorem 2 For stable adaptive control systems 
satisfbing limt-- v(t) = constant, if dead zone exists in the 
actuator, the sufficient condition to eliminate the steady 
state error caused by the dead zone is that controller has 
integrating action, i.e., I$O) = 0. 
Proof: Since 1imt-- v(t) = constant, we have 
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1imf-- 6'= constant from (2.2). As Z?(O)=O, d&'ldt can be 
obtained from (4.3), giving d&'ldt and the second term in 

the right of (4.3) approaching zero as t- . 0 

In the following, how to calculate the controller with 
integrating action is discussed. To construct a controller 
that achieves model matching, the following Diophantine 
Equation must be solved, 

ai, + ii, = A m P o  (4.4) 

where A,  is an observer polynomial and all its roots are 
in the left half of s-plane, and A,,,, is defined in (2.4). If 

$,, have degree of de@ - 1 and de@, respectively, 

and Z?, is monic, then there always exists a unique 

solution R I ,  i, . Furthermore, if A, is chosen to satisfy 

degA,>degA- 1 ,  then i,IZ?, is strictly proper for all 
estimates of the plant poles. The controller with 
integrating action is calculated as, 

where (s+a,)(s+a,) is defined in (2.4) and B,,, = l?BA 

From (4.4)-(4.7), the following results can be obtained. 

Remark If i, , I?, are chosen to satisfy (4.4) with degree 
of degA - 1 and de@, and degA,>degA- 1 ,  then 

controller f ,  Z? and 9 calculated from (4.5)-(4.7) 
guarantees that, 
RI The controller has integrating action; 

R2 f , I? and 3 satisfy 22 + B^$ = (s+a,)(s+a,)A,,,,A, 

are strictly 

proper rational and analytic in Re{s)  t 0. 

To analyze the properties of the adaptive control 
system, the following Lemmas are needed. 

Lemma 4.1 A strictly proper rational transfer function 
H(s) is analytic in R,{s} > 0 ifand only i f h  E L , ,  where 
h(t) is the system's impulse transfer function and H(s) is 
the Laplace transfer function of h(t). 

Lemma 4.2 If h EL,,= then Il(h*u),llP i llh,Il, llufllP, where 
P E [l, -1. 

The system designed has the following 
properties: 

Theorem 3: Given the modified least-squares update law 
(3.4) and the controller (4.5)-(4.7), applied to the dead 
zone plant, y(t) and v(t) satisfi, 

YO), v(t) EL_ 

and tracking error e,,, = y - y,,, approaches zero as t-. 

S Prooj Let us define v = -v, y = L y  and rewrite (3.4~) 
Ap Ap 

and (4.1) as 

&)Vf + &)Yf = Y,,,] 

f S  

hp 

(4.9) 

where Ap = M, and y,,,] = - U, E L-. The forms (4.8) and 

(4.9) are exactly the same as those of linear system. 
Following exactly the same steps given in [7], and 
considering Theorem 1, we can show that Em E L- . 

S S Define V= -v, y= -y and write (3.4~) as 
A A 

jP) + an-jP1)  + ... + ay = b m P )  + ... + bo;- Em (4.10) 

giving, 

(4.11) 

Filtering v, U, and y in (4.1) by s/A(s) , and substituting j7 
in (4.1 1) into (4. I), 

[&)Z?(s) + $(s)&s)] V = a(s)f(s) ,  + i(s) Em (4.12) 
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From Remark R2, (4.12) can be rewritten as 

em ' (4.13) - if - s  ̂v =  
A&,,(S+U,)(S+U,) + ~ & , , ( s + ~ ( s + ~ , )  

Multiplying A(s) to (4.13), 

because of the boundedness of uc and Em ' and Remark 
R3, dvldt E L_ according to Lemma 4.1 and 4.2. Dividing 
s to (4.14), for same reason v E L _ .  This in turn 
guarantees that y E L _  from (2.2) and (2.3). 

dv As dddr, v E L_,  limf-_ - = 0 according to Barbalat 
dt 

Theorem, i.e., v(t) = constant. Furthermore, 6' and 
y(t) approach to constant from (2.2) and (2.3), 
respectively. Applying final value theorem to (4.3) and 
considering Theorem 2 and Remark R2, 
lbf&, Yo) = Vm(O. 0 

A procedure to calculate the adaptive control is as 
below. 
Step 1: 

Step 2: 

Step 3: 

Estimate the parameters in (3.1) by the modified 
least-squares approach (3.4); 
From the estimates of Step 1, compute the 
controller using (4.4)-(4.7); 
calculate the control signal from (4.2). 

5. Example - 

Consider a system consisting of a linear time 

with ao=O, u,=bo=l ,  invariant plant - = 

and an unknown dead zone with the following 
parameters, 

B,(s) bo 
s ' + u,s + uo 

The simulation result is presented for the following 
controller, 

50 wm = 

( s 2 + 1 . 4 s +  1) (~ '+15~+50)  
Assume the known upper bounds of br and b, are b= 2 .  

To estimate the parameters of - B(s) = kkv) *, s/A(s) 
4 s )  A,@) 

and the initial values of P and 8 are "Lhosen as 

S , 10313 and [3 5 8IT, respectively. To 

calculate the controller with the integral action, 
A,@) = (s + 2)' is chosen. The simulation results for the 
system with and without dead zone are shown in Fig.3 for 
comparison. It can be seen that the accurate tracking is 
achieved. 

s ' + 6.4s 2 +  8s+ 5 

6. Conclusions 
In this paper, an indirect adaptive control scheme is 

proposed for a linear system with an unknown dead zone. 
Representing the effects of an unknown dead zone by a 
bounded disturbance, a plant parametrization that is linear 
in a set of unknown parameters is developed and the 
estimation algorithm is proposed. A novel feature of the 
proposed adaptive controller is its integral action. It is 
shown that the integral action is the sufficient condition 
to eliminate the steady state error caused by dead zone. 
Stability analysis shows that the adaptive scheme ensures 
boundedness of all closed-loop signals and eliminates 
tracking error. Simulation shows that our adaptive 
controller is simple to implement and accurate tracking 
can be achieved. 
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Figure 1 A system with unknown dead zone 

Diophantine I4 

deadband 

Figure 2 The compensated system 
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Figure 3 System responses 
... system without dead zone - system with dead zone 
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