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Abstract 2 Pole Assignment 

Robust pole assignment for second-order systems is 
considered. It is shown that assignment can be 
achieved by solving a linear matrix equation or ]in- 
ear system. An objective function measuring the ro- 

gradient flow. 

Let A be a real pseudo-diagonal matrix containing all 
the assigned poles, in which 1 x 1 blocks represent real 
poles and 2 x 2 blocks of the form 

bustness of the closed-loop spectrum is minimized via 
[-"w 3 ( 3 )  

represent complex conjugate pairs c t i w .  Note that ( 3 )  
is unitary equivalent to a diagonal matrix, that is 

1 Introduction 

Consider a time-invariant, second-order system 

M i +  D i  + Kq = f (1) 

where q,  f E IR" and MID, K E IRnX". Responses 
of (1) can be altered by applying a feedback control 
force f = Bu to (1) with B E IRnxm denoting the 
input matrix and u E IR" the control vector. The 
state feedback control law is defined as U = -FKq - 
F D ~  where FD and FK are derivative and proportional 
feedback matrices respectively. Hence, the resulting 
closed-loop system is matrix equation 

where U = 5 [ f !i ] is a unitary matrix. 

The idea of state feedback pole assignment is to find 
[ F ~  ~~1 such that 

A + B [FK FD] = TAT-l or A + BG = TA (4) 

where G = [FK FD] T and T is Some nonsingular ma- 
trix. In facti (4) corresponds to the following linear 

ATB - ~ T D  = 2 (5) 

where 
In this note, M is assumed to  be invertible and (2) can 
be written in the familiar first-order form A = [  -K O I  - D ] ,  B = I ,  e = [ ;  A], 

; = A z + B u  
D = A ,  E =  [ :][FK F D ] T =  [ : ] G .  

Since the pencils A - A B  and D - A B  are regu- 
lar and the spectra p (Ale) and p (5, h) are as- 
sumed to be disjoint, i.e. no common closed-loop and 
open-loop poles, (5) is uniquely solvable for a given 
G [l, 31. However, by exploiting the special structures 

where 

0 I 0 
A =  [ -M-11{ -M-lD ] I '= [ M-1B ] ' 

For complete assignability, the pair (A,  B )  is assumed 
to be completely controllable. 
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of the coefficient matrices A, B, e, D, E ,  we can ex- 
press (5) into linear systems of equations which can 
then be solved by some effective algorithms [4]. Define 
U = diag U1, .  . . , U,,, ~ } where p ,  an even number, is 
the number of real poles of (2) and 

~ { A  

u i = l ,  j = l , , . . ,  p ,  { u j  = U ,  j = p +  1,. . . , n  + f .  

Note that U = U @I In if p = 0 and U = 12n if p = 2 n .  
By comparing both sides of (5), we eventually obtain 
the linear system 

(X;M + X j  D + K )  wj = -Bgj , j = 1, . . . ,2n .  (6) 

where g is the j- th column of G = GU. Then for a 
given G , we can solve for W = [w1 , . . . , ~ 2 ~ 1  from (6) - 
and T = [ wU* 1. Consequently, 

WU*h 

which is the augmented derivative and proportional 
feedback matrix such that the closed-loop system (2) 
have the assigned spectrum. 

3 Robust Pole Assignment 

In measuring the robustness of the closed-loop spec- 
trum, an objective function is defined as 

q5(T(G)) = IIT(G)112, + llw3-111;. (8) 

It can be shown that [5] the objective function (8) has 
to be minimized in order to obtain a robust closed-loop 
system. For notational simplicity, we write $(T(G)) as 
q5(G) throughout. 

For a given G, T is solved via the linear matrix equa- 
tion (5) or linear system (6) a t  each minimization it- 
eration for q5(G). When an optimum solution, say G*, 
is reached such that q5(G*) attains its minimum, the 
required augmented feedback matrix F = [FK FD] = 
G*T*-’ is recovered from (7), where G* and T* sat- 
isfy (4). 

With gradient flow analysis, this minimization problem 
comes down to solving the following system of ordinary 
differential equations 

}1mx2n 
G(t) = 2 [trace {e ( T - ~ T - T T - ~  - TT) 
G(0) = Go E G. 

(9) 
where 6 = {G I T is a nonsingular solution of (4)) is 
open and dense in ELmXan. The solution, say G* , to (9) 
will be a minimum of d(G) in (8). Important issues on 

the existence and convergence of the solution to (9) on 
[0, m) are discussed in [5]. 

In the ODE (12), T = SU* where 

where 

C y l b j ,  I 
3, . . . , 2n  - 1, 

] C F l b j ,  

4 , .  . . , 2n  

where Sj, the Kronecker delta. It is important to real- 

is a constant matrix and is only required 
d T  

ize that - 
d g j  k 

to evaluate once in the computation process. 

4 Conclusion 

In this note, the problem of robust pole assignment for 
second-order systems by state feedback is examined. It 
has been shown that pole assignment can be achieved 
by either solving a linear matrix equation or linear sys- 
tem. The assigned spectrum is made optimally robust 
by minimizing an objective function via gradient flow 
which involves the solution of a system of ordinary dif- 
ferential equation. 
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