The HKU Scholars Hub  The University of Hong Kong 7§ 1 e ,ﬁ_?ﬂ_. i ,Eé
i:?(f;ﬁ-‘_ & ;‘.:- § . . - - : ,- | d - :

|2 BAH
| #0| 54 |

1;};" ===/}
i

*w-“@

Title A gradient flow approach to robust pole assignment in second-
order systems

Author(s) Chan, HC; Lam, J; Ho, DWC

The 35th IEEE Conference on Decision and Control Proceedings,

Citation Kobe, Japan, 11-13 December 1996, v. 4, p. 4589-4590

Issued Date | 1996

URL http://hdl.handle.net/10722/46628

Rights Creative Commons: Attribution 3.0 Hong Kong License




Proceedings of the 35th
Conference on Decision and Control
Kobe, Japan ¢ December 1996

FP11 5:50

A Gradient Flow Approach to Robust Pole Assignment in
Second-Order Systems

H. C. Chan

Department of Mathematics

City University of Hong Kong, Hong Kong

mahcchan@sobolev.cityu.edu.hk

James Lam
Department of Mechanical Engineering
University of Hong Kong, Hong Kong

jlam@hkuxa.hku.hk

Daniel W. C. Ho

Department of Mathematics

City University of Hong Kong, Hong Kong

madaniel@cityu.edu.hk

Abstract

Robust pole assignment for second-order systems is
considered. It is shown that assignment can be
achieved by solving a linear matrix equation or lin-
ear system. An objective function measuring the ro-
bustness of the closed-loop spectrum is minimized via
gradient flow.

1 Introduction

Consider a time-invariant, second-order system
Mi+Dj+Kq=Ff (1)

where ¢, f € IR® and M, D, K € IR"*". Responses
of (1) can be altered by applying a feedback control
force f = Bu to (1) with B € IR**™ denoting the
input matrix and u € IR™ the control vector. The
state feedback control law is defined as u = —Fgq —
Fpq where Fp and Fx are derivative and proportional
feedback matrices respectively. Hence, the resulting
closed-loop system is

Mi+ (D+ BFp)¢+ (K +BFk)qg=0. (2)

In this note, M is assumed to be invertible and (2) can
be written in the familiar first-order form

2= Az + Bu

where

- 0 I = [ o
A= [ ~M-K —M'lD]’ B= [ M—IB]'

For complete assignability, the pair (4, B) is assumed
to be completely controllable.
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2 Pole Assignment

Let A be a real pseudo-diagonal matrix containing all
the assigned poles, in which 1 x 1 blocks represent real
poles and 2 x 2 blocks of the form

%]

represent complex conjugate pairs o +iw. Note that (3)
is unitary equivalent to a diagonal matrix, that is

U*[ o w]U:[0+zw 0. ]
-w o 0 o — iw

1 1 . . .
PR 18 a unitary matrix.

(3)

where U = 715 [

The idea of state feedback pole assignment is to find
[Fk Fp] such that

A+ B[Fx Fpl=TAT 'or A+ BG=TA (4)

where G = [Fx Fp]T and T is some nonsingular ma-
trix. In fact, (4) corresponds to the following linear
matrix equation

ATB-CTD=E (5)

where
- 0 I = s~ | I 0
A-[—K -—D]’ B=1, C——[O M]’

~ = 0 0

D=A, E:[B][FK FD]T:[B]G
Since the pencils A — AB and D — AB are regu-
lar and the spectra p (A,é’) and p (E,B) are as-
sumed to be disjoint, i.e. no common closed-loop and

open-loop poles, (5) is uniquely solvable for a given
G [1, 3]. However, by exploiting the special structures
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of the coefficient matrices A, B,C, D, E, we can ex-
press (D) into linear systems of equations which can
then be solved by some effective algorithms [4]. Define

U= diag{Ul, ey Un+§} where p, an even number, is
the number of real poles of (2) and

Uj:l,
U;j =0,
Notethat U = U @I, ifp=0 and U = b, ifp=2n.

By comparing both sides of (5), we eventually obtain
the linear system

j:17""p’
i=p+1,...,n+5.

(MM +\D+ K)wj =B, j=1,....2n. (6)

where § is the j-th column of G = GU. Then for a

given G, we can solve for W = [wy, ..., wan] from (6)
and T = [ WV;/ﬁU* A } Consequently,

[Fxk Fp]l=GT™! (N

which is the augmented derivative and proportional
feedback matrix such that the closed-loop system (2)
have the assigned spectrum.

3 Robust Pole Assignment

In measuring the robustness of the closed-loop spec-
trum, an objective function is defined as

#(T(G) = ITGI; + 1T ;.- (8)

It can be shown that {5] the objective function (8) has
to be minimized in order to obtain a robust closed-loop

system. For notational simplicity, we write ¢(T'(G)) as
¢(G) throughout.

For a given G, T is solved via the linear matrix equa-
tion (5) or linear system (6) at each minimization it-
eration for ¢(G). When an optimum solution, say G*,
is reached such that ¢(G*) attains its minimum, the
required augmented feedback matrix F = [Fg Fp] =
G*T*! is recovered from (7), where G* and T™ sat-
isfy (4).

With gradient flow analysis, this minimization problem
comes down to solving the following system of ordinary
differential equations

G(t) =2 [trace {% (r—7-Tr-1 — TT)}]
G0)=Go €4.

mx2n

(9)
where § = {G | T is a nonsingular solution of (4)} is
open and dense in IR™*2". The solution, say G* , to (9)
will be a minimum of ¢(G) in (8). Important issues on

the existence and convergence of the solution to (9) on
[0, 00) are discussed in [5)].

In the ODE (12), T = SU* where

1 —1pa
sl:_l:/\ll]cl 1Bgl

T N
with C; = A2M + MDD + K. And also —?——— = 8—SU*
Ogix  Ogjr
where
( 1 _
— 61k [ Al }Cl 1bj,
k=1,...,p,
_buts I -1z
681 _ \}i!kil) ,\II]CI b],
0gjx E=p+1,p+3,...,2n—1,
By (1) =61k I _1
‘Zﬁ_\l/_)i— [ NI ]Cz b
k=p+2,p+4,...,2n

where 8;; the Kronecker delta. It is important to real-

. aT
1ze that

9gik
to evaluate once in the computation process.

is a constant matrix and is only required

4 Conclusion

In this note, the problem of robust pole assignment for
second-order systems by state feedback is examined. It
has been shown that pole assignment can be achieved
by either solving a linear matrix equation or linear sys-
tem. The assigned spectrum is made optimally robust
by minimizing an objective function via gradient flow
which involves the solution of a system of ordinary dif-
ferential equation.
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