Title	A gradient flow approach to robust pole assignment in second－ order systems
Author（s）	Chan，HC；Lam，J；Ho，DWC
Citation	The 35th IEEE Conference on Decision and Control Proceedings， Kobe，Japan，11－13 December 1996，v．4，p．4589－4590
Issued Date	1996
URL	http：／／hdl．handle．net／10722／46628
Rights	Creative Commons：Attribution 3．0 Hong Kong License

A Gradient Flow Approach to Robust Pole Assignment in Second-Order Systems

H. C. Chan
Department of Mathematics
City University of Hong Kong, Hong Kong
mahcchan0sobolev,cityu.edu.hk

James Lam
Department of Mechanical Engineering
University of Hong Kong, Hong Kong
jlam@hkuxa.hku.hk

Daniel W. C. Ho
Department of Mathematics
City University of Hong Kong, Hong Kong
madaniel0cityu.edu.hk

Abstract

Robust pole assignment for second-order systems is considered. It is shown that assignment can be achieved by solving a linear matrix equation or linear system. An objective function measuring the robustness of the closed-loop spectrum is minimized via gradient flow.

1. Introduction

Consider a time-invariant, second-order system

$$
\begin{equation*}
M \ddot{q}+D \dot{q}+K q=f \tag{1}
\end{equation*}
$$

where $q, f \in \mathbb{R}^{n}$ and $M, D, K \in \mathbb{R}^{n \times n}$. Responses of (1) can be altered by applying a feedback control force $f=B u$ to (1) with $B \in \mathbb{R}^{n \times m}$ denoting the input matrix and $u \in \mathbb{R}^{m}$ the control vector. The state feedback control law is defined as $u=-F_{K} q-$ $F_{D} \dot{q}$ where F_{D} and F_{K} are derivative and proportional feedback matrices respectively. Hence, the resulting closed-loop system is

$$
\begin{equation*}
M \ddot{q}+\left(D+B F_{D}\right) \dot{q}+\left(K+B F_{K}\right) q=0 . \tag{2}
\end{equation*}
$$

In this note, M is assumed to be invertible and (2) can be written in the familiar first-order form

$$
\dot{z}=\bar{A} z+\bar{B} u
$$

where

$$
\bar{A}=\left[\begin{array}{cc}
0 & I \\
-M^{-1} K & -M^{-1} D
\end{array}\right], \quad \bar{B}=\left[\begin{array}{c}
0 \\
M^{-1} B
\end{array}\right] .
$$

For complete assignability, the pair (\bar{A}, \bar{B}) is assumed to be completely controllable.

2 Pole Assignment

Let Λ be a real pseudo-diagonal matrix containing all the assigned poles, in which 1×1 blocks represent real poles and 2×2 blocks of the form

$$
\left[\begin{array}{cc}
\sigma & \omega \tag{3}\\
-\omega & \sigma
\end{array}\right]
$$

represent complex conjugate pairs $\sigma \pm i \omega$. Note that (3) is unitary equivalent to a diagonal matrix, that is

$$
U^{*}\left[\begin{array}{cc}
\sigma & \omega \\
-\omega & \sigma
\end{array}\right] U=\left[\begin{array}{cc}
\sigma+i \omega & 0 \\
0 & \sigma-i \omega
\end{array}\right]
$$

where $U=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & 1 \\ i & -i\end{array}\right]$ is a unitary matrix.
The idea of state feedback pole assignment is to find $\left[\begin{array}{ll}F_{K} & F_{D}\end{array}\right]$ such that

$$
\bar{A}+\bar{B}\left[\begin{array}{ll}
F_{K} & F_{D} \tag{4}
\end{array}\right]=T \Lambda T^{-1} \text { or } \bar{A}+\bar{B} G=T \Lambda
$$

where $G=\left[\begin{array}{ll}F_{K} & F_{D}\end{array}\right] T$ and T is some nonsingular matrix. In fact, (4) corresponds to the following linear matrix equation

$$
\begin{equation*}
\tilde{A} T \tilde{B}-\tilde{C} T \tilde{D}=\tilde{E} \tag{5}
\end{equation*}
$$

where

$$
\begin{gathered}
\tilde{A}=\left[\begin{array}{cc}
0 & I \\
-K & -D
\end{array}\right], \quad \tilde{B}=I, \quad \tilde{C}=\left[\begin{array}{cc}
I & 0 \\
0 & M
\end{array}\right], \\
\tilde{D}=\Lambda, \quad \tilde{E}=\left[\begin{array}{l}
0 \\
B
\end{array}\right]\left[\begin{array}{ll}
F_{K} & F_{D}
\end{array}\right] T=\left[\begin{array}{c}
0 \\
B
\end{array}\right] G .
\end{gathered}
$$

Since the pencils $\tilde{A}-\lambda \tilde{B}$ and $\tilde{D}-\lambda \tilde{B}$ are regular and the spectra $\rho(\tilde{A}, \tilde{C})$ and $\rho(\tilde{D}, \tilde{B})$ are assumed to be disjoint, i.e. no common closed-loop and open-loop poles, (5) is uniquely solvable for a given $G[1,3]$. However, by exploiting the special structures
of the coefficient matrices $\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D}, \tilde{E}$, we can express (5) into linear systems of equations which can then be solved by some effective algorithms [4]. Define $\hat{U}=\operatorname{diag}\left\{\hat{U}_{1}, \ldots, \hat{U}_{n+\frac{p}{2}}\right\}$ where p, an even number, is the number of real poles of (2) and

$$
\begin{cases}\hat{U}_{j}=1, & j=1, \ldots, p \\ \hat{U}_{j}=U, & j=p+1, \ldots, n+\frac{p}{2}\end{cases}
$$

Note that $\hat{U}=U \bigotimes I_{n}$ if $p=0$ and $\hat{U}=I_{2 n}$ if $p=2 n$. By comparing both sides of (5), we eventually obtain the linear system

$$
\begin{equation*}
\left(\lambda_{j}^{2} M+\lambda_{j} D+K\right) w_{j}=-B \hat{g}_{j}, \quad j=1, \ldots, 2 n \tag{6}
\end{equation*}
$$

where \hat{g} is the j-th column of $\hat{G}=G \hat{U}$. Then for a given G, we can solve for $W=\left[w_{1}, \ldots, w_{2 n}\right]$ from (6) and $T=\left[\begin{array}{c}W \hat{U}^{*} \\ W \hat{U}^{*} \Lambda\end{array}\right]$. Consequently,

$$
\left[\begin{array}{ll}
F_{K} & F_{D} \tag{7}
\end{array}\right]=G T^{-1}
$$

which is the augmented derivative and proportional feedback matrix such that the closed-loop system (2) have the assigned spectrum.

3 Robust Pole Assignment

In measuring the robustness of the closed-loop spectrum, an objective function is defined as

$$
\begin{equation*}
\phi(T(G))=\|T(G)\|_{F}^{2}+\left\|T(G)^{-1}\right\|_{F}^{2} \tag{8}
\end{equation*}
$$

It can be shown that [5] the objective function (8) has to be minimized in order to obtain a robust closed-loop system. For notational simplicity, we write $\phi(T(G))$ as $\phi(G)$ throughout.

For a given G, T is solved via the linear matrix equation (5) or linear system (6) at each minimization iteration for $\phi(G)$. When an optimum solution, say G^{*}, is reached such that $\phi\left(G^{*}\right)$ attains its minimum, the required augmented feedback matrix $F=\left[\begin{array}{ll}F_{K} & F_{D}\end{array}\right]=$ $G^{*} T^{*-1}$ is recovered from (7), where G^{*} and T^{*} satisfy (4).

With gradient flow analysis, this minimization problem comes down to solving the following system of ordinary differential equations

$$
\begin{align*}
& \dot{G}(t)=2\left[\operatorname{trace}\left\{\frac{\partial T}{\partial g_{j k}}\left(T^{-1} T^{-T} T^{-1}-T^{T}\right)\right\}\right]_{m \times 2 n} \\
& G(0)=G_{0} \in \mathcal{G} \tag{9}
\end{align*}
$$

where $\mathcal{G}=\{G \mid T$ is a nonsingular solution of (4) $\}$ is open and dense in $\mathbb{R}^{m \times 2 n}$. The solution, say G^{*}, to (9) will be a minimum of $\phi(G)$ in (8). Important issues on
the existence and convergence of the solution to (9) on $[0, \infty)$ are discussed in [5].

In the ODE (12), $T=S \hat{U}^{*}$ where

$$
s_{l}=-\left[\begin{array}{c}
I \\
\lambda_{l} I
\end{array}\right] \mathcal{C}_{l}^{-1} B \hat{g}_{l}
$$

with $\mathcal{C}_{l}=\lambda_{l}^{2} M+\lambda_{l} D+K$. And also $\frac{\partial T}{\partial g_{j k}}=\frac{\partial S}{\partial g_{j k}} \hat{U}^{*}$ where

$$
\frac{\partial s_{l}}{\partial g_{j k}}=\left\{\begin{array}{c}
-\delta_{l k}\left[\begin{array}{c}
I \\
\lambda_{l} I
\end{array}\right] \mathcal{C}_{l}^{-1} b_{j} \\
k=1, \ldots, p \\
-\frac{\delta_{l k}+\delta_{l(k+1)}}{\sqrt{2}}\left[\begin{array}{c}
I \\
\lambda_{l} I
\end{array}\right] \mathcal{C}_{l}^{-1} b_{j} \\
k=p+1, p+3, \ldots, 2 n-1, \\
-i \frac{\delta_{l(k-1)}-\delta_{l k}}{\sqrt{2}}\left[\begin{array}{c}
I \\
\lambda_{l} I
\end{array}\right] \mathcal{C}_{l}^{-1} b_{j} \\
k=p+2, p+4, \ldots, 2 n
\end{array}\right.
$$

where $\delta_{j k}$ the Kronecker delta. It is important to realize that $\frac{\partial T}{\partial g_{j k}}$ is a constant matrix and is only required to evaluate once in the computation process.

4 Conclusion

In this note, the problem of robust pole assignment for second-order systems by state feedback is examined. It has been shown that pole assignment can be achieved by either solving a linear matrix equation or linear system. The assigned spectrum is made optimally robust by minimizing an objective function via gradient flow which involves the solution of a system of ordinary differential equation.

References

[1] K.-W. E. Chu, "The solution of the matrix equations $A X B-C X D=E$ and $(Y A-D Z, Y C-B Z)=$ (E,F)", Lin. Alg. Appl., 93, pp. 93-105 (1987).
[2] B. N. Datta and F. Rincón, "Feedback stabilization of a second-order system: a nonmodal approach", Lin. Alg. Appl., 188/189, pp. 135-161 (1993).
[3] G. D. Gardiner, A. J. Laub, J. J. Amato and C. B. Moler, "Solution of the Sylvester equation $A X B^{T}+$ $C X D^{T}=E^{\prime \prime}, A C M$ Trans. Math. Soft., 18, pp. 223231 (1992).
[4] G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd Ed., Johns Hopkins University Press, Baltimore, 1989.
[5] J. Lam and W. Y. Yan, "A gradient flow approach to robust pole-placement problem", Internat. J. Robust Nonlinear Contr., 5, pp. 175-185 (1995).

