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ABSTRACT: This paper provides a computational 
procedure for a type of robust regional pole assignment 
problem. It allows the closed-loop poles to be settled 
at certain perturbation insensitive locations within some 
prespecified regions in the complex plane. The novelty 
of our approach lies in the versatility of the proposed al- 
gorithm which provides a rich set of constrained regions 
for the assignment of individual or subsets of closed-loop 
poles, in contrast to other conventional regional pole as- 
signment methods. The algorithm is based on a gradient 
flow formulation on a potential function which provides a 
minimizing solution for the Frobenius condition number 
of the closed-loop state matrix. 

problem. The idea is to minimize a potential function de- 
fined via l l V l l ~  and IIV-lIIp, where V is a nonsingular 
eigenvector matrix of A,, with the minimization problem 
solved based on a gradient flow formulation. In this way, 
the Frobenius condition number m ( V )  A IIVIIFIIV-.~IIF 
which measures the conditioning of A,  will then be min- 
imized. While most existing regional pole assignment al- 
gorithms cluster the whole eigenspectrum within a spe- 
cial region or allocate individual closed-loop eigenvalues 
into the corresponding rectangular regions in the complex 
plane, the novelty of our approach lies in the versatility 
of the proposed algorithm which provides a rich set of 
constrained regions for the assignment of individual or 
subsets of closed-loop poles. 

1 Introduction 2 Problem Formulation 

Robust state feedback controller design via pole assign- 
ment has been investigated quite extensively in the past 
ten years. In many practical design situations, "exact" 
pole assignment, in which poles of the closed-loop system 
are assigned in some fixed positions in the complex plane, 
is unnecessary. Instead, it would be acceptable for the 
closed-loop eigenvalues to be assigned within some regions 
prespecsed by designers. If such a design freedom is con- 
sidered together with the nonuniqueuess associat,ed with 
the state feedback gain matrix in assigning a set of self- 
conjugate complex eigenvalues in a general MIMO system, 
then potentially a much more well-conditioned closed-loop 
state matrix, A,, can be obtained as compared to other 
robust pole assignment schemes which assign the set of 
closed-loop eigenvalues exactly [KND85,BN89,LY95]. 

The freedom of clustering poles within some special re- 
gions in the complex plane in order to optimize cer- 
tain performance index has been most commonly used 
in the optimal Linear Quadratic Regulator (LQR) design 
[HB92]. Moreover, the technique of regional pole assign- 
ment also appears in many other aspects of control sys- 
tems design. Roppenecker [Rop83] has proposed a design 
procedure to find a minimum norm feedback controller by 
assigning poles within specified eigenvalue areas. Burrows 
and Patton [BP911 have considered pole assignment with 
low eigenvalue sensitivity and small feedback gain. 

In the present work, we propose a computational ap- 
proach to the Robust Regional Pole Assignment (RRPA) 

Consider a finite-dimensional linear time-invariant system 
with q ( q > 1 ) inputs described by 

x = AX + BU 

where A E WX", B E W n X q  is of full column rank, 
z E Etnx1, U E Etgx1 and the pair ( A , B )  is assumed to 
be completely controllable. By applying a time-invariant 
state-feedback law 

there results the closed-loop system given by 

(1) 

u = K x  (2) 

(3) 2 = ( A  + BK)x  

As the pair (A,  B )  is completely controllable, the spec- 
trum of the closed-loop state matrix, A, = A + BK,  can 
be assigned to any arbitrary set of self-conjugate complex 
numbers of cardinality n by proper choice of the feedback 
gain matrix K E E@'". 

A 

2.1 Parametrization of Constrained Regions 

Now suppose the set of n closed-loop poles constitutes n1 
pairs of imaginary poles 

cym f p,j, m = 1,. . . ,121 

and n2 real poles 

~ l ,  1 = 1,. . . ,122 



Here am, Pm and 71 are real numbers and n = 2nl + 
n2. The poles are allowed to be located within the open 
constrained regions 

l(Qm f P m j )  - (am0 f Pm0j)l < R m ( Q m )  (4) 

and the open intervals on the real axis 

I n  - v o l  < rll (5) 

respectively with amo .tP,oj and T ~ O  denoting the centres 
of the constrained regions. With 0 < 0, < 2n being the 
polar angle measured about amo f Pmoj, the polar func- 
tion R,(Q,) then describes the boundaries of some open 
regions in the complex plane. Suppose A, is diagonaliz- 
able (further explanation of this assumption will be given 
in Remark l), then there exists a similarity transforma- 
tion T E R""" such that 

or 

where 

A =  

A + B K  = TAT-l 

AT-TA=-BG ; G = K T  

. . . . . . . . .  ff' p1 0 0 

a1 0 . . . . . .  i 
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For any G E IFFx", A E Et"'" with the structure in 
(8) and satisfying (4) and ( 5 ) ,  T(G, A) is uniquely deter- 
mined if we have spec ( A )  n spec (A) = 0. In addition, if 
the regions described by (4) and ( 5 )  are non-overlapping, 
then the controllability of (A ,  B) implies that T(G, A) is 
generically non-singular for any G and A. Now, we define 
Pm : R"'" -i R2x2 and Sl : g"'" -+ R l X 1  to be the 
projection operators on a matrix X = (xij),'" resulting 
in submatrices such that 

and 

Then the (block-) diagonal elements of A can be denoted 
as 

A & ( X )  = (X2n1+1,2n1+l) 

and 
COSQ, sinQm 

-sin@, COS@, 
We, = 

Furthermore, 

St@) = (T) = ( T O  + r l l O ( W ) )  (10) 

Here the variables pm and 0, for defining the constrained 
regions of the complex conjugate poles are given by 

p m  = Rm(Qm)$J(rm)  and Om = 2n$J(~,) (11) 

in which $J : EX 4 ( 0 , l )  is a binary sigmoid function 

$J(x )  = with $'(z) = $ ( x ) ( l -  $ ( x ) )  (12) 

For the line intervals constraining the real poles, (T : R -+ 

( -1 , l )  is a bipolar sigmoid function 

1 - e-" 1 
2 1 + e-x 

with a'(x) = '(1 - ( ~ ( 2 ) ~ )  (13) (T(5) = - 
In other words, points within the constrained regions (4) 
and (5) are parametrized uniquely in terms of (rm,sm) 
and WI respectively. 

2.2 Parametric Optimization 

A common measure used for the conditioning of A, in 
face of unstructured additive perturbation is the condition 
number of its eigenvector matrix. This is because by the 
Bauer-Fike Theorem, the spectral variation of the closed- 
loop state matrix A, due to an unstructured perturbation 
A in A,  is bounded by IlVllpllV-'IIpllAllp where 1 1 .  
denotes the Frobenius norm of a matrix and V is a nonsin- 
gular eigenvector matrix of A,. Notice that T satisfying 
(6) is not an eigenvector matrix in general. However, there 
exists a unitary matrix U such that V = TU is an eigen- 
vector matrix of A, and IITUIJ = IlTll for any unitarily 
invariant norm I (  . 11. Hence the objective function to be 
minimized in this paper is chosen as 

Recall that the parameters r = [r1 . . .  rnlIT, s = [ S I  ... sn1IT 
and w = [wz ... wn2IT determine A. For ease of notation, 
they are grouped with the parameters in G to form 

where vec(G) denotes the lexicographical ordering of the 
elements g i j  of G. The set of all H = [ h ~ .  .. hnx(q+l)]  
resulting in the particular G E Rqxn and A E RnXn such 
that T is well-defined and nonsingular will hereafter be 
denoted by H .  

T 

Accordingly, we now formulate the Robust Regional Pole 
Assignment (RRPA) problem as that of finding of a H E 
H to minimize the objective function, J ,  that is, 

min J ( H )  : ~ ( q ~ ~ + ~ ) ~ ~ +  R 

Once W is found, the corresponding G and A will result in 
the desired state feedback gain matrix, K = GT-' with 
the set of closed-loop poles, 

HEX 

spec(A) = (a1 =k P l j ,  ... ,anl f Pnlj, 71,. . .  , m2} 
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assigned within the specific constrained regions. In this 
way, the RRPA problem can be reduced to a pure para- 
metric unconstrained optimization task. 

3 Gradient Flow Based Minimization 
Algorithm 

In this section, a gradient flow based algorithm will be 
proposed for minimizing the objective function J ( H ) .  The 
algorithm consists of the gradient flow of the potential 
function 4 defined by 

4 ( H )  = IIT(H)112F + IIT-'(H)I12F (15) 

in the form 

&(t) = - V H ~ ( H )  ; H(0)  = Ho E 7.t (16) 

It can be shown easily that 

(17) 
1 

n 5 JW 5 3 4 ( H )  

The equalities hold if and only if I IT (H)~~F = l lT- l (H) l l~  
and this is satisfied when T ( H )  is orthogonal. It was 
established in Lam and Yan [LY95] that the minimization 
of 4 will in turn minimize the Frobenius condition number 
K F  of the closed-loop eigenvector matrix. In this way, a 
more nearly robust closed-loop eigenstructure is obtained. 

Proposition 1 The objective function 4 ( H )  is strictly 
decreasing along the solution H ( t )  of the flow (16) for  
all t E [0, w) i f  HO E H not a stationary point of 4 (H) .  

Proof: Since the objective function $ ( H )  is infinitely 
differentiable in a neighbourhood of HO , the differential 
equation (16) has a unique solution defined on some inter- 
val about t = 0. Suppose the interval is given by [0, t"). 
Then for 0 I tl < t 2  < t,,, , we have 

F 
IIH(t2) - H ( t l ) l l F  = 111; ' ( t ) d t l /  

The sequence { H ( t i ) }  where 0 5 ti < ti+i with ti, 
ti+l E (O,t,,) is Cauchy. As a consequence, we have 
limt,t,,, H ( t )  = A exists. Owing to the maximality of 
t,,,, A must be outside 7-1 and limt-+t,,, ~ ~ T ( t ) - l ~ ~ ~  = 00 

which renders the unboundedness of d ( H ( t ) )  as t -+ t,,,. 
This contradicts the fact that d ( H ( t ) )  is nonincreasing. 
Hence, tmax = CO. Moreover, 

= tr ( ( V H ~ ( H ) ) ~  ' ( t ) )  

I O  
= -ll'(t)112, 

thus implying that 4 ( H ( t l ) )  2 4(H( tZ) ) .  Since the dif- 
ferential equation (16) has a unique solution defined on 
[O,CCI), +(H)  is strictly decreasing along the solution of 

Remark 1 Suppose (16) starts with an initial Ho E 'H. 
Then it corresponds to a pair of (Go,&) such that T(0) 
obtained from (7) is nonsingular. If HO not a stationary 
point of 4 ( H ) ,  &H)  < 0 and hence T-l(t)  exits for all 
t > 0. As a result, the diagonalizability of A, can always 
be guaranteed along the flow in (16). 

H ( t )  if HO is not a stationary point. 

The derivatives of the potential function 4 with respect 
to H can now be obtained as follows. 

Theorem 1 Let 4 ( H )  be defined as in (15) and 

p T-T (TTT - T-lT-T) (18) 

where T is the unique solution to the Sylvester equation 
in (7'). Then we have 

in which 

, x = m  d A  

, x = 2 n l + l  

for m = 1.. . n1 and 1 = 1 . .  . nz where Y is  the unique 
solution to the Sylvester equation 

A=Y - ynT + P  = o (21) 

dA 
arm dsm 

Block-diagonal matrices - and E are in Rnxn with 
block-elements 

and 

(23) 

respectively and with zero block-elements elsewhere. Sami- 
larly, - are matrices in Rqx" whose elements equals 

zero except the (2711 + diagonal element equal to 

d h  
dWl 

VlU/("l ) .  
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Proof: It is noted that tr(PTX) = tr(CTY) where X and 
Y are the solutions of the respective Sylvester equations 

A X - X A + C = O  and ATY-YAT+P=O 

for any C E IW""". Since 

For k = 1 .. .q x n, 

= 2tr ( ( B E ~ ~ ) ~ Y )  

or 
V G ~  = 2BTY 

in which - is obtained by differentiating (7) with re- 

spect to g i j  of G. Eij E Rqxn is a matrix whose elements 
are equal to zero except the (z, j ) th element equal to 1. 
Similarly, for k = ( g  x n + 1).  . . (q  x n + n), 

aT 
agij  

in which E is obtained by differentiating (7) with re- 

spect to hk. Here hk may be equal to rm, s, or w1. The 
block-elements in (20) are obtained by differentiating (8) 

bhk 

with respect to rm, s, and W I  accordingly. 

0 in order to guarantee unique solutions exist in the 
Sylvester equations of Step 2, the numerically singu- 
lar problem when solving the Sylvester equation occurs 
only if some of the closed-loop eigenvalues really coin- 
cide with the open-loop ones during minimization, that 
is, spec(A) n spec(A(t)) # 0 for some t > 0. This phe- 
nomenon rarely happens in the generic case and designers 
can use any regions to suit their design specifications. In 
case the problem mentioned above really occurs, one can 
repeat Step 1 and try some other initial conditions for H 
or choose other appropriate regions which do not overlap 
with spec(A). 

Remark 4 The matrix G(t) is bounded and the resulting 
feedback gain K ( t )  satisfies 

IIK(t)IIF 5 llBtllF [IlAllF f $llA(t) l ld(Ho)]  (26) 

for all t E [O,m) where Bt = (BTB)-lBT and IIh(t)ll~ 
is uniformly bounded. 

4 Regions in Cartesian Coordinates 

For certain regions, Cartesian coordinates may admit a 
more convenient parametrization. Thus, for complete- 
ness, we describe some common constrained regions given 
in Cartesian coordinates and give the corresponding for- 
mulae for the RRPA algorithm. 

The main difference occurs in the description of complex 
poles in A while the description of real poles using (10) 
remained the same. Consider a A satisfying the structure 
in (8) such that, for the mth complex conjugate pole pair, RRPA Algorithm: Given a completely controllable 

pair (A, B), choose HO E 3-1 as an initial condition for H - . ,  
such that the set of initial closed-loop poles determined 
by ro, SO and WO satisfying spec(A) f l  spec(A0) = 8. 

1. Specify different constrained regions (4) and line in- 
tervals (5) in the complex plane for different closed-loop 
complex conjugate and real eigenvalues respectively to 
give a A with the particular structure in (8). 

2. Solve the n x (q + 1) ODES: 

H(0)  = Ho €3-1 (25) 

where T(t) is the unique solution of (7) while Z, and Y 
are given by (20) and (21) respectively. 

3. Choose K = G(t*)T(t*)-' as the feedback gain with 
the resulting closed-loop eigenvalues located at spec(A(t*)), 
where t* > 0 is sufficiently large. 

Remark 2 Albeit the set of constrained regions discussed 

where zm+y,j and 6, represent respectively the transla- 
tion and the rotation (measured counterclockwise) about 
the nominal pole position at C Y , O + / ~ ~ O ~  (see Figure l(b)). 
Notice that IC, = I C , ( T ~ ,  9,) and ym = gm(Tm, Sm). By 
denoting ( I C ~ ) ~ ,  and (g,),., as the partial derivatives 
of IC, and ym with respect to r ,  respectively and sim- 
ilar notation for ( I C , ) ~ , , ,  and ( Y ~ ) ~ , ,  the corresponding 
derivative formulae (analogus to (22) and (23)) are 

and 

We summarize the expressions for zm and gm correspond- 
ing to different constrained regions in Table 1. 

For the trapezoidal case described in Table 1, so far are designed for the assignment of individual eigen- 
values, they can also be used to enclose different set of 
closed-loop poles so that the poles can altogether settle cm - bm cm + bm 
in the most perturbation insensitive positions within the 
regions (see Example 3). 

&mark 3 Although the constrained regions specified in 
Step 1 should always ensure that spec(A) n spec(A(t)) = 

ym = ~ ~ ( z ~ )  = (r) zm + (7) (30) 

is the straight line equation for the upper boundary of the 
region. Parameters amr bm and C m  are the characteristic 
dhz"ions of the constrained regions (see Figure 1). 
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Elliptical Reaion I Rectanaular Reaion I Travezoidal Reaion 1 

Table 1. Expressions for Different Constrained Regions 

5 Numerical Examples 

Consider a 5-state, 2-input model [LY95] given by 

-0.1094 0.0628 0 0 
1.306 -2.132 0.9807 0 

A = ( 0 1.595 -3.149 1.547 
0 0.0355 2.632 -4.257 1.855 
0 0.00227 0 0.1636 -0.1625 

0 0.0638 0.0838 0.1004 0.0063 ( 0 0 -0.1396 -0.2060 -0.0128 

with open-loop eigenvalues at -0.077, -0.014, -0.895, 
-2.841 and -5.982. The parameters ro, SO and WO are 
chosen such that the closed-loop poles are located at 
& = (-1 &j, -0.2, -0.5, -1) initially. To increase the 
efficiency of computation, we take the initial starting con- 
dition for G as 

Go= ( -58.69 -11.84 38.43 18.77 27.21 
-18.90 13.18 22.68 21.55 25.31 

which gives @i N 78.6, KF N 39.3, ~2 2! 33.6 and 
IlKll~ N 337.4. K ~ T )  IIT11211T-1112 is the spectral con- 
dition number. Go is taken from the solution of the “ex- 
act” robust pole-placement algorithm proposed by Lam 
and Yan [LY95] with the set of closed-loop eigenvalues as- 
signed exactly at &. With this choice of Go, any solution 
obtained by following the robust regional pole assignment 
algorithm proposed in Section 3 using (24) with + ( H )  as 
the potential function to be minimized will be better than 
(or at least the same as) that of obtained from other “ex- 
act” robust pole assignment schemes [KND85,LY95]. 

Example 1 Suppose the set of closed-loop poles are al- 
lowed to be relaxed by f10% from their nominal positions 
(see Figure 2) such that 

a1 = 0.1 ; bl =0.1 ; 71 = 0.02 ; 772 = 0.05 ; 773 = 0.1 

and 

ro = (0) ; so = (0) ; WO = ( o o o lT 

where Llo = ( 1; l1 ), 710 = -0.2, 720 = -0.5 and 

730 = -1. At t = 100, the resulting feedback gain matrix 
is then given by 

K, = ( -43.88 106.16 -225.39 191.33 -47.70 

with 

-19.38 35.83 -60.34 45.44 -2.21 

SW(A) = (-1.10 f l.lOj, - 0.18, - 0.45, - 1.09) 

which gives 4 1~ 66.62, KF N 33.31, ~2 N 28.45 and 
l lKl l~ 21 332.03. 

Example 2 Now assume the pair of complex conjugate 
poles are allowed to be assigned within a pair of elliptical 
regions while the set of real poles are assigned within the 
line intervals of equal width (see Figure 3) such that 

a1 = 3.6 ; bl = 0.6 ; 71 = 0.1 ; 72 = 0.1 ; r]3 = 0.1 

and 

ro = (2.17) ; SO = (-2.74) ; WO = ( 0 0 0 )T 

, 7x0 = -0.2, 720 = -0.5 I, 

-4 0.8 
-0.8 -4 where Clo = 

and 730 = -1. i t  turns out ihat at t = 80, the resulting 
feedback gain matrix is given by 

K, = ( -43.85 -8.17 -57.33 -10.38 -19.10 
-17.19 8.98 -19.59 -2.86 

with 

4.21 ) 
spec(h) = (-5.70 f 1.03j, - 0.13, - 0.40, - 1.09) 

In this case, 4 N 14.01, KF N 6.85, K2 N 3.21 and IlKll~ N 

80.84. A substantial reduction in 4, K F ,  ~2 and as well as 
l lKl l~  is obtained. 

Example 3 Assume the whole set of closed-loop poles 
are allowed to be assigned within an trapezoidal region 
(see Figure 4) with the parameters 

a l = 3 .  , b l = 4 ;  ~ l = l .  , q 1 = 3 ;  7 2 = 3 ;  773’3 

and 

ro = (1.73) ; SO = (1.69) ; WO = ( 4.08 2.64 

where Llo = -3.112 and 710 = 720 = 730 = -3.1. In this 
case, the resulting feedback gain matrix at t = 30 is given 

1.73 )T 

bY 

) -51.87 -8.40 -70.68 1.47 9.54 
-19.12 14.02 -31.63 6.95 5.28 K t =  ( 

with 

spec@) = (-5.91 =k 0.96j, - 0.13, - 0.24, - 0.95) 

in which 9 N 13.75, KF N 6.52, K2 N 2.76 and IlKll~ N 

97.40. A huge reduction in the eigenvalue sensitivity is 
thus expected. Also note that even though the trapezoidal 
region and the open-loop eigenvalues are overlapped here, 
it does not cause any numerical problems. 
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6 Conclusions 

We have presented a computational procedure for the 
RRPA problem. Poles of closed-loop systems are allowed 
to be settled at certain perturbation insensitive locations 
within some prespecified regions in the complex plane. 
The proposed algorithm is based on a gradient flow formu- 
lation on a potential function which provides a minimizing 
solution for the Frobenius condition number of the closed- 
loop state matrix. The effectiveness of the proposed algo- 
rithm has been illustrated by numerical examples which 
reveal that significant improvement on the eigenstructure 
robustness can be achieved. 
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