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Abstract 

This paper deals with the problem of computing an 
La-optimal reduced-order model for a given stable mul- 
tivariable linear system. By way of orthogonal projec- 
tion, the problem is formulated as that of minimizing 
the La model reduction cost over the Stiefel manifold 
so that the stability constraint on reduced-order mod- 
els is automatically satisfied and thus totally avoided in 
the new problem formulation. The closed form formula 
for the gradient of the cost over the manifold is derived, 
from which a gradient flow is formed as an ordinary dif- 
ferential equation. A number of nice properties about 
such a flow are obtained. Among them are the decreas- 
ing property of the cost along the ODE solution and 
the convergence of the flow from any starting point in 
the manifold. Furthermore, an explicit iterative conver- 
gent algorithm is developed from the flow and inherits 
the properties that the iterates remain on the manifold 
starting from any orthogonal initial point and that the 
model-reduction cost is decreasing to minimums along 
the iterates. 

1. Introduction 

One of important optimality-based techniques for 
model reduction is to minimize the La norm of the 
model mismatch between the original model and a 
reduced-order one. This minimization problem for a 
given stable plant over all stable models of fixed lower 
order has received a great deal of attention over the past 
three decades. Still, rigorous and convergent algorithms 
have remained to be found in the general multi-input 
multi-output case. So far, the most commonly taken 
approach to Lz-optimal model reduction problem is to 
work with first order necessary conditions for optimal- 
ity, which were developed and simplified in one way or 
another by Meier and Luenberger [l], Wilson [Z], Hy- 
land and Bernstein [3], Halevi [4], Bryson and Carrier 
[ 5 ] ,  Baratchart et al. [6] ,  and more recently Spanos et 
al. [7]. Accordingly, they proposed their respective al- 
gorithms to seek a solution satisfying the conditions ex- 

pressed in terms of nonlinear matrix equations. Many 
of the algorithms lack the proof of convergence and 
mathematical rigor, and some of them may even be- 
come divergent for certain initial conditions. Though 
Baratchart et al. [6] and Spanos et al. [7] established 
the convergence of their respective algorithms under 
certain conditions, the algorithms are only applicable 
to the single-input single-output case. 

So far, it seems unclear whether the global minimum 
of the cost exists or not in the continuous-time multi- 
input multi-output case though the answer to this ques- 
tion in the discrete-time case was positive according to 
Baratchart [8]. This issue inevitably sheds some doubt 
on the theoretic basis of the above approach. Moreover, 
as pointed out by Spanos et  al. [7], there are two techni- 
cal difficulties associated with the approach; one is the 
stability constraint on reduced-order models and the 
other is the unboundedness of the level sets of the La 
cost functional. It goes without saying that the first one 
is fundamentally intricate to accommodate and thus 
represents a major obstacle to the effectiveness of any 
algorithm based on that approach. We believe that this 
difficulty stems from direct parametrizations of all the 
reduced-order models in one form or another. 

In this paper, we take a different approach to the 
La-optimal model reduction problem in the continuous- 
time case. The main idea is to treat the minimization 
problem over a subclass of stable reduced-order mod- 
els parameterized by a projection matrix instead of the 
whole class of all the reduced-order models. It can be 
heuristically argued and numerically verified that the 
global minimum of the cost over such a subclass is very 
close if not identical to that over the entire class. In 
addition, the restriction to this subclass enables one to 
avoid the stability constraint entirely and leads to a 
more tractable minimization problem over the Stiefel 
manifold, which is compact. Our main purpose is to 
develop both continuous and iterative convergent algo- 
rithms which are rigorous and universally applicable. 
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The paper is briefly outlined as follows. In the 
next section, we modify the L2-optimal model reduc- 
tion problem as an unconstrained minimization prob- 
lem over the Stiefel manifold. Section 3 centers on the 
development of the gradient flow of the model reduction 
cost and establishment of its associated properties in- 
cluding convergence by using differential manifold tech- 
niques. In Section 4, we turn to discuss recursive algo- 
rithms. The last section contains some conclusions. 

2. Problem Formulation 

Consider a linear time-invariant stable system G(s )  
with the realization 

j. = Ax+Bu (2.1) 
y = c x  (2.2) 

where A E RnXn , B E RnxP , C E FXn.  An admissi- 
ble reduced-order model Gm(s)  is defined to be of the 
form 

xm = A,x,+Bmu (2.3) 
YT = Cmxm (2.4) 

where A, E Rmxm, B E RmxP, C 6 F X m  with A 
a stable matrix. The mismatch between the full-order 
G(s)  and reduced-order Gm(s)  will be measured by the 
square of the Lz norm of their difference G e ( s ) ,  i.e., 

J(Am, B,, Cm) ' I l G e ( S ) I I i  

which is often termed the quadratic model-reduction 
cost. 

The so-called L2 or quadratically optimal model re- 
duction problem is to minimize J(Amr B,, Cm) over all 
the admissible reduced-order models G, ( s ) .  Note that 
one realization (Ae,  Be,  Ce)  of the error model G,(s) 
is given by 

Then it is a standard fact that the model-reduction cost 
can be expressed in terms of the controllability Gramian 
L, and observability Gramian Lo of this realization. 
Namely, there holds 

J ( -4m,  Bm, Cm) = trace(C,L,C:) = trace(B:L,B,) 
(2.5) 

with 

A,L, + L,AT + BeBT = 0 

ATL, + LOAe + C,TCe = 0 
(2.6) 

(2.7) 

It is known from [3] that any minimizing solution 
(Am, B,, Cm) must be of the form 

(Am, Bm, Cm) = (TAK TB, CV) (2.8) 

where V E RnXm and T E E t m X n  satisfy 

T V = I  (2.9) 

Hence, the original model reduction problem amounts 
to minimizing J(TAV, TB,  CV)  with respect to 
(T, V )  E E t m x n  x Rnxm subject to the two constraints 

(i) TV = I (ii) TAV is stable 

This is essentially a nonlinear optimization problem 
subject to both equality and inequality constraints as 
the stability constraint can be expressed in terms of 
inequalities by the Hurwitz criterion. Though it may 
be possible to use some constrained optimization tech- 
niques to find a local minimum, the computation in- 
volved could be formidable. 

To formulate a more tractable problem without in- 
volving the stability constraint, we observe that T given 
by 

T = Vt  = (VTV)-lVT (2.10) 

satisfies the constraint (2.9) for any V of full column 
rank. It is therefore interesting to consider the following 
modified problem: 

minimize J(V)  4 J(VtAV, V t B ,  CV) 
subject to stability of VtAV 

In fact, the above modification can be motivated from 
a geometric point of view. To see this, we decompose 
the state space IW" into 

R" = range ( V I  + range (v)' 
That is, any state 2 E R" is expressed as 

z = V w + e  

with w E Rm and e 6 range(V)l.  Here, Vw is the 
orthogonal projection of the state onto the subspace 
range (V) .  By rewriting the state equation as 

Vw - (AVw +Bu) = Ae - e  

and appealing to the fact that llVz - s112 is minimized 
at z = Vts  for any given s E Rn, one sees that the best 
approximate to w given w is Vt(AVw + Bu) in the 
sense that e has the minimal effect. Removing e from 
the output equation naturally results in a reduced-order 
model 

W = VtAVw+VtBu (2.11) 

y = cvw (2.12) 

As such, the above modified minimization problem may 
well be thought of as finding a dominant state subspace 
of dimension m, which is spanned by the columns of V .  
As a matter of fact, such a projection idea shares the 
same underlying principle with the method of aggrega- 
tion [9, I O ,  111. 
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over the Stiefel manifold Perhaps it is also interesting and relevant to note that 
the model-reduction cost can be expressed as 

J(TAV, TB, CV) 
= ( ~ S C ( S I  - VTA)-~(VT - I ) ( ~ I  - A ) - ~ B I I ;  

This implies that the cost only depends on the product 
VT and contains as one factor VT - I whose norm is 
minimized at T = V t  as a function of T. 

Another crucial implication of the above observation 
is that the modified problem can be virtually reduced 
to an unconstrained minimization problem on a Stiefel 
manifold, which will be dealt with in this paper. To see 
this, note that 

J(VtAV, VtB,  CV) = J(UTAU, UTB, C U )  (2.13) 

with U = V(V/TV)-1/2 due to 

UUT = V(VTV)-lVT = VV+ 

Moreover, the stability of UTAU is automatically guar- 
anteed provided that A + AT is negative definite. We 
claim that such a property of the system realization can 
be assumed without loss of generality. In fact, since A 
is stable, for any negative definite matrix Q there exists 
a nonsingular square matrix T such that 

A T T ~  + T T ~ A ~  = o 
from which it is seen that the use of the so obtained 
T as a similarity transformation will result in a new 
realization with the required property. Besides, Lam 
and Hung [la] have shown that any balanced realiza- 
tion with distinct Hankel singular values automatically 
possesses the property as well. 

In this way, it is obvious that with the above men- 
tioned assumption on the system matrix A, the minimal 
model-reduction cost over the reduced-order model set 

{(Am,Bnz,Cm) = (vtAv, VtB,  CV);  
V E IFxm and VtAV is stable) 

is exactly equal to that over 

{(Am, B,,Cm) = (UTAU, U T B ,  CU);  
U E Rnxm and UTU = I }  

Since this latter set is a compact set, the minimum 
model-reduction cost over it indeed exists. Moreover, as 
will be numerically verified in the sequel, the minimum 
cost over the compact set is hardly different from that 
over all the admissible reduced-order models. 

We now end this section by formally posing the fol- 
lowing projection model reduction problem, which will 
be called the L2-PMR problem. 

La-Projection Model Reduct ion Problem: 
Given the realization system (2.1)-(2.2) with A + AT 
being negative definite, minimize 

3 ( U )  4 J(UTAU, UTB, CU) 

St(m,n) = {U E Etnxm I UTU = I }  

3. Gradient Flow on Manifold 

In this section, we aim to solve the La-PMR problem 
posed last section using the gradient flow approach. Re- 
call that an optimal solution to this problem exists. So 
the question is really how to find one. Also, recall that 
there is no loss of generality in assuming that A + AT is 
negative definite for the original realization (2.1)-(2.2), 
which will be our standing assumption throughout. In 
addition, we adopt the convention that 1 1 . 1 1  means the 
spectral norm of a matrix i.e. the maximum singular 
value while l l . l l p  means the F'robenius norm. 

Let us first obtain a more explicit formula for 3(U) .  
To do this, partition the solutions L, and Lo to the 
Lyapunov equations (2.6) and (2.7) as 

As a result, the Lyapunov equations (2.6) and (2.7) 
become equivalent to 

AX, + &AT + BBT = 0 (3.1) 
AX + XUTATU + BBTU = 0 (3.2) 

ATE, + C,A + CTC = 0 (3.4) 
ATY + YUTAU - CTCU = 0 (3.5) 
U ~ A ~ U Q  + Q U ~ A U  + uTcTcu = o (3.6) 

UTAUP + PUTATU + UTBBTU = 0 (3.3) 

and the cost 3 ( U )  can be rewritten as 

3 ( ~ )  = trace[CTC(C, + U P U ~  - Z X U ~ ) ]  
trace[BBT(Co + UQUT + 2YUT)] = 

Quite obviously, 3 ( U )  is a smooth function on the man- 
ifold St(m,n). From [13], its tangent space at  a given 
U E St(m,n) is known to be 

T ~ S t ( m , n )  = {IT E Rnxm I IITU + UTII = 0} 

By endowing TuSt(m,n) with the inner product de- 
fined by 

< v ,  [ > 4 2trace(qT[), for 7, [ E TuSt(m,n)  

St(m, n) becomes a Riemannian manifold. Also, note 
that the derivative D3u of 3 ( U )  at U E St(m,n) is a 
linear functional on the tangent space TuSt(m, n),  and 
that the gradient o 3 ( U )  of 3 ( U )  at U E St(m,n) is a 
tangent vector in TuSt(m, n)  such that 

03u(IT) =< v 3 ( U ) ,  IT >, V I T  E TuSt(m,n)  

The explicit expression of o 3 ( U )  is now given in the 
following lemma. 
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Lemma 3.1 For any U E St(m,n),  there holds 

0 3 ( U )  = ( I  - U U T ) R  

where 

R 2 (-CTC + A T U Y T ) X  + (CTCU + ATUQ)P 

+ (BBT + A U X T ) Y  + (BBTU + AUP)Q (3.7) 

Proof: The proof is omitted. U 

At this point, it is worth pointing out that the above 
gradient is different from the gradient of 3 ( U )  as a 
usual function defined on EX"'". This latter gradient 
is in EXnxn' but not necessarily in the tangent space 
TuSt(m, n). From Appendix B, as a matter of fact, it 
is found equal to R, as defined in the above lemma. 

As an immediate consequence of the above lemma, 
it follows from advanced calculus that any minimum 
point of 3 ( U )  in St(m, n)  must satisfy 

( I  - U U T ) R  = 0 and UTU = I (3.8) 

since any solution in St(m, n)  is a critical point of J ( U ) .  
So (3.8) expresses a first-order necessary condition for 
a minimum point. However, solving such an equation 
does not seem to be a sensible or effective way to go 
about finding a minimum point as it may be very diffi- 
cult to solve and may have multiple solutions. 

Remark 3.1 I t  can be easily verified that U T R  is 
always a symmetric matrix f o r  any U E St(m,n),  
which is instrumental an constructing iterative algo- 
rithms later on. In fact, there holds 

UTR = Y T A X  + QUTAUP + X T A T Y  + PUTATUQ 

Therefore, the first equation of (3.8) can be alterna- 
tively expressed as 

R = URTU.  

Now with the formula for 0 3 ( U )  available, we can 
form the following gradient flow 

1 0  = (UUT - I ) R I  (3.9) 

as a basis for solving the L2-PMR problem. Regard- 
ing this ordinary differential equation, it is natural to 
inquire questions such as whether a solution to the 
ODE always exists and lies on the manifold St(m,n) 
on the whole time interval for any given initial value in 
St(m, n),  how the model-reduction cost evolves along 
a solution, and whether the solution can converge to a 
critical point of 3 ( U )  on St(m, n). The answers to these 
questions are crucial in order for the ODE to be able 
to serve as an continuous-time algorithm for comput- 
ing an optimal solution to the L2-PMR problem. We 
now address the raised issues by stating the following 
theorem, which summarizes the main features of the 
gradient flow. 

Theorem 3.1 Let the initial condition of (3.9) be 
given by 

U ( 0 )  = U, E St(m,n) 

Then, 

1. 

2. 

3. 

4. 

5. 

6. 

the ODE (3.9) has a unique solution U ( t )  defined 
for all t 2 0; 

the solution U ( t )  stays in St(m,n) for  all t 2 0 ; 

the cost 3 ( U )  is non-increasing along U ( t )  with 

3(U(s2))  - 3(U(Sl)) 

= - 2 l r  [ [ ( I  - U U T ) R I I i  d t ,  V s2 2 SI 2 0 

there holds 

lim o(t) = lim ( U U T R  - R) = 0 

the solution U ( t )  converges to a connected compo- 
nent of the set of critical points of 3 ( U ) ;  

t-im t-im 

there exists a time sequence { s k }  with 

s k  2 0 and lim sk = 00 
k+ 00 

such that the corresponding sequence l J ( s k )  con- 
verges to a critical point of 3 ( U ) ;  

Proof: The first two statements follow from the 
compactness properties of the Stiefel manifold. In fact, 
it is straightforward to verify that the derivative of 
U T ( t ) U ( t )  is identically zero for all t 2 0. Statement 3 
is immediately obtained by noting that the derivative 
of 3 ( U ( t ) )  is equal to 

3 ( U ( t ) )  =< 0 3 ( U ) ,  > 
= -2trace [ R ~ ( I  - U U ~ ) R ]  

= -2 ll(I - UUT)RII: 5 0 

Statement 4 is due to the two facts - finiteness of the 
integral &O0 1 1  ( I  - UUT)RII ,  dt and uniform continuity 
of U ( t )  on [0, 00). Finally, the last two statements are 
typical properties of a gradient flow on a Riemannian 
manifold. 0 

The above summarized properties of the gradient 
flow (3.9) give one confidence in finding a global min- 
imum of 3 ( U )  by integrating the differential equation, 
which can be done using any numerical ODE package, 
e.g. in Matlab. Since the model-reduction cost is get- 
ting smaller and smaller as the iteration goes on and 
no finite escape time will occur, one can keep on solv- 
ing the ODE until a satisfactory suboptimal solution is 
reached. Finally, the last two statements suggest that 
a minimum point could be found from the solution his- 
tory. In particular, it is guaranteed that if the cost 
has only isolated minimum points, the solution U ( t )  is 
bound to converge to one of them. 

2 
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Remark 3.2 It should be pointed out that if the ini- 
tial U0 does not happen to be a critical point, then the 
cost 3 ( U )  is  actually strictly decreasing along the ODE 
solution U ( t ) ,  which is because of the uniqueness of so- 
lutions to  an  ODE. 

4. Iterative Gradient Flow 

In this section, we will consider discretizing the gradi- 
ent flow (3.9), which is necessary or desirable in order 
to take full advantage of digital computers as far as 
computation is concerned. In other words, we will seek 
iterative algorithms which can produce a sequence of 
iterates whose corresponding model reduction costs are 
decreasing to its minimum. Recall that the projection 
matrix U is required to be orthogonal. This restriction 
makes it difficult if not impossible to apply common 
discretizing techniques such as Runge-Kutta methods 
to derive an efficient iterative algorithm. 

In what follows, a general form of iterative algorithm 
will first be suggested which automatically guarantees 
that all the iterates generated evolve on the manifold 
St(m,n) for an arbitrary step size. Two schemes for 
selecting the step size will then be developed - one is 
constant and the other is varying and more effective. 

We start by noting that the gradient flow can be 
rewritten as 

u = r u  (4.1) 

because of Remark 3.1, where I? is defined by 

In addition, it is trivial but vital to observe that r is 
skew-symmetric. As a result, the matrix exponential 
etr is orthogonal for any real scalar t .  With this obser- 
vation and the special structure of the gradient flow, it 
seems natural to propose the algorithm of the following 
form 

-1 (4.3) 

where I’k is associated with Uk via (4.2) and (3.7), and 
t k  is the k-th step size to be determined. One nice thing 
about this algorithm is its ability to generate a sequence 
of orthogonal matrices from any starting orthogonal U0 
for any step size, and another is its simplicity in form 
in spite of the involved calculation of the matrix expo- 
nential. Of course, for such an algorithm to work, it 
remains to develop a mechanism for selecting the step 
size t k  so that the algorithm can converge to an orthog- 
onal U at which the model reduction cost is minimum. 
As will be turned out, a certain constant step size can 
be chosen for this purpose. 

Understandably, a workable step size should consis- 
tently reduce the model-reduction cost as the iteration 
goes on. With this in mind, we proceed by establishing 
the following auxiliary lemma before coming up with a 
scheme for choosing a constant step size. 

Lemma 4.1 Consider equations (3.1)-(3.6). Let U E 
St(m,n) be any differentiable function of t with the 
derivative U’, and let R be defined b y  (3.7) accordingly. 
Then R and its derivative R‘ satisfy 

Theorem 4.1 Consider the iterative algorithm (4.3) 
with U, E St(m,n) and 

(4.6) 
Jz 

a1 + J z a 2  
O < t k <  

where a1 and 012 are defined as in Lemma 4.1. Then 
there holds 

3(Uk+l) 53(Uk) ,  \J k = 0,  1, 2, ... ; 

moreover, the equality holds i f  and only if Uk becomes 
a critical point of 3 ( U ) .  

Proof: Set 

u(t) = etrkUk 

and let R(t) be the corresponding R defined via (3.7). 
Then it is clear that U ( 0 )  = Uk and R(0) = R k .  By the 
Taylor expansion, there exists some 0 between 0 and t 
such that 

t 2  
3 ( U ( t ) )  - 3(Uk)  = t3’(U(O)) + $U(”) 

It can be shown that 

3 ’ ( U ( t ) )  = 2trace [RT( t )U’ ( t ) ]  

Y ( U ( t ) )  = 2trace [(R)*(t)rkv(t) + ~ ~ ( t ) r ; u ( t ) ]  
which imply that 

= 2trace [ R T ( t ) r k U ( t ) ]  

a ’ (U(0) )  = 2trace ( R r r k U k )  = -trace ( r r r k )  

I3”(U(t))l I 2 ( l lR’ ( t ) l lF  I l r k l lF  + I IR( t ) l lF  /p&) 
Furthermore, it follows by Lemma 4.1 that 

13”(u(t))I 5 Ilu’(t)llF l l r k l l F  + a l  l lr; l lF)  

5 2 ( a 2  Ilrkll; + Q1 l l r k l l  I l r k l I F )  
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