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Multivariate Markov Chain Models
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Abstract— In this paper we study multivariate
Markov chain models for approximating a conven-
tional Markov chain model with a huge number of
states. We propose an efficient estimation method
for the parameters in the proposed model. Numeri-
cal examples are given to illustrate the usefulness of
the proposed model.
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I. INTRODUCTION

Data sequences occur frequently in many real world
applications. The most important step in analyzing a
data sequence (or time series) is the selection of an ap-
propriate mathematical model for the data. Because it
helps in predictions, hypothesis testing and rule discov-
ery. Markov chain is an useful tool in the analysis of
data sequences [4].

In this paper, we consider a Markov chain to repre-
sent the behavior of several systems by describing all
the different states the systems occupy. If we assume
that there are s systems and each system has m pos-
sible states. The conventional Markov chain has m’
states. The major problem in using such kind of con-
ventional model is that the number of parameters (tran-
sition probabilities) increases exponentially with respect
to the number of systems. The large number of param-
eters discourages people from using such Markov chain
directly. The main contribution of this paper is to pro-
pose and develop multivariate Markov chain models by
allowing both the intra- and inter-transition probabili-
ties among the systems. The number of parameters in
the new model is only s°m? + s>. We also develop an
efficient, method to estimate the model parameters.

The rest of the paper is organized as follows. In Sec-
tion 2, we revise conventional Markov chain models.
In Sections 3 and 4, we formulate multivariate Markov
chain models and propose an estimation method for the
model parameters required in our model. In Section 5,
numerical results are given to illustrate the usefulness
of multivariate Markov chain models.

II. MARKOV CHAIN

A stochastic process is defined as a family of random
variables {X(t},t € T} defined on a given probability
space and indexed by the parameter t, where ¢ varies
over some index set (parameter space) T. If the index
set is discrete, for instance, T = {0,1,2,---}, then we
have a discrete-time parameter stochastic process. For
simplicity, we consider the discrete parameter space T
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by the set of nonnegative integers in the following dis-
cussior.

A Markov process is a stochastic process whose con-
ditional probability distribution function satisfies the
so-called “Markov property”. If the state space of a
Markov process is discrete, the Markov process is called
a Markov chain. Let us consider the state space of
a Markov chain taken to be a finite set of numbers
{1,2,---,m}. A discrete-time Markov chain satisfies the
following relationship for all nonnegative integers n and
all states zn:

Prob (-Xn+l = Zn+1 I Xo = Zo,Xl =T1,""" ,Xﬂ =$n)

= Prob (Xn+1 = T4 1 Xn = za).

The conditional probabilities Prob(Xa+1 = Tnt1 | Xn =
Zn) are called the single-step transition probabilities of
the Markov chain. They give the conditional probability
of making a transition from state T, to state Tn+1 when
the time parameter increases from n to n 4+ 1. These
probabilities are independent of » and are written as

Dij = Prob (XM,; =i I Xn =j), Vn=0,1,"n

The matrix P, formed by placing p;; in row i and col-
umn j for all { and #, is called the transition probability
matrix. We note that the elements of the matrix F sat-
isfy the following two properties:

0<pi; <1 ch'j =1, Vi

In the following discussion, we consider at least one
element in each column differs from zere. It is clear that
P is an m-by-m matrix. The matrix P has the following
properties [1}:

1. P has an eigenvalue equal to 1.
2. The eigenvalues of P must have modulus less than
or equal to 1.

Moreover, the matrix P is also nonnegative and irre-
ducible [t].

Definition Let A be an n-by-m matrix whose elements
ay; satisfy a;; > 0. Then A is said to be a nonnegative
matrix of real-valued elements.

Definition A square nonnegative A is said to reducible
if it can be brought by a symmetric permutation of its
rows and columns to be the form

fU 0
(W v)

© 2002 TEEE SMC

TAIF1



where U/ and V are square, nonzero matrices and W is
rectangular and nonzero. Otherwise, the matrix 4 is
irreducible.

Below we state the main result for the transition prob-
ability matrix of 2 Markov chain {1].

Theorern [Perron-Frobenins] Let A be a nonnegative and
irreducible square matrix of order m. Then

= A bas a positive real eigenvalue, A, equal to its spec-
tral radius, i.e.,

A = max|A(4)}

where Ax(A) denotes the kth eigenvalue of A.
» There corresponds an eigenvector z of its entries being
real and positive, such that

Az = Az.

= A i3 a simple eigenvalue of A.
By using the above theorem, we see that there is a
positive vector z such that

Py =1z

This vector z is called the stationary probability vector
of P.

III. MULTIVARIATE MARKOV CHAINS

The motivation for the construction of the multivari-
ate Markov chain madel can be given hy the following
application.

A. An Application

In building a wind farm one has to investigate wind
turbine design by using long-term records of windspeeds
at the meteorological station. This is used to estimate
the power output in the long term at certain poten-
tial locations. !'Hourly windspeeds were classified into
several states by the mode of operation of a particu-
lar turbine. The windspeed data can be obtained a
the website [5]. Daily average wind speeds for 1961-
1978 at 12 synoptic meteorological stations in the Re-
public of Ireland are given. The windspeeds are classi-
fied into five states. However, if we consider a Markov
chain #o describe the state of the 12 synoptic meteoro-
logical stations. The conventional Markov chain model
has 5'% = 244140625 states. The major problem in us-
ing such kind of conventional model is that the number
of parameters (transition probabilities) is huge. The
huge number of parameters discourages people from us-
ing a Markov chain directly. Moreover, the size of the
transition matrix is very large. The computational cost
of finding the stationary probability vector will also be
very expensive,

B. Construction of the Model

Our idea is to propose multivariate Markov chain
models for such kind of application and develop an es-
timation method for the model parameters. Suppose
there are ¢ systems in the Markov process and each sys-
tem has m possible states. Let X,(.,") be the state vector

of the kth system at time n. If the kth system is in state
j at time n then

X¥ =,...,0, _1_,0...,00%.
jth entry

The multivariate model can be written as follows:
]
x4, = Z MePURXE, j=12--8 Q)
k=1
where

s
ijk=1: F=L2--,4
k=1

and PU* jis 3 transition probability matrix from jth
system to kth system. In the matrix form, we write

x{, AnPAD A, PO A PO
x Ja P xpp PO Az, PBY
xf.'_:_l \ A.)P(”) )ﬁa‘ZP(,z) AuP(”)

[ X

x&
\ %
or
Xni1 =PX,.

Although the columa sum of P is not equal to one (the
column sum of PU*! is equal to one), we can still show
the following theorem, see }2].

Theorem P has an eigenvalue equal to 1 and the eigen-
values of P have modulus less than or equal to 1.

By using Perron-Frobenius Theorem, there iz a vector
A such that
X =P,

where
X = (X" X® ... xthT

Since P itself is not a trapsition probability matrix {the
column sum is not equal to cne), X is not a probability
distribution vector. However, we can show that X™ isa
probability distribution vector, see [2]. According to the
above results, we obtain an approximation of the sta-
tionary probability vector of the conventional Markov
chain that has m® states.

IV. PARAMETER ESTIMATION

In this section, we present an efficient method to esti-
mate the parameters PU% and Xj for j,k = 1,...,5.
Given the data sequences {X{V}, {X},.-- {X},
cne can count the transition frequency j}jﬁ’ from the
state i; fn the sequence {X§} to the state iy in the se-
quence {X,(,”)}. Hence one can construct the transition



frequency matrix for the sequences as follows:

ik )
fg) f(-'

ik k
0 l(;) f(J)
GO g

From FU®) we get the estimates for PUR a5 follows:

A5k {5k
Pi"l ) Pgu)
ﬁ(jk) ;‘;‘-"‘)
P(jk) 12 ™2
ik A(jE
Pl 2
where
(ik)
f‘:"’b (:k)
m ‘j’i
. Uk) ip=1
Pf‘::‘: = Zf'.i‘h *
=1
0 otherwise.

‘We have seen that the multivariate Markov chain hag
a stationary vector X. The vector &' can be estimated
from the sequences by computing the proportion of the
occurrence of each state in the sequence of each system
and let us denote it by
= (XOF® . K@)T,
We expect . N
PX = A,
This suggests one possible way to estimate the param-
eters A = {X;i} as follows. For each j, we consider the
following optimization problem:

m
[Z A PORIZRY 5;(:')]

min max
b i
k=1

subject to

n
Y na=1, and Au20, VE

k=1

Here []; denotes the ith entry of the vector. The con-
straints in the optimization problem guarantee the ex-
istence of the stationary vector A. Next we see that
the above optimization problem formulate a linear pro-
gramming problem for each j:

ml\in w;
subject to
wj AjL
“ | sgo_o] M,
wj A';'n

wj Ajt

wj . Ajz
S -G F-N R

wy A,',-.

forall1<j<m

i
w20, Y A=l

k=1

and A,}ZU, Yk.

Here
Q=[}‘:Ul)j‘{(1) [ puNL® | - “:‘)Um)i(m)]_

‘We can solve the above linear programming problems
efficiently and obtain the parameters A;x.

A. An Ezample

We consider two sequences {X$"} and {X{} of three
states (m = 3) given by

{1,1,2,2,1,3,2,1,2,3,1,2,3,1,2,3,1,2,1,2} (2)
and
{2,3,,2,1,1,3,2,2,3,1,1,2,3,1,2,1,3,2,3}  (3)

respectively. From (2) and (3), we have the transition

frequency matrices
0 4 3
4 2 2 .
310

1 3 3
F‘"’:(e 1 1) and FU¥ =
130
2 2 3
31 2.
2 40

4 1 2
F =11 5 0 and FO? =
3 1 2
Therefore we have the transition probability matrices as

follows:
i 1/8 3/7 3/4
P<“>=(3/4 1/7 1/4),
1/‘8 37 0
47 3/5
pua = 4/7 2/7 25 |,
3/7 1/7 0
1/2 17 1/2
P = 118 5/7 @
3/8 1/7 1/2
and
X 2/7 2/7T 3/5
PO = | 37 117 2/5
2/7 47 0
Moreover, we obtain
G _ 221T e _ 7 T 3.7
X =Gy wmd XU=(p5 1)
Hence we have
13 57 31

(1) & (1)
pUDX 35'140° 140) ’



pung® o (19 2 Lyr

50°50°5
a1 5 5 2,
PR S7i L
and 133 56
(22) (2) T
PK 350" 175’ 10)

To estimate A; and Az, we consider the following two
optimization problems:

m.inw;
A
subject ta
¢ 3
>
sy 3513 5019 M)
uy > - 5 + A; + 0(1 A}
2 o8
w > - 5= Fg' - A1)
J W12 2 {4::])14-5;( - 1)
w 2> 3 14g (1 )
1
w2 - 5+141 M+ (1 M)
| wi,h 20
nﬂnwg
subject to
( - _7_ _5 133 _
we = 207 145Az 35&? M)
wer 2 — 1\2 + = 850 — Az)
wa 2 20 14 ITg —Az)
\ Wy 2 - + A-2+ 175( - A2)
we 2 — 0. 7 — A2}
3
unp > — 10+;A:+ 10( ~ Az)
L ws, A2 > 0.

The optimal solution is
(AL, Az, wi, w2) = {0,0.8077, 0.02, 0.0115),
and we have the model

xil) — p(u)xé‘z) )
x| =01923P0 %) + 0507750 XD

V. NUMERICAL RESULTS

In this section, we test multivariate Markov chain
models. All the computations are done by Matlab in
a workdstation.

We consider two systems. Each system has three
states. Therefore, all the possible states are {1,1), (1,2),
(1,3} (2,1), (2,2), (2.3), (3,1), (3,2) and (3,3). Here the
first and the second elements in the bracket represent
the states of the first and the second systems respec-
tively. We generate the corresponding 9-by-9 transition
probability matrix P randomly. Based on the transition
probability matrix P, we generate two data sequences

0.35 —r— —r—
x
03|
x
0251 ‘x X x x *
®
x X x x
x x
0z " * . x xx
I x
" * X% - X% o xx
x % ] x
a. x x xx
Brx x X » % %
" N x K %% x KX x
LE] S x * x %
x
L x
D.mr x
2! e - 1 & 0 e A
! H o T & LY

Fig. 1. The absolute difference [y; — ya| for 100 cases.

of length 1000 for the two systems. Based on these
two data sequences, we estimate the transition proba-
bility matrix P by the method in Section 4. The sta-
tionary probability vector y. for the matrix P is also
computed. Next we construct the multivariate Markov
chain model. Based on the two data sequences, we can
determine four 3-by-3 transition frequency matrices and
their corresponding 3-by-3 transition probability matyi-
ces from the states in the first or second system to the
states in the first or second system, ie., POV, pO2)
PV and P*?, The matrix

pe( M

(1-%)p4?
(1= APV

A2 P12

1 and Ae can be determined by solving the linear pro-
gramming problem discussed in Section 4. After the
matrix £ ig constructed, the stationary vector y. is com-
puted.

In Figure 1, we list the absolute differences between
y: and yq (i.e., |y: —ya]) for the 100 randomly generated
cases. We find the average error i3 about 0.1649.

Preliminary numerical results of our maodels are quite
efficient and effective. In the future work, we plan to
make a detailed comparisons aad apply to some real
data sets.
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