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ABSTRACT 

In this paper, we focus on image deconvolution and im- 
age reconstruction problems where a sought image is recov- 
ered from degraded observed data. The solution is defined 
to be the minimizer of an objective function combining a 
data-fidelity term and a edge-preserving, convex regular- 
ization term. Our objective is to speed up the calculation 
of the solution in a wide range of situations. To this end, 
we propose a method applying pertinent preconditioning to 
an adapted half-quadratic equivalent form of the objective 
function. The optimal solution is then found using an alter- 
nating minimization (AM) scheme. We focus specifically 
on Huber regularization. We exhibit the possibility get very 
fast calculations while preserving the edges in the solution. 
Preliminary numerical results are reported to illustrate the 
effectiveness of our method. 

1. INTRODUCTION 

This work addresses a wide class of image reconstruction 
situations where a sought image P E RP is recovered from 
degraded data y E R'J by minimizing an objective function 
J : RP -+ R combining a data-fidelity term and a regular- 
ization term: 

2 = m i n J ( z )  
xERP 

In the expression above, A E R'Jxp represents the obser- 
vation system and /3 > 0 is a parameter. The regularization 
term involves a smooth convex function @ : R -+ R, applied 
to a set of linear transforms of the image dFz which are typ- 
ically first or second-order differences between neighboring 
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pixels. Such reconstruction methods are well-known to al- 
low the obtention of high quality image estimates P if d ( t )  
approaches affine function when ltl + co [4, 1,6]. 

However, their use in different image reconstruction and 
image restoration applications can be practically limited by 
the numerical cost needed for the calculation of the esti- 
mate. The latter is usually calculated using iterative descent 
algorithms, based on the gradient of J .  The calculation 
speed is mainly limited by the fact the gradient of J is non- 
linear and by usually bad the conditioning of the objective 
function at each iteration. As an alternative, some authors 
used coordinate-wise minimization schemes [5]. The ambi- 
tion of this paper is to propose a really fast algorithm for the 
calculation of f by using a half-quadratic equivalent form 
of J combined with pertinent preconditioning. 

2. TWO FORMS OF HALF-QUADRATIC 
REGULARIZATION 

Since [ l l ]  and [12], numerous algorithms have been pro- 
posed where P is calculated by minimizing an augmented 
objective function G : RP x R' I-+ R which involves an 
auxiliary variable s E R': 

r r 

G(z, S )  = IlAz - yll2 + P Q(dTz, s i )  + P $(si) 
i=l ,= 1 

where for every s i  E R the function Q(., s,) : R t+ R is 
quadratic. The equivalence with (1-2) is ensured by the re- 
quirement that for every z E RP, J ( z )  = minsERP G(z, s). 
Based on the "continuous-valued' line variables introduced 
in [ 111, numerous authors considered quadratic terms of the 
form [2,6, 8, 131: 

A slightly different form for Q has been proposed in [ 121 to 
perform stochastic optimization for a specific concave reg- 
ularization: 

(4) 
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Several authors generalized this approach [7, 11. 

for every s fixed, the gradient of z ++ G(z, s )  is an affine 
function whereas the non-quadratic part of G, that is s e 
G(z, s), is separable in s and hence easy to minimize in a 
parallel way. Intuitively, such a scheme should speed up cal- 
culations. However, the numerical effects relevant to each 
formulation have never been examined. 

Recall that the numerical efficiency of the minimization 
of G is tightly connected with the conditioning of its Hes- 
sian at each iteration. Let D denotes the p x T matrix yield- 
ing [Dzla = daz for all i and x and diag(s) is a diagonal 
matrix with diagonal elements sa. We observe that under 
(3), the Hessian of G(., s) is 

The advantage of such an equivalent formulation is twofold: 

2A'A + ,Bdiag(s)DTD. ( 5 )  

The conditioning of G(. , s) clearly depends on the value of 
s and this is an important drawback since the entries of s 
can take very different values. In comparison, the Hessian 
of G( ., s) under (4) reads 

H := 2ATA + PDTD, (6) 

hence it is independent of s. This is a useful advantage 
which pushes us to focus on (4). 

3. PROPOSED ALGORITHM 

The function G is classically constructed by using the the- 
ory of convex conjugate functions [16]. Under some tech- 
nical assumptions [7, 11 ensuring that the maximum in (7) 
is well defined (e.g. that the function t ++ ct ' f2  - d ( t )  is 
convex and coercive for some c > 0), it is found that the 
following function 

is convex and for every t we have 

The above equality suggests to consider the following aug- 
mented criterion: 

T r .  

In our context, we ensure that 4 is convex, so G is con- 
vex function with respect to (x, s ) .  Therefore, with an ini- 
tial guess ( z ( O ) ,  do)) for (z, s), we can minimize G(z, s) 
by first solving G(d0) ,  s(l)) E mins G(z('), .) and then 

G(d1) ,  d')) G min, G(., ~ ( ' 1 ) .  We develop an alternating 
minimization (AM) algorithm in which the function value 
G ( Z ( ~ ) ,  dn) )  always decreases as n increases. More pre- 
cisely, the algorithm is stated as follows: 

Assume we have dk) and dk) : 
0 Find the entries of s ( ~ + ' )  by solving 

for i = 1, . . . , T .  This minimization is very easy 
since it is performed for each i separately. Notice 
that the next step does not involve the minimum value 
$(sik+')) but only its argument sik+'). 

0 Solve for ~ ( ~ + l )  

r 

H z ( ~ + ' )  = 2ATg + sik+')di. (10) 
i=I 

The matrix in the left side above H is as given in (6) and it is 
constant, whereas the right-side is easily updated at each it- 
eration. The costly stage in the algorithm is the inversion of 
H .  To this end, we propose to use pertinent preconditioning 
of H in order to speed up the computation of x (k+'). 

4. PRECONDITIONING OF G 

We will especially focus on applications where the matrices 
A modelling the observation system are Toeplitz-like, [ 151. 
In this paper, we will consider the preconditioned conju- 
gate gradient method to solve the linear system in (10) with 
Toeplitz-like coefficient matrix. Optimal transformed based 
matrices are used to precondition Toeplitz-like matrices in 
conjugate gradient iterations [lo]. Part of their motivation 
was to exploit the fast inversion of transform based matrices 
[15]. Numerical results suggest that the method converges 
very fast for a wide range of Toeplitz-like observation oper- 
ators A. 

5. APPLICATIONS TO HUBER REGULARIZATION 
AND COSINE PRECONDITIONERS 

We now concentrate on Huber regularizations which are de- 
fined using 

The threshold parameter a controls the size of the disconti- 
nuities modeled by the prior by providing a less severe edge 
penalty. We point out several advantages of such a regular- 
ization. 
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0 It is among the best functions which are both convex 
and edge-preserving. Unlike total variation regular- 
ization (corresponding to d ( t )  = Itl) which yields a 
“blocky effect” [9, 141, the quadratic part near 0 in 
(1 1) allows smoothly varying regions in the image to 
be restored (see [14]). 

0 Although 4’ is discontinuous at f a ,  we show that the 
chance to get a minimizer 2 involving a difference 
such that (dF2I = a is null. Normally, the relevant J 
is Cw on a neighborhood of its minimizers. 

0 When A is singular, J is non-strictly convex and may 
give rise to non-strict minimizers. However, we show 
that meaningful restored images can almost never be 
non-strict minimizers. 

0 A crucial numerical advantage is that Huber function 
(1 1) gives rise to only linear and constant terms in the 
derivative of both J and G. 

We give more details in the full paper. 
By a proper choice of c in (7), we may get qb which 

is differentiable. However, we prefer taking $(s) = aIsI 
which corresponds to c = 1. It is easy to check that (8) 
remains true. The minimization of G(., z) involved in (9) is 
particularly simple in this case since only d F d k )  need to be 
computed: 

P a 
le-2 (5.10,20,40) 
le-3 (5,10,20,40) 
le-4 (5,10,20.40) 

5.1. Experimental Results 

In the experiments, we consider reconstructing high resolu- 
tion images from multiple under-sampled, shifted, degraded 
frames with sub-pixel displacement errors [3].  

In Figure 1 are displayed (a) the original image, (b) 
the observed blurred and noisy version, (c) a reconstruc- 
tion obtained using Huber function and (d) a reconstruction 
using Laplacian regularization. It is clear that the image 
obtained using the Huber regularization is more neat than 
that using the Laplacian regularization. We remark that the 
stopping criteria of the AM method and the preconditioned 
conjugate gradient method are - dk-’)  ((2 < 20 and 
I ( d j )  I I / (  (do) I I < respectively, where ~ ( j )  is the nor- 
mal equations residual after j iterations. 

Next we show the efficiency of our method. The number 
of AM iterations are listed in Tables 1 and 2. When a in- 
creases, the number of AM iterations decreases. However, 
when ,B changes, the numbers of Ah4 iterations are almost 
the same for different a. 

We also note that the numbers of iterations of using the 
preconditioned conjugate gradient (PCG) method for invert- 
ing the matrix in (6) are almost the same for each AM iter- 
ation. In Tables 3 and 4, the total numbers of CG and PCG 

Iter. 
(20,14,9,5) 
(20,15,9,5) 
(28,16,9,5) 

P a 
le-2 (5.  IO,u),40) 
le-3 (5,10,20,40) 
le-4 (5,10,20,40) 

iterations required to solve the linear systems in each Ah4 
step are listed. Here we used the optimal cosine transform 
based preconditioners for the image reconstruction problem 
in $5.1. We see from the tables that it takes significantly 
more iterations using the CG method that those using the 
PCG method. Next we compare the number of iterations 
required to solve the linear systems with the coefficient ma- 
trices in (5) and (6). We find that the number of iterations 
of using CG or PCG for solving the linear system with the 
coefficient matrix in (5) is in average more than 300. This 
number is much greater than those required for solving lin- 
ear system with the coefficient matrix in (6). This demon- 
strates the effectiveness of our new formulation. 

Finally, we give an another example as shown as in Fig- 
ure 2. It takes 49 PCG iterations to reconstruct the image 
(e) using our new model. Again, we see from the figure that 
the error (rel. error = 0.04601) of using the Huber regular- 
ization (f) is less than that (relative error = 0.05019) using 
the Laplacian regularization (d). 

Preliminary numerical results show that our method is 
quite efficient and effective by combining the new formu- 
lation of half-quadratic regularization and preconditioning. 
In the future work, we plan to make a detailed comparisons 
and extend to other regularization functionals. 

CG PCG 
(480,336,2 16,120) (120,&2,54.30) 
(1 180,885,531,295) (140,105,63,35) 

(41 72,2384, 1341,745) (252,144.8 1.45) 
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Fig. 1. Results of the first test image. 

(a) Original (b) Blur and Noisy 

(c) Laplaclan Reg cver 2nd ordel dillerernes (d) Original - Restored (Lap) 

(e) Huber Reg (0 Original - Restored (Huber) 

Fig. 2. Results of the second test image. 
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