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Total Variation Based Image Restoration of Three 
Dimensional Microscopic Objects 

Michael E(. Ng 
Computer Sciences Laboratory 

The  Australian National University, Australia 

ABSTRACT: The inverse problem involving 
the determination of a three-dimensional biolog- 
ical structure from images obtained by means of 
optical-sectioning microscopy is ill-posed. Regu- 
larization methods must often be used in order to 
obtain a reasonable solution. Recently, the To- 
tal Variation (TV) regularization, as proposed b y  
Rudin, Osher and Fatemi [ll], has become very 
popular for this purpose. A n  iterative algorithm is 
used for minimizing a TV-penalized least squares 
problems. W e  also employ transform based meth- 
ods for  solving large linear subproblems arising 
from TV-penalized least problems. Preliminary 
numerical results show that the method performs 
quite well. 

1. INTRODUCTION 

The quality of the recorded image is usually de- 
graded by blurring and noise. Given the recorded 
image, the blurring function and the noise distri- 
bution, the image restoration problem is to find 
an approximation to the original image. 

1.1. Background 

Light microscopy is a powerful tool for the 
noninvasive examination of biological specimens, 
see [l]. Specimens are frequently labeled with 
fluorescent probes that are specific for defined 
molecular components within cells. Visualiza- 
tion of these fluorescent probes in three dimen- 
sions is critically important for understanding 
the three-dimensional (3-D) architectures of cells 
and cellular components. Computational optical- 
sectioning microscopy is one method for recon- 
structing three-dimensional (3-D) images of living 
biological structures from data acquired by using 
light microscopy. These data are obtained by first 
labeling the specimen with a dye that fluoresces 
when exposed to light. Then a series of two- 
dimensional (2-D) is collected while the specimen 
is stepped through focus. Since photons are de- 
tected from anywhere in the specimen, each 2-D 
image contains information from both the current 

in-focus plane and the out-of-focus planes. The 
effect of the photons from out-of-focus regions can 
be described by modeling the microscope's optics 
and the detection process, see [6,12]. 

Assume that the 3-D specimen f ( z , y , z )  with 
some thickness T of interest is transparent and 
emits light incoherently. The impulse response 
of the optical system of the microscope is ob- 
tained from the image of a point source and 
is called the incoherent point-spread function 
(PSF), a(z, y, z ) .  The data acquired in fluores- 
cence imaging of a thick specimen by using opti- 
cal sectioning, in which each image corresponds to 
a different focal-plane setting of the microscope. 
The data image g(zl  y,  z )  is given by 

g(., y, 2) = JOT U(. - 5 ,  y -  t ,  2 - v ) f ( s ,  t ,  v ) d s d t d v  

+ 4% t ,  v) or g = Af + 17, (1) 
where q ( z ,  y, U) models the noise in the system, 

A is the convolution operator corresponding to 
the PSF a(z ,  y,  2 ) .  We note that light emanating 
from all sections in the object contributes to the 
image data formed for the focal plane at z .  The 
set of data images locating along z-axis, is then 
the result of the 3-D convolution of f ( z ,  y, z) with 
a ( z ,  y,  z )  over the dimensions 2, y, z .  In this pa- 
per, we need to siinultaneously deconvolve and 
denoise the sequence of the recorded 2-D images 
during the reconstruction process. 

1.2. Total Variation Regularization 

In general, the problem 31f = g,  with 31 a com- 
pact operator, ill-posed. It is not worth solving 
this equation for the data is assumed to be inex- 
act, and the solution would be highly oscillatory. 
However, if we impose a certain regularity condi- 
tion on the solution f, then the method becomes 
stable. We can consider the Tikhonov regulariza- 
tion and solve the following constrained problem: 

minR(f) subject to 117-19 -gl/2 = (T, (2) 

where R(.) is a certain functional which measures 
the irregularity off  in a certain sense and is the 

f 
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noise level. For instance, R ( f )  = llflli, llDkflli,  
where D is a kth order differential operator. The 
algorithms for deblurring and noise removal have 
been mainly based on least squares. The output 
of these least squares based algorithms will be a 
continuous or smooth function, which cannot ob- 
viously be a good approximation to original image 
if it contains edges. To overcome this difficulty a 
technique based on the minimization of the Total 
Variation norm subject to some noise and blur- 
ring constraints is proposed by Rudin, Osher and 
Fatemi [ l l ] .  They proposed to use as regulariza- 
tion function the so-called Total Variation norm: 

T V ( f )  = / lVfl dxdy = 
a 

The solution to the (2) for R ( f )  = T V ( f )  can 
have discontinuities, thus allowing us to recover 
the edges of the original image from the blurred 
and noisy data. Recently, Oman and Vogel [lo] 
considered the following closely-related regular- 
ization problem: 

where a and ,B are positive parameters. The pa- 
rameter a controls the tradeoff between goodness 
of fit to the data and the variability of the so- 
lution. At a stationary point of (3),  its gradient 
vanishes, giving: 

X*(% f - 9)  - av . (J&) = 0, 

df 
dn 

on ( x , y ) , ~  R with - = 0, (z,y) E d a .  

The gradient equation is a non-degenerate nonlin- 
ear second order elliptic partial differential equa- 
tion. We note that the parameter ,B added is used 
to remove the degeneracy of the diffusion equa- 
tion. 

Many numerical schemes have been devised in 
2-D image restoration to obtain minimizer of the 
functional by solving the the gradient equation 
directly. For example, in [ll], an explicit time 
marching scheme is used. In [lo], Oman and Vo- 
gel introduced the fixed point iteration to solve 
the gradient equation (4). The advantage is that 
the fixed point method exhibits rapid linear con- 
vergence for a broad range of the parameters a 
and p. 

In this paper, the minimization problem is ex- 
tended to restore 3-D images of microscopic ob- 
jects. The outline of this paper as follows. In 

(4) 

the next section, we consider the Total Variation 
regularization problem of the 3-D microscopic ob- 
jects. Computational speed is often of the ut- 
most importance to the biological researcher who 
may evaluate dozens of specimens in an experi- 
ment before selecting one for continued study. In 
addition, researchers often examine living spec- 
imens in time-lapse analyses. In these applica- 
tions, processing speed is critical for determining 
whether the specimen is behaving properly during 
the course of the experiment. We also study a fast 
algorithm to solve the 3-D Total Variation reg- 
ularization problem. Finally, some preliminary 
numerical results are reported to show the effec- 
tiveness of our method. 

2. 3-D TOTAL VARIATIONAL REGU- 
LARIZATION METHOD 

The problem of interest is that of determining 
the object's intensity f ( x , y , z )  in terms of data 
images defined in (1). We follow the approach 
in [lo] and consider the following 
regularization problem: 

unconstrained 

. .  
At a minimizer, we need to solve the nonlinear 
elliptic equation on R x [0, I-]: 

G(f) E d*(Af - 9) - 

with a f  = 0, (2, y ,z )  E dR x [O,r]. (6) 

The fixed point iteration is also employed to solve 
the gradient equation (6). 

dn 

2.1. Discrete Equations 

In practice, the data acquired in fluorescence 
imaging of a thin specimen by using optical sec- 
tioning consist of a set of m 2-D n x n images. 
The system of linear equations obtained from (1) 
for k = 1,. . . , m, where m is the number of data 
images, can be written in a matrix-vector form 
by using a discrete space-invariant model. Let g 
be a mn2 stacked vector that is obtained from 
stacking the rows of m, n x n data images, f 
the stacked version of the original object sec- 
tions, and 11 the noise vector. A block Toeplitz 
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with block-Toeplitz-Toeplitz-block matrix A can 
be constructed such that 

- a ( f )  E2(f) - 
J%(f) Dz(f) E3(f) 

. . .  E m u )  
L E m ( f )  Dm(f) - 

where 

[A*A+c\.lp(fk)]fk+l = A*g, I;  = 0 , 1 , . . .  . 
(10) 

Noting from ( l o ) ,  we now need to solve a lin- 
ear system with the coefficient matrix involving 
the convolution operator and elliptic operator for 
each fixed point iteration. 

2.2. Preconditioned Conjugate Gradient 
Method 

In this subsection, we apply the preconditioned 
conjugate gradient (PCG) method to solve (10) 
and we concentrate on finding a good precondi- 
tioner for (10). The version of the PCG algorithm 
we use is given in [8] in generic form, and can be 
stated as follows for our application: 

PCG Algorithm:. Let yo be an approximation 
for solving n-by-n linear system liy = z and P 
be the preconditioner for the matrix I<. The al- 
gorithm computes the solution to  a fixed accuracy 
t. Here +j  and p j  are scalars and q j ,  rj and p j  

are n-vectors. 

0 ro = .Z - Kyo 
o p o = o  
* # J o = 1  

To = /Iro112 
For J = 1 , 2 , .  . . until T3-1/To < E 

q3 = P-’rJ-1 
43 = 4;r3-1/43-1 

P3 = 43 + 43P3-1 

P3 = q; 7-3 - 1 /Pj K P 3  
YJ = Y3-1 + P3P3 

r3 = rj-1 + P 3 K P 3  I T3 = I I r 3  I12 

Given a matrix I<, there are two criteria for 
choosing a preconditioner for I<, see Golub and 
Van Loan [8]. First, a preconditioner P should be 
a “good” approximation to I<. Secondly, it must 
be easily invertible. Recall that the coefficient 
matrix in (10) corresponds to the sum of a con- 
volution operator and an elliptic operator. There 
are many “good” preconditioners for the individ- 
ual parts. For example, for the elliptic part, we 
have the MlNV-type preconditioners [5]. For the 
convolution part, we have transform based pre- 
conditioners [3]. In [a], Chan et al. investigated 
using transform based preconditioners which is 
easily invertible for 2-D Total Variation image 
restoration problems. Next we extend their ap- 
proach to construct a preconditioner for the sys- 
tem (IO). 

2.3. Transform Based Preconditioning 

The concept of optimal transform approximation 
was first introduced by T. Chan [4]. Since precon- 
ditioners can be viewed as approximations to the 
given matrix K ,  it is reasonable to consider pre- 
conditioners which minimize [IQ - I<// over all Q 
belonging to some class of matrices and for some 
matrix norm / I  ’ 1 1 .  T. Chan [4] proposed the opti- 
mal circulant preconditioner that is the minimizer 
of the Frobenius norm ~ ~ Q - K ~ ~ ~  over the class of 
all circulant matrices Q. It has been proved that 
these preconditioners is very effective for solv- 
ing convolution systems with the PCG method, 
see [3]. We note that the boundary condition of 
the nonlinear elliptic equation (6) is Neumann 
boundary condition. Therefore, Chan et al. [a] 
used the optimal cosine transform approximation 
to construct preconditioner for the system (10). 
Their theoretical and numerical results show that 
the performance of the optimal cosine transform 
based preconditioner perform very well. 

Let us denote C, to be the n-by-n discrete co- 
sine transform matrix. If 6;j is the Kronecker 
delta, then the ( i , j ) t h  entry of C,, is given by 
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see Jain [9]. For our 3-D Total Variation im- 
age restoration problem, we consider the optimal 
cosine transform approximations PI and Pz for 
the discretization matrices A (convolution part) 
and L p ( f k )  (elliptic part) respectively. More pre- 
cisely, PI and P2 are the minimizers of 

IIQ -  all^ and IIQ - L p ( f k ) l l ~ ,  (11) 

respectively over all matrices Q that can be diag- 
onalized by the matrix Cm @ Cn @ C,. Here @ 
is the Kronecker tensor product. The minimizers 
can be viewed as the approximations of A and 
L p  (fk) along x, y and z directions, see [3] for de- 
tails. We remark PI and P2 can be computed in 
O ( m n 2  log n + n2mlog m) operations using fast 
cosine transform. Hence the preconditioner P for 
A'A + L p ( f k )  in (10) can be defined as 

P = P;Pl + aP2. (12) 

Since PI and P2 can be diagonalized by the ma- 
trix Cm @ C, @ c,, the preconditioner P is also 
and hence the cost of constructing the precondi- 
tioner P is in O ( m n 2  logn + n2mlogm) opera- 
tions. 

The cost of one PCG iteration is bounded 
by the cost of the matrix vector multiplica- 
tions (A*A + L p ( f k ) ) w  and the cost of solving 
the system P y  = z .  The matrix-vector mul- 
tiplications A*Av and L p ( f k ) ) w  can be com- 
puted in O(mn2 log n+n2m log m) operations us- 
ing fast cosine transforms and O(mn2) opera- 
tions using the band structure of Lp (fk)) respec- 
tively. The system P y  = z can be solved in 
O ( m n 2  log n + n2m log m) operations by exploit- 
ing the fast cosine transforms again. Therefore 
the total cost of each PCG iteration is bounded 
by of O(mn2 log n + n2mlog m) operations. 

3. NUMERICAL RESULTS 

To see the performance of the Total Variation 
based image restoration method, computer simu- 
lations are performed. The 3-D phantom uses in 
the simulations consists of six disjoint geometrical 
volumes in the x, y and z space, as shown in Fig- 
ure 1. This phantom is chosen because it varies 
in all three dimensions and has sharp edges. In 
the simulations, 16 64x64 images of the simulated 
data are used, Figures 2 and 3 shows the x-y sec- 
tion and x-z section images of the phantom spec- 
imen. The images shown in Figures 4 and 5 are 
the x-y and z-z  sections through the simulated 
microscopic data that are obtained from the 3- 
D discrete convolution of the phantom, u ( x ,  y, z ) ,  
with f(x, y ,  z) in Figure 1 and contain additive 
white Gaussian noise. The SNR for each section 

image is 0.02. For this simulation study, a family 
of 3-D Gaussian functions is used as an approxi- 
mation of the microscope's PSF. Some of these 2- 
D Gaussian functions are shown in Figure 6. We 
perform the fixed point iterations until the gra- 
dient in (6) satisfies IlG(fk)liz/llG(fo)llz 5 lod2.  
We apply the preconditioned conjugate gradient 
method to solve the linear system (10) with cosine 
transform based preconditioner discussed in $2.3. 
The stopping criterion of the preconditioned con- 
jugate gradient method is Ilr,+llz/llrollz < 
where r k  is the residual vector of the linear system 
(10) at the le-th PCG iteration. Tables 1 shows 
the total numbers of CG iterations required for 
convergence with and without using the precondi- 
tioner. In Figures 7 and 8, we present TV-based 
image restorations described in $2.  For the sake of 
comparison we have used the Lz-norm (= 
as regularization functional to restore the blurred 
and noisy image. The result is shown in Figures 9 
and 10. In summary, the preliminary experiment 
suggests that the total variation based regulariza- 
tion method with the PCG algorithm may be an 
efficient and effective method for 3-D microscopic 
imaging probleims. 
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x-y direction x-z section 

Figure 5: x-y section images of the intensity of 
the blurred and noisy phantom. 

x-z section 

Figure 6: z-z section images of the intensity of 
the blurred and noisy phantom. 

x-y difection 

Figure 7: x-y section images of the intensity of 
the restored phantom using TV regularization. 

Figure 8: 2-2 section images of the intensity of 
the restored phantom using T V  regularization. 

x-y direction 

Figure 9: x-y section images of the intensity of 
the restored phantom using L2 regularization. 

x-z Section 

Figure 10: x-z section images of the intensity of 
the restored phantom using L2 regularization. 
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