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ABSTRACT 

This paper presents a genetic approach to determining the optimal number of machines required in a 
manufacturing system for meeting a speciJiedproduction schedule. This use of genetic algorithms is illustrated 
by solving a @pica1 machine requirements planning problem. Comparison of the respective results obtained by 
using the proposed approach and a standard mixed-integer programming package shows that the proposed 
approach is indeed an effective means for optimal manufacturing systems design. 

1. Introduction 

Optimal machine requirements problem has long been 
one of the most important research topics in 
manufacturing systems design. The problem usually 
involves the optimal selection of manufacturing 
resources to perform a specified workload. Up to 
now, numerous attempts have been addressed by a 
number of researchers (see [I]) to solve the problem. 
Hayes [2] suggested that the machine requirements 
planning problem should normally be modelled as a 
mixed integer programme. However, in the analysis 
of such a complex problem for a serial flow 
production system, Hayes et al. [3] pointed out that 
traditional integer programming algorithms such as 
branch and bound techniques may prove to be 
ineffective due to the amount of computational effort 
required. A dynamic programming approach was then 
applied instead to determine the optimal solution, but 
this approach still demands a substantial amount of 
computational effort. 

This paper is concerned with solving machine 
requirements planning problems in the design of 
single period, multiple products and multiple machine 
types manufacturing systems. It is assumed that the 
manufacturing system under consideration allows (1) 
the processing time of a piece of work to be different 

when processed by different machine types in view of 
the differing capabilities of machines, and (2) a 
fraction of work to be assigned to machines if 
necessary. A mathematical model in form of a mixed 
integer programme is developed for minimizing the 
total cost of the system. A genetic search algorithm is 
presented for determining simultaneously the optimal 
number of machines and the optimal workload 
assignment for the various types of machines. The 
application of such an approach and its effectiveness 
is illustrated by using a numerical example. 

2. System Modelling 

The manufacturing system considered consists of J 
different types of machines and each type of machine 
has its own domain of capacity. However, their 
domains of capacity are not necessarily disjointed: 
some of them may overlap. The mathematical model 
describing the characteristics of such a system is thus 
governed by the objective function and sets of 
constraints of the respective forms: 

minimize z = E:=, c j~ 

subject to cf=,thj 5 EjNj 6 = 1,2, ...,J) (2) 



where Cj 

Ej 

Nj 

(h = 1,2, ..., H) (3) 

N j ,  t hj 2 0 and Nj are integers 
(h = 1,2 ,..., H; j = 1,2 ,..., J) (4) 

is the cost of employing a machine of 
type j per period, 
is the amount of effective capacity of a 
machine of type j per period, 
is the number of machines of type j 
selected so as to minimize Z whilst 
satisfying the constraints (2) and (3), 

Lhj is the processing time required for the 
machine of type j to complete the job h, 

thj is the amount of time assigned to 
machines of type j to perform the job h. 

The objective function (1) represents the total cost 
required per period. Constraints (2) indicate that the 
total amount of time assigned to each type of machine 
must be less than or equal to the maximum amount of 
time available. The ratio thj/Lhj in constraints (3) 
represents the fraction of job h which is assigned to 
machines of type j.  Since all the jobs must be 
completed during the planning period, the sum of all 
these ratios for all types of machine must be equal to 
1. Finally, the decision variables Nj (i=1, 2, ...., J) and 
thj (h=I, 2, ...., H; j=l,  2, ...., J) are non-negative 
integer variables and real number variables 
respectively. Hence, the machine requirements 
planning problem is formulated as a mixed integer 
programme which may be solved by using a standard 
mixed-integer programming package [4] if the 
problem size is small. However, if the problem size is 
large, no computationally tractable methodology has 
yet emerged. 

3. Genetic Search Algorithm 

Genetic algorithms [5],  [6] are newly developed 
stochastic search techniques which use concepts taken 
from natural genetics and evolution theory. In this 
paper, the proposed genetic search algorithm differs 
from the traditional genetic algorithms in twofold. 
First, all candidate solutions are directly presented by a 
floating point representation instead of using a binary 
coding. It is due to the fact that the size of feasible 
space of the presented mathematical programme varies 
in accordance with the system parameters. Hence, it is 
quite difficult to establish a one-to-one mapping 
relationship from those feasible points in the space to 
the chromosome representation. In order to restrict the 
search on the feasible space only, crossover and 
mutation operations are also re-designed in the 

proposed algorithm. Second, a rounding heuristic is 
used to modify the floating point represented 
chromosome in order to meet the integer requirements. 
However, it should be noted that this rounding 
heuristic is used only on the purpose of evaluating the 
cost performance of chromosomes. Thus the contents 
of chromosomes are kept unchanged after the 
rounding heuristic. 

In order to make the proposed algorithm applicable, it 
is necessary to eliminate all the equality constraints (3) 
from the presented model. By substituting 

thl = LhJ(1-E;:; thj/Lhj) into constraints (2) and 
re-arrange the constraints, the model is rewritten as: 

minimize z = c:=, c j~ 

(6) 

(h = 1,2, ..., H) (7) 

-thj 2 0 (h = 1,2, ..., H; j = 1,2, ..., J-I) (8) 
-N I 0 and Nj are integers 

(i = 1,2, ..., J) (9) 

3.1. Chromosome Structure 

Since there are two sets of decision variables namely 
Nj 0=1,2 ,..., J) and thj (h=1,2 ,..., H; j=1,2 ,..., J-I) in the 
system, the combined multi-parameter chromosome, 
defining any candidate solution, has the form 
x = < N > , < t >  where<N>and<t>arerowvectors 
representing the two sets of decision variables. Hence, 
the first J bits in a chromosome are used to represent 
Nj and the remained Hx(J-1) bits are used to 
represent t hj . 

- 

3.2. Initialization Procedure 

Chromosomes are seldom feasible if they are just 
generated randomly. In order to ensure that all 
chromosomes in the initial population are feasible, an 
initialization procedure is used. For the sake of 
simplicity, all constraints in the model are grouped and 
expressed in the following form: 

X;kZT 5 B k  (k = 1,2, ..., K) (10) 

where K is the total number of constraints in the 
system, 



ii;k is a row vector containing the coefficients 
of the decision variables in the k th 
constraint (k = 1,2 ,..., K), 

Bk is the constant term involved in the k th 
constraint (k = 1,2 ,..., K). 

The initialization procedure is simple. First, it is 
assumed that there is an origin E, which satisfies the 
sets of constraints (5)-(9). Starting from this point, a 
normalized direction vector P is randomly generated. 
These two vectors are then used to initialize a new 
point E by: 

where 8 is a randomly generated step size along the 
direction ‘S. For the new point E is feasible, 8 must 
be chosen so that it is less than or equal to its upper 
bound e,, where e,, is calculated by: 

3.3. Rounding Heuristic 

The integer requirements of the decision variables Nj 
are met by using a rounding heuristic to round off the 
first J decision variables, i.e. Nj (j=1,2 ,..., J), in a 
chromosome E . In this connection, a straight line is 
drawn from E to the origin E,. This line is then 
divided into L equal sections where the value of L is 
chosen arbitrarily. Obviously, a large L can reduce the 
computation time while a small L can improve the 
precision of the results obtained. The outline of the 
rounding heuristic is given below: 

Step 1. Determine a normalized direction vector P 
from the chromosome Z to the origin it,. 

Step 2.  Divide the straight line joined f and f, into 
L equal spaced sections. Let C be an index 
( C = 1,2 ,..., L) with an initial value of C = 0. 

Step3. Generate a new point f’ by using 

E’ = I + - ]Eo -XI S and round off the 

first J decision variables in P’ into integers. 
Step 4.  Check for the feasibility of the rounded E‘. If 

it is feasible, go to Step 6; if not, go to Step 5. 
Step 5. Perturb the values of the first J decision 

variables in T’ (one by one) by the values of 
+1 and check for the feasibility again. If it is 
feasible, go to Step 6; if not, increase l? by 1 
and go back to Step 3. 

Step 6. Evaluate the objective function value of the 
chromosome j? by substituting the rounded 

(3 

Z’ into the objective function (1) and the 
rounding is complete. 

3.4. Reproduction Operation 

Reproduction operation is used to select those 
potential chromosomes from the current population 
and place them into a mating pool. In order to make 
this probabilistic process possible, the cost 
performance of chromosomes are transformed as 
fitness values. In this paper, the ranking procedure 
proposed by Baker [7] is adopted with the selective 
pressure fixed at 2. In the other words, chromosomes 
are sorted ascendingly in accordance with their 
objective function values and then ranks are assigned 
to them as their fitness values. The fitness value, f, of 
each chromosome is calculated by 
f = f,,, (n - r)/(n - 1) where r is the ranking 
position of the chromosome and f,, is the pre- 
assigned fitness value for the best chromosome. In the 
selective process, the probability of selecting a 
chromosome as a parent is defined by Pselect = f / c i  fi 

where cifi is the sum of fitness values over the 
whole population. Obviously, a well-performed 
chromosome will have a greater chance to be selected 
under this operation. 

3.5. Crossover Operation 

The exchange of genetic materials (information) of the 
parent chromosomes is achieved by using the 
crossover operator. It is a probabilistic operation 
which is activated occasionally. Its occurrence is 
controlled by a pre-specified parameter P,,,. Each 
time it occurs, a pair of parent chromosomes PI and 
1, are mated so that a new chromosome called 
offspring E is generated. To facilitate the calculation, 
the parent chromosomes are arranged in a manner that 
the fitness value of 9, is greater than or equal to that 
of I2 . The outline of the crossover operation is given 
below: 

Step I. Determine the normalized direction vector J 
from X, to I,. 

Step2. Generate an offspring chromosome P by 
using a random step size 8 (0  I 8  I e,,, 
see equation (12)) and substitute it into the 
equation I = f, +8P.  

3.6. Mutation Operation 

Mutation operation is used to prevent the search 
process from converging to local optima rapidly. In 
most linear programming problems, it is found that the 

- ~ ~ ~ _ _  ~ -~ 



global optimal solutions are always lain on the 
boundaries of the solution spaces. Hence for the 
chromosomes which are already lain on the space 
boundaries, it is a good idea to keep them on those 
boundaries whenever possible. In this paper, the 
mutation operation is re-designed so that it can diverge 
the search to other space regions on the one hand, and 
keep the chromosomes on the space boundaries on the 
other hand. This is another probabilistic operation for 
which its occurrence is controlled by a pre-specified 
parameter P,,,,,. Unlike crossover, it is applied to a 
single chromosome, % . The outline of the mutation 
operation is given below: 

Step I .  Set k=l. 
Step 2. Check for the condition i k Z T  = B,. If it is 

satisfied, go to Step 3; if not, increase k by 1 
and either go back to Step 2 when k I K or 
go to Step 6 when k > K. 

Step3. Perturb the chromosome E by randomly 
replacing two bits xi and xj  (A,,Akj #O) by 
xf and x; where 

XI =o 

x'. = 
Akjxj +A,x, . 

1 
A kj 

Step 4.  Check for the feasibility of the perturbed 'iz . 
If it is not feasible, go to Step 5; otherwise, 
record the perturbed Z and increase k by 1. 
Then either go back to Step 2 when k i K or 
go to Step 6 when k > K. 

Step 5 .  Determine a normalized direction vector X 
from the perturbed % to X and shift the 
perturbed % to a new location K w  by 
Z" = perturbed E + 0X where 8 is calculated 
by: 

B, -ik(perturbed Z)T 
0 =  

XkXT 
Record EN and increase k by 1, then either go 
back to Step 2 when k I K or go to Step 6 
when k > K. 

Step 6. After the above operations, a number of 
feasible chromosomes are probably recorded. 
In this case, the one which has the greatest 
objective function value will be chosen as the 
new chromosome Z' . 

4. Numerical Example 

The proposed algorithm can be conveniently 
illustrated by designing a manufacturing system which 
consists of six types of machine. Twenty jobs are to 
be processed by the machines during the planning 
period. The amount of effective capacity and the cost 
of a machine of type j per period are given in Table 1. 

The amount of processing time required to perform 
job h (h=l, 2, ....., 20) by using a machine of type j 
(j=1,2, ........, 6) is given in Table 2. 

The above data can be substituted into the objective 
function (I), and the constraints (2)  and (3) to derive 
the mixed-integer programming model. A standard 
computer package developed by Chang and Sullivan 
[4] can then be used to determine the optimal number 
of machines and the optimal assignment of workload 
to the various types of machines. The reported 
computation time is 4.4 minutes on a 486DX2-66 PC 
and the result is presented in Table 3. 

The problem is then solved by using the proposed 
algorithm with the population size of 40. The 
crossover probability and the mutation probability are 
0.8 and 0.3, respectively. The optimal number of 
machines and the optimal workload assignment to the 
various types of machines after 50 generations are 
shown in Table 4. The required computation time is 
about 3 minutes on the same set of computer and the 
total cost of the genetically designed system is 
$32980. It is evident from Tables 3 and 4 that this 
cost value is exactly the same as that obtained 
previously by using mixed-integer programming even 
though their workload assignment plans are slightly 
different. It also shows that the difference between the 
machine utilization rates of the respective plans is very 
small and is mainly due to truncation error. In 
addition, the amount of time required to produce the 
optimal solution genetically is only 68.2% of that 
required by the mixed-integer programming approach. 

5. Conclusions 

The techniques of using genetic algorithms have been 
proposed as a means to solve machine requirements 
planning problems for manufacturing system design. 
The crossover and mutation operators pursued in the 
proposed algorithm can limit the search and 
exploration in the feasible space only and hereby 
makes the algorithm more efficient. The effectiveness 
of such approach has been demonstrated by solving 
genetically a machine requirements planning problem. 
Comparison of the respective results obtained by using 
the genetic search algorithm and the mixed integer 
programming approach clearly shows that the 
technique proposed in this paper indeed provides a 
powerful tool for optimal manufacturing systems 
design. 
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