
Title Machine requirements planning and workload assignment using
genetic algorithms

Author(s) Porter, B; Mak, KL; Wong, YS

Citation Proceedings Of The Ieee Conference On Evolutionary
Computation, 1995, v. 2, p. 711-715

Issued Date 1995

URL http://hdl.handle.net/10722/46570

Rights Creative Commons: Attribution 3.0 Hong Kong License

Machine Requirements Planning and Workload Assignment
using Genetic Algorithms

B. Porter

Department of Aeronautical, Mechanical and Manufacturing Engineering
University of Salford

Salford M5 4WT
England

K. L. Mak and Y. S. Wong

Department of Industrial and Manufacturing Systems Engineering
The University of Hong Kong

Pokfwlam Road
Hong Kong

ABSTRACT

This paper presents a genetic approach to determining the optimal number of machines required in a
manufacturing system for meeting a speciJiedproduction schedule. This use of genetic algorithms is illustrated
by solving a @pica1 machine requirements planning problem. Comparison of the respective results obtained by
using the proposed approach and a standard mixed-integer programming package shows that the proposed
approach is indeed an effective means for optimal manufacturing systems design.

1. Introduction

Optimal machine requirements problem has long been
one of the most important research topics in
manufacturing systems design. The problem usually
involves the optimal selection of manufacturing
resources to perform a specified workload. Up to
now, numerous attempts have been addressed by a
number of researchers (see [I]) to solve the problem.
Hayes [2] suggested that the machine requirements
planning problem should normally be modelled as a
mixed integer programme. However, in the analysis
of such a complex problem for a serial flow
production system, Hayes et al. [3] pointed out that
traditional integer programming algorithms such as
branch and bound techniques may prove to be
ineffective due to the amount of computational effort
required. A dynamic programming approach was then
applied instead to determine the optimal solution, but
this approach still demands a substantial amount of
computational effort.

This paper is concerned with solving machine
requirements planning problems in the design of
single period, multiple products and multiple machine
types manufacturing systems. It is assumed that the
manufacturing system under consideration allows (1)
the processing time of a piece of work to be different

when processed by different machine types in view of
the differing capabilities of machines, and (2) a
fraction of work to be assigned to machines if
necessary. A mathematical model in form of a mixed
integer programme is developed for minimizing the
total cost of the system. A genetic search algorithm is
presented for determining simultaneously the optimal
number of machines and the optimal workload
assignment for the various types of machines. The
application of such an approach and its effectiveness
is illustrated by using a numerical example.

2. System Modelling

The manufacturing system considered consists of J
different types of machines and each type of machine
has its own domain of capacity. However, their
domains of capacity are not necessarily disjointed:
some of them may overlap. The mathematical model
describing the characteristics of such a system is thus
governed by the objective function and sets of
constraints of the respective forms:

minimize z = E:=, c j~

subject to cf=,thj 5 EjNj 6 = 1,2, ...,J) (2)

where Cj

Ej

Nj

(h = 1,2, ..., H) (3)

N j , t hj 2 0 and Nj are integers
(h = 1,2 ,..., H; j = 1,2 ,..., J) (4)

is the cost of employing a machine of
type j per period,
is the amount of effective capacity of a
machine of type j per period,
is the number of machines of type j
selected so as to minimize Z whilst
satisfying the constraints (2) and (3),

Lhj is the processing time required for the
machine of type j to complete the job h,

thj is the amount of time assigned to
machines of type j to perform the job h.

The objective function (1) represents the total cost
required per period. Constraints (2) indicate that the
total amount of time assigned to each type of machine
must be less than or equal to the maximum amount of
time available. The ratio thj/Lhj in constraints (3)
represents the fraction of job h which is assigned to
machines of type j. Since all the jobs must be
completed during the planning period, the sum of all
these ratios for all types of machine must be equal to
1. Finally, the decision variables Nj (i=1, 2,, J) and
thj (h=I, 2,, H; j=l, 2,, J) are non-negative
integer variables and real number variables
respectively. Hence, the machine requirements
planning problem is formulated as a mixed integer
programme which may be solved by using a standard
mixed-integer programming package [4] if the
problem size is small. However, if the problem size is
large, no computationally tractable methodology has
yet emerged.

3. Genetic Search Algorithm

Genetic algorithms [5], [6] are newly developed
stochastic search techniques which use concepts taken
from natural genetics and evolution theory. In this
paper, the proposed genetic search algorithm differs
from the traditional genetic algorithms in twofold.
First, all candidate solutions are directly presented by a
floating point representation instead of using a binary
coding. It is due to the fact that the size of feasible
space of the presented mathematical programme varies
in accordance with the system parameters. Hence, it is
quite difficult to establish a one-to-one mapping
relationship from those feasible points in the space to
the chromosome representation. In order to restrict the
search on the feasible space only, crossover and
mutation operations are also re-designed in the

proposed algorithm. Second, a rounding heuristic is
used to modify the floating point represented
chromosome in order to meet the integer requirements.
However, it should be noted that this rounding
heuristic is used only on the purpose of evaluating the
cost performance of chromosomes. Thus the contents
of chromosomes are kept unchanged after the
rounding heuristic.

In order to make the proposed algorithm applicable, it
is necessary to eliminate all the equality constraints (3)
from the presented model. By substituting

thl = LhJ(1-E;:; thj/Lhj) into constraints (2) and
re-arrange the constraints, the model is rewritten as:

minimize z = c:=, c j~

(6)

(h = 1,2, ..., H) (7)

-thj 2 0 (h = 1,2, ..., H; j = 1,2, ..., J-I) (8)
-N I 0 and Nj are integers

(i = 1,2, ..., J) (9)

3.1. Chromosome Structure

Since there are two sets of decision variables namely
Nj 0=1,2 ,..., J) and thj (h=1,2 ,..., H; j=1,2 ,..., J-I) in the
system, the combined multi-parameter chromosome,
defining any candidate solution, has the form
x = < N > , < t > where<N>and<t>arerowvectors
representing the two sets of decision variables. Hence,
the first J bits in a chromosome are used to represent
Nj and the remained Hx(J-1) bits are used to
represent t hj .

-

3.2. Initialization Procedure

Chromosomes are seldom feasible if they are just
generated randomly. In order to ensure that all
chromosomes in the initial population are feasible, an
initialization procedure is used. For the sake of
simplicity, all constraints in the model are grouped and
expressed in the following form:

X;kZT 5 B k (k = 1,2, ..., K) (10)

where K is the total number of constraints in the
system,

ii;k is a row vector containing the coefficients
of the decision variables in the k th
constraint (k = 1,2 ,..., K),

Bk is the constant term involved in the k th
constraint (k = 1,2 ,..., K).

The initialization procedure is simple. First, it is
assumed that there is an origin E, which satisfies the
sets of constraints (5)-(9). Starting from this point, a
normalized direction vector P is randomly generated.
These two vectors are then used to initialize a new
point E by:

where 8 is a randomly generated step size along the
direction ‘S. For the new point E is feasible, 8 must
be chosen so that it is less than or equal to its upper
bound e,, where e,, is calculated by:

3.3. Rounding Heuristic

The integer requirements of the decision variables Nj
are met by using a rounding heuristic to round off the
first J decision variables, i.e. Nj (j=1,2 ,..., J), in a
chromosome E . In this connection, a straight line is
drawn from E to the origin E,. This line is then
divided into L equal sections where the value of L is
chosen arbitrarily. Obviously, a large L can reduce the
computation time while a small L can improve the
precision of the results obtained. The outline of the
rounding heuristic is given below:

Step 1. Determine a normalized direction vector P
from the chromosome Z to the origin it,.

Step 2. Divide the straight line joined f and f, into
L equal spaced sections. Let C be an index
(C = 1,2 ,..., L) with an initial value of C = 0.

Step3. Generate a new point f’ by using

E’ = I + -]Eo -XI S and round off the

first J decision variables in P’ into integers.
Step 4. Check for the feasibility of the rounded E‘. If

it is feasible, go to Step 6; if not, go to Step 5.
Step 5. Perturb the values of the first J decision

variables in T’ (one by one) by the values of
+1 and check for the feasibility again. If it is
feasible, go to Step 6; if not, increase l? by 1
and go back to Step 3.

Step 6. Evaluate the objective function value of the
chromosome j? by substituting the rounded

(3

Z’ into the objective function (1) and the
rounding is complete.

3.4. Reproduction Operation

Reproduction operation is used to select those
potential chromosomes from the current population
and place them into a mating pool. In order to make
this probabilistic process possible, the cost
performance of chromosomes are transformed as
fitness values. In this paper, the ranking procedure
proposed by Baker [7] is adopted with the selective
pressure fixed at 2. In the other words, chromosomes
are sorted ascendingly in accordance with their
objective function values and then ranks are assigned
to them as their fitness values. The fitness value, f, of
each chromosome is calculated by
f = f,,, (n - r)/(n - 1) where r is the ranking
position of the chromosome and f,, is the pre-
assigned fitness value for the best chromosome. In the
selective process, the probability of selecting a
chromosome as a parent is defined by Pselect = f / c i fi

where cifi is the sum of fitness values over the
whole population. Obviously, a well-performed
chromosome will have a greater chance to be selected
under this operation.

3.5. Crossover Operation

The exchange of genetic materials (information) of the
parent chromosomes is achieved by using the
crossover operator. It is a probabilistic operation
which is activated occasionally. Its occurrence is
controlled by a pre-specified parameter P,,,. Each
time it occurs, a pair of parent chromosomes PI and
1, are mated so that a new chromosome called
offspring E is generated. To facilitate the calculation,
the parent chromosomes are arranged in a manner that
the fitness value of 9, is greater than or equal to that
of I2 . The outline of the crossover operation is given
below:

Step I. Determine the normalized direction vector J
from X, to I,.

Step2. Generate an offspring chromosome P by
using a random step size 8 (0 I 8 I e,,,
see equation (12)) and substitute it into the
equation I = f, +8P.

3.6. Mutation Operation

Mutation operation is used to prevent the search
process from converging to local optima rapidly. In
most linear programming problems, it is found that the

- ~ ~ ~ _ _ ~ -~

global optimal solutions are always lain on the
boundaries of the solution spaces. Hence for the
chromosomes which are already lain on the space
boundaries, it is a good idea to keep them on those
boundaries whenever possible. In this paper, the
mutation operation is re-designed so that it can diverge
the search to other space regions on the one hand, and
keep the chromosomes on the space boundaries on the
other hand. This is another probabilistic operation for
which its occurrence is controlled by a pre-specified
parameter P,,,,,. Unlike crossover, it is applied to a
single chromosome, % . The outline of the mutation
operation is given below:

Step I . Set k=l.
Step 2. Check for the condition i k Z T = B,. If it is

satisfied, go to Step 3; if not, increase k by 1
and either go back to Step 2 when k I K or
go to Step 6 when k > K.

Step3. Perturb the chromosome E by randomly
replacing two bits xi and xj (A,,Akj #O) by
xf and x; where

XI =o

x'. =
Akjxj +A,x, .

1
A kj

Step 4. Check for the feasibility of the perturbed 'iz .
If it is not feasible, go to Step 5; otherwise,
record the perturbed Z and increase k by 1.
Then either go back to Step 2 when k i K or
go to Step 6 when k > K.

Step 5 . Determine a normalized direction vector X
from the perturbed % to X and shift the
perturbed % to a new location K w by
Z" = perturbed E + 0X where 8 is calculated
by:

B, -ik(perturbed Z)T
0 =

XkXT
Record EN and increase k by 1, then either go
back to Step 2 when k I K or go to Step 6
when k > K.

Step 6. After the above operations, a number of
feasible chromosomes are probably recorded.
In this case, the one which has the greatest
objective function value will be chosen as the
new chromosome Z' .

4. Numerical Example

The proposed algorithm can be conveniently
illustrated by designing a manufacturing system which
consists of six types of machine. Twenty jobs are to
be processed by the machines during the planning
period. The amount of effective capacity and the cost
of a machine of type j per period are given in Table 1.

The amount of processing time required to perform
job h (h=l, 2,, 20) by using a machine of type j
(j=1,2,, 6) is given in Table 2.

The above data can be substituted into the objective
function (I), and the constraints (2) and (3) to derive
the mixed-integer programming model. A standard
computer package developed by Chang and Sullivan
[4] can then be used to determine the optimal number
of machines and the optimal assignment of workload
to the various types of machines. The reported
computation time is 4.4 minutes on a 486DX2-66 PC
and the result is presented in Table 3.

The problem is then solved by using the proposed
algorithm with the population size of 40. The
crossover probability and the mutation probability are
0.8 and 0.3, respectively. The optimal number of
machines and the optimal workload assignment to the
various types of machines after 50 generations are
shown in Table 4. The required computation time is
about 3 minutes on the same set of computer and the
total cost of the genetically designed system is
$32980. It is evident from Tables 3 and 4 that this
cost value is exactly the same as that obtained
previously by using mixed-integer programming even
though their workload assignment plans are slightly
different. It also shows that the difference between the
machine utilization rates of the respective plans is very
small and is mainly due to truncation error. In
addition, the amount of time required to produce the
optimal solution genetically is only 68.2% of that
required by the mixed-integer programming approach.

5. Conclusions

The techniques of using genetic algorithms have been
proposed as a means to solve machine requirements
planning problems for manufacturing system design.
The crossover and mutation operators pursued in the
proposed algorithm can limit the search and
exploration in the feasible space only and hereby
makes the algorithm more efficient. The effectiveness
of such approach has been demonstrated by solving
genetically a machine requirements planning problem.
Comparison of the respective results obtained by using
the genetic search algorithm and the mixed integer
programming approach clearly shows that the
technique proposed in this paper indeed provides a
powerful tool for optimal manufacturing systems
design.

6. References Table 3. The optimal solution by using a standard mixed-integer
Dro“mine. Dackape.
. I I. -

Job Processing Time Assignment (hours)
[l] D.M. Miller and R.P. Davis, “A dynamic resource N ~ . d C l d c 2 d c 3 d c 4 d C 5 d C 6

allocation model for a machine requirements 1 9 0 0 0 0 0 0
problem” AIIE Transactions, 10(3), pp. 237-243,
1978.

[2] G.M. Hayes, A Generalized Machine
Requirements Planning Algorithm for Serial Flow
Machining Systems, M.S. theses, Virginia
Polytechnic Institute and State University, 1978.

[3] G.M. Hayes, R.P. Davis and R.A. Wysk, “A
dynamic programming approach to machine
requirements planning” AIIE Transactions, 13(2),

[4] Y.L. Chang and R.S. Sullivan, QS: Quant Systems
pp. 175-181, 1981.

2 0 67 0
3 66 0 0
4 54 0 0
5 0 0 0
6 0 0 0
7 19 0 0
8 0 56 0
9 0 0 0
10 15 0 0
11 53 0 0
12 0 0 0
13 78 0 0
14 0 0 0
15 62 0 0

31.3
0
0

24
0

26.7
0
0
0
0
0
0
0
0

0
0

33
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0

45
0
0
62
0
0
75
0
33
0

Ver 2.0, Prentice-Hall, 1991. 16 8 0 0 0 0 0
[5] J.H. Holland, Adaptation in Natural and Artificial 17 0 0 0 0 47 0

18 0 7 8 0 0 0 0
9 2 0 0 0 0 0 Systems, The University of Michigan Press, Ann 19

Arbor, 1975. 20 0 0 0 0 0 64
[6] D.E. Goldberg, Genetic Algorithms in Search, z 537 201 0 82 80 279

7 3 0 1 1 4 Optimization, and Machine Learning, Addison-
Wesley, Reading, 1989.

genetic algorithms” Proceedings of the First
International Conference on Genetic Algorithms
and their Applications, pp. 10 1 - 1 1 1 , 1985.

98.35 100.0 - 100.0 100.0 99.64 %
Z = total work load (hrs); # = optimal number of machine types;

[7] J.E. Baker, “Adaptive selection methods for % = machine utilization (%).

Table 4. The overall best solution by using the proposed
algorithm

Effectivecapac&(hrs) 78 67 64 82 80 70 2
Costpermachine($) 1720 2400 3140 3240 3300 1800 3

4
5
h

Table 2. Processing time ofjobs by using different machine types. 7
Job Processing Time (hours) 8

I . I

No. d c l d c 2 d c 3 d c 4 d c 5 d c 6 9
1 90 90 - 91 10
2 - 98 - 99
3 66 - 67 70 66
4 90 - 86 - 82
5 - 26 - 24
6 - 40 43 45
7 46 - - 44
8 - 56 - 59
9 - 59 - 62
10 15 17 - 18
11 53 -
12 - 78 - 75
13 78 - 77 75
14 - 36 33
15 62 59 -
16 8 14 - 12
17 - 50 - 47
18 - 78 - 80
19 92 - 91 97
20 - 65 - 64

0 67 0 31.3 0
40.8 0 0 26.7 0
53.8 0 0 0 33

0 0 0 2 4 0
0 0 0 0 0

4 6 0 0 0 0
0 5 6 0 0 0
0 0 0 0 0
1 5 0 0 0 0

11 5 3 0 0 0 0
12 0 0 0 0 0
13 7 8 0 0 0 0
14 0 0 0 0 0
15 6 2 0 0 0 0
16 8 0 0 0 0
17 0 0 0 0 47
18 0 7 8 0 0 0
19 92 0 0 0 0

0
0
0
0

45
0
0

62
0
0
75
0
33
0
0
0
0
0

~~

20 0 0 0 0 0 64
z 538.6 201 0 82 80 279
7 3 0 1 1 4
% 98.65 100.0 - 100.0 100.0 99.64

=total work load (hrs); # = optimal number of machine types;
% = machine utilization (%).

