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ABSTRACT 

In this paper, genetic algorithms are used to robustify digital 
multivariable PID controllers for robotic manipulators. This 
process of robustification is effected by using genetic algorithms 
to determine the optimal set of controller tuning parameters for 
typical trajectory- tracking tasks. This use of genetic algorithms 
is illustrated by the design of a digital trajectory-tracking 
controller for a typical threedegree-of-fieedom robotic 
manipulator. 

1. "RODUCCTION 

The design of effective digital trajectory-tracking 
controllers for robotic manipulators constitutes a very Micult 
problem in control engineering, because such manipulators are 
non-linear multivariable plants with time-varying parameters. 
However, it was shown by Porter and Abidin [l] that the design 
of such trajectory-tracking controllers for robotic manipulators 
can be readily effected by using the methodologies of Porter et ai 
[2] for the design of fast-sampling error-actuated digital 
multivariable PID controllers. These methodologies of Porter et 
a1 [2] are remarkable since, even in the case of complex linear 
and non-linear plants, only the first and second Markov 
parameters of the linear components of such plants are required 
in the design equations. It was also shown by Porter et a1 [2] that 
these design equations can be further simplified by introducing 
the stepresponse matrices of linear multivariable plants instead 
of the first and second Markov parameters. This simplification, in 
turn, made it possible for Porter and Mimganas [3] to show that 
these fast-sampling error-actuated digital controllers can be 
readily rendered adaptive since stepresponse matrices can be 
directly identified in real time by conventional recursive 
estimation techniques. 

However, such relatively complicated adaptive 
fast-sampling error-actuated digital PID controllers need be used 
only if the underlying non-adaptive controllers are insufliciently 
robust in the face of plant-parameta variations. The robustness 
characteristics of such non-adaptive controllers were therefore 
established by Porter and Abidin [l] in the case of completely 
irregular multivariable plants, ie, plants (like most robotic 
manipulators) with null first Markov parameters and full-rank 
second Markov parameters. It was thus shown by Porter and 
Abidin [ 11 that the plant-parameter variations tolerable by 
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f&-sampIing error-actuated digital PID controllers can be 
expressed very simply in terms of the step-response matrices of 
the nominal and the actual plants. These general results were 
illustrated by examining the robustness of a fast-sampling 
error-actuated digital PID controller for the 
threedegree-of-keedom robotic manipulator previously 
investigated by Petropoulakis [4]. 

However, although the theoretical robustness results of 
Porter and Abidin [l] greatly facilitate the design of digital 
trajectoq-tracking controllers for robotic manipulators, these 
theoretical results are valid only asymptotically (ie, as the 
sampling fresuency of the digital PID controller becomes 
infinite). In practice, of course, the sampling frequencies of such 
digital controllers must remain finite; but it has so far proved 
impossible to obtain theoretical non-asymptotic robustness results 
for error-actuated digital multivariable PID controllers with finte 
sampling fkequencies. Therefore, in this paper, genetic 
algorithms [5][6] are used to robustify digital multivariable PID 
controllers for robotic manipulators for typical trajectory-tracking 
tasks. This process of robustification is effected by using genetic 
algorithms to determine the optimal quadruple of controller 
tuning parameters for such trajectory-tracking tasks (which 
include sudden changes of payload). This use of genetic 
algorithms is illustrated by the design of a robustified digital 
trajectory-tracking PID controller for the robotic manipulator 
previously investigated by Petropoulakis [4]. These genetic 
design results are the natural extension to robotic control 
problems of the previously obtained non-robotic results of Porter 
and Jones [7] and Porter, Mohamed, and Jones [8]. 

2. GENETIC DESIGN PROCEDURE 

The methodology of Porter et a1 [2] for the design of 
error-actuated digital PID controllers relates to linear 
multivariable plants governed on the continuous-time set 
T = [0, -)by state and output equations of the respective forms 

X( t )  =Ax@) +Bu(t) 

fit) = Cx(0 

. . . . (1) 

. . . . (2) 
and 

In equations (1) and (2), ~ ( t )  E Rn,u(t) E R'*,y(t) E RI, 
A E Rmn,B E R", and C E Rbn. In addition, it is assumed that 
the plants under control are completely irregular so that 

mnkCB=O . . . . (3) 



and 
Y = . m  9 . . . . (146) 

where e E R3 is the vector of joint angles, U E R3 is the vector of 
joint torques, y E R3 is the positional vector of the end effector in 
Cartesian space, M(e) E R3x3 is the inertia matrix, v(e,8)  E R3 
is the vector of centrifugal and Coriolis torques, @) E R3 is the 
vector of direct kinematic relationships, and g(e) E R3 is the 
vector of gravitational torques. The numerical values of the 
inertial and kinematic parameters for a typical 
three-degree-of-freedom robotic manipulator are given by 
Petropoulakis [4]. 

In the neighbourhood of any operating point in task 
space (or joint space), this manipulator is a completely irregular 
sixth-order linear multivariable plant with three inputs and three 
outputs. In order to illustrate the genetic robustification 
procedure, it is therefore instructive to design a 
trajectory-tracking digital PID controller for the linearised 
dynamics of the manipulator corresponding to the endeffector 
position (0,0.45,0) m . This controller is then used while the end 
effector of the manipulator is caused to track straight-line 
trajectories betwen the following two points: 

I (-0.5,0,-0.2)m , 

III (0.3,0.3,0.3)m 
IV (0.3,O. 3,0.3)m 

II (-0.4,0.3,O)m 

VI (-0.45,0.35,O)m . 

These transitions are effected with 'trapezoidal' acceleration, 
cruise, and deceleration profiles in the following times: 

I+II  1.5s 
II -+ III 2s 
III + IV 0.5s 
IV -+ V 2.5s 
V+VI 0.5s 

In addition, after the initial transition I+I I ,  the manipulator 
grasps an additional payload of 5 kg. In view of the intrinsic 
non-linearity of the robotic manipulator and the sudden variation 
in payload, this sequence of tracking tasks constitutes a 
formidable test of robustness for the non-adaptive digital PID 
controller. 

However, the genetic robustification of this controller 
for this trajectory-tracking task can be readily effected for any 
measure of tracking performance specified by the designer. Thus, 
for example, let it be desired to determine the controller 
quadruple {a, 0, p, 6) so as to minimise the cost function 

I- =I: lle(4lPt , . . . (15) 

where T is the duration of the tracking task, e(t) E R3is the 
trajectory-tracking error vector in Cartesian space, and II*II 
denotes the Euclidean norm. The results of the genetic 
robustification procedure in this case are shown in Figures 1 and 
2 over 50 generations for a population sue N=30, a crossover 
probability p,=0.6, and a mutation probability pm=0.008. In 

Figure 1, the associated best-of-generation and 
generation-average values of the cost function r are plotted 
against generation number, whilst, in Figure 2, the associated 
best-of-generation values of the controller parameters a, Q, p, 
and 6 are plotted against generation number. It is evident from 
these figures that the optimal quadruple of controller parameters 
is {a,a,p,8}= {0.231,0.838,20.95,0.015} for which the 
corresponding value of the cost function is r = (0.01 179). The 
time-domain behaviour of Ile(t)ll for this robustified 
trajectory-tracking digital PID controller is shown in Figure 3. 

It is interesting to note that the quadruple of controller 
parameters for the non-genetically robustified controller of Porter 
and Abidin [l]  is {a,cr,p,6} = {0.1,0.7,1,0.01} for which the 
corresponding cost function is r =  {0.01613} . It is thus 
evident that the performance of the genetically designed 
trajectory-tracking controller is superior to that of its 
non-genetically designed counterpart. 

4. CONCLUSION 

In this paper, genetic algorithms have been used to 
robustify digital multivariable PID controllers for robotic 
manipulators for typical trajectory-tracking tasks. This process of 
robustification has been effected by using genetic algorithms to 
determine the optimal set of controller tuning parameters for such 
trajectory-tracking tasks (which include sudden changes of 
payload). This use of genetic algorithms has been illustrated by 
the design of a digital trajectory-tracking controller for the robotic 
manipulator previously investigated non-genetically by 
Petropoulakis [4] and by Porter and Abidin [ 11. 
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and 
rank CAB = 1 . . . . (4) 

The digital PID controllers under consideration are governed on 
the discrete-time set TT = { O ,  T, 2T, ...) by control-law equations 
of the form 

u(kT) = KIr(kT) +Kp(kT) . . . . 1 (S) 

In equation (9, T E R+ is the sampling period, K I  E Rkl and 
K2 E Rk' are the proportional and integral controller matrices, 
and the vectors r(kT) E R' and z(kT) E RI are generated in 
accordance with the difference equations 

s{ (k + 1)T) = -as(kT) + e(kT), . . . . (6a) 

r(kT) = --(1+ 2 a)Ds(kT) + (I1 + 9) e(kT), . . . . (6b) T 

and 
Z{ (k + 1)T) = z ( k 0  + Tr(kT) . ....(7) 

Moreover, in equations (6), a E (-l,+l),s(kT E R',e(kT) = 
v@T) -y(kT) E RI is the error vector, v(kT) E RI is the set-point 
command vector, and the derivative matrix D E Rkl is such that 

rankD = 1 ....@) 

In order to investigate the robustness characteristics of 
error-actuated digital PID controllers for completely irregular 
multivariable plants, Porter and Abidin [I] expressed the design 
equations for the proportional and integral controller matrices in 
equation ( 5 )  in the forms 

K I  = TH-l(T)C(TIi + 2D)-' E A&' . . . . (9) 
and 

In equations (12) and (1 3), 

C =GI/ (a E R + )  . . . . (II) 
is the positive diagonal tuning matrix, 

D=SZi (6 E R + )  . . . . (12) 

is the positive diagonal derivative matrix, and p E R+ is the ratio 
of integral to proportional action. In addition, in equations (9) 
and (10) 

E(T) = Ji@'Sdt E Rkl . . . . (13) 

is the step-respone-memlx of the nominal open-loop plant with 
state-space triple (A$, C)  which is used for design purposes in 
obtaining the controller for the open-loop plant with state 
space triple (A,& C )  governed by equations (1) and (2). Indeed, 
by using the explicit expressions for K I  and Kz given by 
equations (9) and (10) , Porter and Abidin [l]  elucidated the 

required asymptotic robustness characteristics of the digital PID 
controllers governed by equations (S), (6), and (7). 

However, although the robustness theorems thus 
established by Porter and Abidin [I]  are very elegant, these 
results are restricted to the asymptotic case of fast-samding 
error-actuated digital PID controllers for which the sampling 
frequency f = 1/T + CO. Furthermore, it transpires that these 
asymptotic results involve only the pair { a , ~ }  of design 
parameters rather than the complete quadruple {a, o, p. 6) of 
design parameters involved in the controller design equations (9) 
and (10). In practice, of course, the sampling frequencies of 
digital PID controllers must remain finite. It is therefore 
necessary to consider the following general robustness problem 
for the non-asymptotic case: 

In the case offinite sampling frequenq, determine the 
set of actual plants with state-space triple (A, B, C) tolerable by 
digital PID contro!le!s-designed for the nominal plant with 
state-spce triple (A, B, C )  and characterised by the quadruple 
{a, U, p, 6 )  of controller design parameters. 

However, it has so far proved impossible to solve this problem 
theoretically. This motivates the use of genetic algorithms to 
solve the non-asymptotic robustness problem for digital PID 
controllers. In the context of robotic trajectory-tracking 
controllers, genetic algorithms can accordingly be used to solve 
the following version of the robustness problem: 

In the case offinite sampling frequency. determine the 
quadruple {a, U, p, 6 )  of controller design parameters such that 
optimal trajectory-tracking behaviour is obtained when a given 
robotic manipulator is controlled so as to track a given 
trajectory. 

It is evident that the solution of this problem will provide an 
optimal quadruple {a, U, p, 6) which is dependent upon the given 
manipulator, the given task, and the measure of trajectory- 
tracking accuracy used in the optimisation procedure. 

However, in order to use genetic algorithms to solve 
this problem, it is necessary only to encode the quadruple 
{a, cr, p, 6 )  of controller design parameters in accordance with a 
system of concatenated, multi-parameter, mapped, fixed-point 
coding [6]. Thus, each quadruple {a,o,p,6) of controller 
parameters is represented by a string of binary digits. Then, 
following any choice of an initial generation of such strings, 
successive generations of strings can be rapidly obtained using 
the basic genetic operations of selection, crossover, and mutation 
[6]. In particular, these operations ensure that the successive 
generations of mor-actuated digital PID controllers thus 
produced by the genetic algorithm tend to exhibit improving 
trajectory-tracking behaviour in respect of any measure of the 
accuracy of such behaviour specified by the designer for any 
given robotic manipulator. 

3. ILLUSTRATIVE EXAMPLE 

This general approach to genetic robustification can be 
conveniently illustrated by designing a trajectory-tracking digital 
PID controller for the three-degree-of-freedom robotic 
manipulator previously investigated by Petropoulakis [4]. In this 
case, the manipulator is governed on T = [0, +GO) by state and 
output equations of the respective forms 
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