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Abstract—This paper proposed a new idea named Dominant 
Genes (DGs) in Genetic Algorithms (GAs) to deal with FMS 
scheduling problem with alternative production routing. In 
traditional GAs approach, the crossover mechanism will 
randomly select a number of genes to undergo crossover. 
However, these selected genes may not contain or contain only 
part of the critical structure of its original chromosome. In 
addition, since the inherited complexity of the scheduling 
nature, the changes in the structure of the selected genes will 
further influence its strength. To tackle this problem, the 
proposed DGs in this paper are to identify and record the best 
genes in the chromosome. A new crossover mechanism is also 
designed to ensure the best genes will undergo crossover, and 
retain the originality of the structure of the crossover genes. 
The performance of the proposed DGs is testified by 
comparing it with other heuristic optimizations. The 
comparison shows that DGs perform better than other 
approaches. 

I. INTRODUCTION

o factories, job shop scheduling is one of the most 
important tasks. A good schedule can increase the 

efficiency of the manufacturing systems. However, because 
of the inherited complexity of the problem nature and the 
governed constraints, determination of a good schedule is a 
difficult and time consuming activity. It usually involves 
heavy computation efforts. In many practical cases, 
scheduling problems is classified as NP-Hard. The 
computation effort grows even exponentially with the 
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increment of the problem size. Using pure mathematical 
optimization approach to determine an optimal solution may 
not be efficient in practice. Instead, obtaining a near optimal 
solution in a relatively shorter period by heuristic 
methodology is more appreciated.  

Many different heuristic methodologies have been 
proposed by researchers for the past few decades, for 
example dispatching rules such as first in first out, shortest 
processing time, critical ratio, etc. In recent years, many 
other heuristic methodologies have been widely adopted, 
such as branch and bound, hill-climbing, simulated 
annealing, Tabu search, and especially Genetic Algorithms 
(GAs). This paper will mainly discuss on the application of 
GAs approach in dealing with scheduling problem.  

Many literatures can be found in the study of GAs. 
Cheung et al. [1] have given a detailed tutorial survey on 
papers using GAs to solve classical Job-Shop scheduling 
problems (JSP) in their Part I survey. In Part II, they 
reviewed papers using hybrid GA to tackle JSP [2]. Jain and 
ElMarachy [3] proposed a GA to solve single process plan 
scheduling (SPPS) problems. Cavalieri and Gaiardelli [4] 
applied a hybrid GA, which combines GA with dispatching 
rule (Earliest Due Date), to solve multi-objective scheduling 
problems. Sakawa [5] combined GA with fuzzy logic to 
model the uncertainties of production lead time and order 
due date in scheduling problem. More references could be 
found, for example, Mori and Tseng [6], Jawahar et al., [7], 
Ghedjati [8]. 

GAs is recognized as an appropriate and efficient 
approach to solve scheduling problems by many researchers. 
However, to maximize the performance of the genetic 
search, an optimal set of genetic parameters will have to be 
determined, such as population size, crossover rate, 
mutation rate, generation gap, scaling window, and selection 
strategy [6, 9-10]. Different genetic parameters setting in 
different problems will lead to different performance since 
the setting of each parameter has its function, for example 
high crossover rate can increase the global searching, while 
low crossover rate favors fine local searching. Determining 
an optimal set of parameters is critical to the performance, 
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but is difficult to find due to the large number of possible 
combination.  

To strategically strengthen the genetic search in different 
phases of evolution, many researchers proposed different 
kinds of Adaptive Genetic Algorithms for their particular 
problems. During the genetic evolution, the genetic 
parameters, such as population size, crossover rate, and 
mutation rate will change strategically [9, 11-12]. 
Michalewicz [9] proposed a non-uniform mutation which 
allows the operator to search through the solution space 
uniformly in the beginning stages to prevent pre-maturity of 
the solution pool, and then locally in the later stages for fine 
local tuning. Cavaliefi and Gaiardelli [11] adopted a 
dynamic population size approach to replace the old 
chromosomes with new ones to maintain the diversity of 
solution pool.  

In many cases, researchers will usually be required to 
design a new chromosome to represent the possible solution 
to the special needs in their problems. Accordingly, many 
different kinds of crossover and mutation mechanism have 
also been specially designed to cooperate with the 
chromosome in order to enhance their genetic search. In 
scheduling problem, because of the inherited complexity, it 
is crucial to prevent the dramatic changes of chromosome 
after crossover. 

The objective of this paper is to propose a new idea named 
Dominant Genes (DGs) in GA to solve scheduling problem 
of FMS with alternative production routing. The function of 
DGs is to represent the strong genes in the chromosome. 
With the proposed DGs, a new crossover mechanism is 
designed to enhance the performance of the genetic search. 
This paper will be divided into the following sections. In 
section II, the scheduling problem will be modeled. Section 
III will present the proposed DGs, and its crossover 
mechanism. Section VI will analyze and discuss the 
performance of the DGs in FMS environment, and the paper 
will be concluded in Section V.  

II. PROBLEM DESCRIPTION

The FMS scheduling problem is expressed in the following 
notation.  

ijkh Binary Integer, defined as 1 if the operation j of job i
occupied time slot k on machine h, otherwise 0. 

i Weighting of job i.
N  Number of jobs. 
N i Number of operations of job i.
H  Number of machines. 
K  Time horizon under consideration. 
tijhProcessing time of operation j of job i on machine h.
Si j Starting time of operation j of job i.
Ei j Ending time of operation j of job i.
Di  Due Date of job i
Ci  Completion time of job i.
Ti  Tardiness of job i, defined as max (0, Ci - Di). 

In the problem, it is assumed that i, Di, N, Ni, H, and tijh

are given. Each job’s operation can be processed on more 
than one suitable machine, but not all. The decision variable 
is the occupation time slot k of operation j of job i on 
machine h ( ijkh). With the solution of ijkh obtained, the 
value of Sij, Eij, Di, Ci, and Ti can be calculated. The 
objective is to minimize: 

 (i) Makespan (for Example 1 in section IV-A). 

Objective Z: min(max[Ci ])          (1.1)

(ii) Weighted quadratic tardiness function of the jobs (for 
Example 2 in section IV-B). 

Objective Z: min (
2

i

iiT )         (1.2)

In this function, each job will have a weighting to model 
its importance. In addition, as the tardiness of a job 
increases, this job will become more critical. The problem 
will be subject to the following constraints: 

Precedence constraints: 

1)-i(jij ES    
(i = 1, 2,…., N ; j = 1, 2,…., Ni)      (2) 

Processing time constraints: 

ijhijij tS-E 1    

(i = 1, 2,…., N ; j = 1, 2,…., Ni; h = 1,2,…, H)   (3) 

Operation constraints: 

1
kh

ijkh    

     (i = 1, 2,…., N ; j = 1, 2,…., Ni)     (4)

Processing operation constraints: 

1
h

ijkh

  (i = 1, 2,…., N ; j = 1, 2,…., Ni; k = 1,2,…, K) (5)

Machine capacity constraints: 

1
ji,

ijkh

(k = 1,2,…, K ; h = 1,2,…, H)       (6)

In the above constraints, constraints (2) defines that the 
starting time of each operation can only be processed after 
its precedence operation. Constraints (3) defines that once 
an operation starts, it will be finished without interruption. 
Constraints (4) forces each operation to be carried out on at 
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Case A             
P1: 1111 - 2330 - 2120 - 2130 - 2210 - 1220 - 3230 - 1311 - 3320
P2: 2130 - 2120 - 1110 - 2210 - 1221 - 3230 - 1310 - 3320 - 2330

Step             
1 Of1: 1111 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 1311 - 0000
2 Of1: 1111 - 0000 - 0000 - 0000 - 1221 - 0000 - 0000 - 1311 - 0000
3 P1: 0000 - 2330 - 2120 - 2130 - 0000 - 2210 - 3230 - 0000 - 3320
4 Of1: 1111 - 2330 - 2120 - 2130 - 1221 - 2210 - 3230 - 1311 - 3320

Step             
1 Of2: 0000 - 0000 - 0000 - 0000 - 1221 - 0000 - 0000 - 0000 - 0000
2 Of2: 1111 - 0000 - 0000 - 0000 - 1221 - 0000 - 0000 - 1311 - 0000
3 P2: 0000 - 2120 - 2130 - 2210 - 0000 - 3230 - 2330 - 0000 - 3320
4 Of2: 1110 - 2120 - 2130 - 2210 - 1221 - 3230 - 2330 - 1310 - 3320

Fig. 2      Dominant Gene crossover of Case A 

least one machine throughout the horizon. Constraints (5) 
forces each operation to be only carried out on one machine 
at each time unit, and constraints (6) forces each machine to 
carry out only one operation at each time unit. 

III. PROPOSED DOMINANT GENES IN GENETIC ALGORITHM

A.  Dominant Genes 
Solving scheduling problem with GAs approach has been 
recognized by many researchers as an appropriate and 
efficiency approach. This paper proposed a new idea named 
Dominant Genes (DGs) to enhance the performance of the 
genetic search, specially designed to deal with the inherited 
problem nature of scheduling problems. The function of 
DGs is to identify and record the best genes in the 
chromosome. In the initial pool, some genes are randomly 
assigned as DGs, which may contain more than one. During 
evolutions, only those DGs undergo crossover in each pair 
of parents to generate a pair of offspring. Each offspring 
reserves most of the genes from one of the parents and 
inherits only the DGs from another parent. If these inherited 
DGs make the offspring stronger (increase fitness value) 
than the parent, they will become DGs in the offspring, 
otherwise they will become normal genes. This idea ensures 
that the best genes will be passed to the offspring. A normal 
gene can also become a DG through two types of mutations 
discussed in the section III-D. 

B. Encoding of chromosome 
Each gene consists of four parameters, representing 
Machine, Job, Operation, and Domination (MJOD). Fig. 1a 
shows a sample encoding of a chromosome for the 
scheduling of 3 jobs (each with 3 operations) on 3 machines. 

1111–2330–2120–2130–2210–1220–3230–1311–3320 
Fig. 1a.  A sample encoding of chromosome 

In Fig. 1a., the second gene (2330) represents that O3 of 
J3 is allocated on M2, and it is not a DG denoted by 0 (DG 
denoted by 1). The scheduling priority of jobs on machines 
is defined by the ordering, from the highest priority on the 

left to the lowest on the right. Therefore, Fig. 1a. indicates 
that O3 of J3 (the second gene: 2330) will be scheduled 
before O2 of J1 (the third gene: 2120) on M2. 

This encoding also allows to model in alternative routing 
problems. Assuming O3 of J3 can also be performed on M3, 
then the second gene can be represented as (3330) as shown 
in Fig. 1b. 

1111–3330–2120–2130–2210–1220–3230–1311–3320 
Fig. 1b. A sample encoding of alternative routing 

C.  Dominant gene crossover 
In traditional GA approach, a number of genes will be 
randomly selected governed by a predefined crossover 
rate(s). However, these selected crossover genes may or may 
not be critical even in its original chromosome structure. In 
addition, it is difficult to ensure that the whole set of best 
genes can be selected and inherited to its offspring. Another 
problem is the originality of the parent’s chromosome 
structure. After crossover, the structure of the offspring 
should not have dramatic changes from its parent because 
this will make the genetic search become a random search 
approach. In the DGs approach, crossover rate depends on 
the number of DGs in each chromosome. DGs crossover can 
be divided into 2 cases. If there are no DGs conflicting at the 
same location of the two parents, and if there are no identical 
jobs dominant in both parents, it will be classified as Case A 
as the parent chromosomes shown in Fig. 2, otherwise Case 
B as shown in Fig. 3a, and 3b.  

 Case A 
Crossover in Case A is carried out in four steps. Fig. 2 shows 
a sample crossover.  

Step 1: Offspring 1 (Of1) reserves DGs from P1, and these 
genes will be emptied in P1.  

Step 2: Of1 inherits DGs from P2, and the genes with the 
same number of J and O in P1 will be emptied.  

Step 3: Copy the remaining genes with the same number of 
J equal to the DGs from P2 to replace those in P1.   

Step 4: Copy the non-empty genes from P1 to the 
non-empty genes in Of1. 
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Case B           
P1: 1111 - 2330 - 2120 - 2130 - 2210 - 1220 - 3230 - 1311 - 3320 
P2: 2131 - 2120 - 1110 - 2210 - 1220 - 3230 - 1310 - 3320 - 2330 

Fig. 3a     Dominant genes conflicting in the same location 

P1: 1111 - 2330 - 2120 - 2130 - 2210 - 1220 - 3230 - 1311 - 3320 
P2: 2130 - 2121 - 1110 - 2210 - 1220 - 3230 - 1310 - 3320 - 2330 

Fig. 3b     Dominant genes conflicting in the same job  

P1: 1111 - 2330 - 2120 - 2130 - 2210 - 1220 - 3230 - 1311 - 3320 
P2: 2130 - 2120 - 1110 - 2210 - 1220 - 3230 - 1310 - 3320 - 2330 

Fig. 3c     Parents in Fig. 3a converted to generate Of1A. 

P1: 1110 - 2330 - 2120 - 2130 - 2210 - 1220 - 3230 - 1311 - 3320 
P2: 2131 - 2120 - 1110 - 2210 - 1220 - 3230 - 1310 - 3320 - 2330 

Fig. 3d     Parents in Fig. 3a converted to generate Of1B. 

P1: 1111 - 2330 - 2120 - 2130 - 2210 - 1220 - 3230 - 1311 - 3320 
Of1: 1111 - 1220 - 2120 - 2130 - 2210 - 2330 - 3230 - 1311 - 3320 

Fig. 4a     A sample procedure of Mutation 1. 

P1: 1111 - 2330 - 2120 - 2130 - 2210 - 1220 - 3230 - 1311 - 3320 
Of1: 1111 - 1330 - 2120 - 2130 - 2210 - 1220 - 3230 - 1311 - 3320 

Fig. 4b     A sample procedure of Mutation 2. 

Similar steps will be carried out for Of2 except in Step 1 
where Of2 reserves DGs from P2, then inherits from P1 in 
Step 2. In Step 3, the remaining genes will be replaced from 
P1 to P2, and the non-empty genes will be copied from P2 to 
Of2. 

One of the advantages of this crossover mechanism is that 
the best genes will undergo crossover. In addition, these 
genes will be testified whether they can increase the fitness 
value. If they make contribution to the chromosome, they 
will be identified, recorded, and inherited to its offspring. 
Assuming that the fitness value of Of1 is better than P1, then 
the inherited DGs from P2 will remain its domination. 
However, if it is weaker than its parents, like Of2 is weaker 
than P2, the inherited DGs from P1 will become normal 
genes.  

Case B 
In Case B, since P1 and P2 have DGs conflicting in the same 
location(s) or job(s), as shown in Fig. 3a and 3b respectively, 
a selection is required to determine which DG is stronger. 
However, for example, if each parent has 2 DGs conflicting, 
there will be 4 possible combinations. To prevent too many 
possible combinations, only two choices will be formed. The 
first choice is formed by changing all the DGs in P1 into 
normal genes, while the second choice by changing all those 
in  P2 into normal genes. For example, the parents in Fig 3a 
will convert into the form that satisfies Case A, as shown in 
Fig 3c and 3d to produce Of1A, and Of1B respectively. In 
Fig 3c, the conflicted DG (2131) of  P2 is changed to normal 
gene (2130) in Fig 3a. The crossover approach is that Case A 
can be carried out to obtain Of1A. Similarly, Of1B can be 
obtained from the form in Fig 3d. The stronger one (Of1A or 

Of1B) will be selected as Of1. Similar procedures will be 
carried out to obtain Of2A, and Of2B, except that the 
reserved genes will be in P2, and inherited genes will be 
from P1. 

D. Mutation operator 
There are two types of mutation. In Mutation 1, a pair of 
genes will be randomly selected and swapped, as shown in 
Fig.4a. The purpose of this mutation is to reschedule the 
scheduling priority of job’s operations. For example, Fig. 4a 
shows that after the swap, the production priority on M2 is 
that O3 of J3 (2330) is rescheduled to be produced after O2 
and O3 of J1 (2120 and 2130). 

In Mutation 2, some genes will be randomly selected and 
mutated, as shown in Fig. 4b. The number of mutated genes 
is governed by the predefined mutation rate(s). The selected 
gene will randomly change in the M parameter. The purpose 
of this mutation is to increase the diversity of the 
chromosomes. In both mutation operators, if Of1 is stronger 
than P1, the mutated gene will become DG. 

E. Elitist strategy 
To prevent the loss of the best chromosome during 
evolutions, the best chromosome will be identified and 
recorded. If the best chromosome is lost or becomes weaker 
after evolution, it will be inserted back into mating pool for 
the next evolution. 

IV. ANALYSIS AND DISCUSSION ON THE PERFORMANCE 
OF DG 

The objective of this section is to testify the performance of 
the proposed DGs approach in solving FMS scheduling 
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TABLE I MODEL PARAMETERS OF EXAMPLE 1
Process Process 

Job  Oper. m/c Time Job  Oper. m/c Time 
1 1 1 7 4 1 2 9 

1 3 4 1 3 5 
2 2 3 2 1 6 
3 1 3 2 3 2 
3 3 6 3 2 7 
4 1 2 3 3 12 
4 2 4 4 1 9 

2 1 1 8 4 2 6 
1 2 12 4 3 3 
2 3 4 5 1 1 10 
3 1 7 1 3 15 
3 2 14 2 2 7 
4 1 8 2 3 14 
4 3 4  3 1 5 

3 1 1 10  3 2 8 
1 2 15  4 1 4 

 1 3 8  4 2 6 
 2 2 2  4 3 8 
 2 3 6     
 3 1 2     
 3 3 4     
 4 1 6     

 4 2 3 

TABLE III RESULTS OF EXAMPLE 2 BY DIFFERENT APPROACHES

Approach Z 
Hoitomit et al. LP Relexation 247,843.5
Zhao and Wu SGA 239,740.0
Yang and Wu AGA 239,365.0
Proposed DG DG 239,294.5

problem with alternative production routing. The problem 
formulation discussed in section II will be adopted to model 
two sample problems originally obtained from Lee and 
DiCesare [13] and Hoitomt et al. [14].  

A. Example 1 
This model is obtained from Lee and DiCesare [13]. The 
model consists of 5 jobs, 3 machines, 4 operations in each 
job, and each operation can be performed on one of the 3 
machines as shown in Table I. The lot size for the jobs is 10, 
and the objective function is to minimize the makespan, 
equation (1.1). Originally, Lee and DiCesare [13] applied 
Petri Nets combined with the heuristic search to obtain 439 
makespan. Recently, Kumar et al. [15] have applied Ant 
Colony approach to obtain 420 makespan. By applying the 
proposed DGs in GA, this paper obtained 360 makespan as 
shown in Table II.  

B. Example 2 
This model is obtained from Hoitomt et al. [14]. The 
problem size contains 127 jobs, 33 machines, a maximum of 
7 operations in each job, and each operation may perform on 
one of the 6 suitable machines. The objective function is to 
minimize a weighted quadratic tardiness function of the jobs, 
equation (1.2). They applied Lagrangian relaxation to solve 
this problem. The capacity constraints and precedence 
constraints were relaxed. The feasible solution obtained has 
a value of Z = 247,843.5. This problem has been studied by 
other researchers. Zhao and Wu [16] applied GA, while 
Yang and Wu [17] proposed an Adaptive GA to solve the 
same problem. The results are shown in Table III. 

V. CONCLUSION

From Examples 1, and 2, the results indicate that the 
proposed DGs approach perform better than the other 
heuristic approaches (such as, Petri Nets, Ant Colony, 
Simple GA, and Adaptive GA) in the sample FMS 
scheduling problems.   
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