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ABSTRACT 

The model of Gibbs random fields is widely applied to Bayesian 
segmentation due to its best pmpelty of describing the spatial 
constraint information. However, the general segmentation 
methods, whose model is defined only on hard levels but not on 
fuzzy set, may come across a lot of diffculties, e.g., getting the 
unexpected results or even nothing, especially when the blurred or 
degraded images are considered In this paper, two multi-class 
approaches, based on the model of Piecewise F u n y  Gibbs 
Random Fields (PFGRF) and that of Generalized Fuvy Gibbs 
Random Fields (GFGRF) respectively, are presented to address 
these difficulties. In OUT experiments, both magnetic resonance 
image and simulated image are implemented with the two 
approaches mentioned above and the classical "hard one. These 
three different results show that the approach of GFGRF is an 
effcient and unsupwvised technique, which can automatically and 
optimally segment the images to be finer. 

Keywords -Mult'class segmentation, generalized fiyzy GRFs, 
image segmentation. 

1 .  INTRODUCTION 

Maximum a posterior (MAP) has been extensively used in 
Bayesian segmentation based on the model of Gibbs Random 

Fields (GRF) [I], [Z]. For the set of pixels S={1,2, ..., N } ,  
Y=( Y, )ES is unobservable random field whose realizations are 

the hue nature of the observed scene, taking their values in a finite 
set of class is the 
observed random field whose realizations can be seen as a 
corrupted version of Y and correspond to the intensity of 
observation. In statistical terms, image segmentation is fmding the 
hue unobservable random field Y f" the corrupted observed 
one X. And the Gibbs random field is one of the most efficient 
prior models due to its excellent property of describing the spatial 
contextual constraint of the image [Z], [7]. Until now, although a 
lot of improvements about the fuzzy random model have been 
made in the classification of satellite image and m o t e  sensing 
image [3], [4], [SI, there is still a long way to go through for the 
model to become a practical one, mentioned as [4]: such methods 
would undoubtedly be very time consuming, and further research 

= {U,, 13, ,..., UK}.  and X=( x, 

must be intended to solve these complicated problems. e.g., the 
reliability of approach, and so on, when the number of classes in 
an image exceeds two. In this paper, an efficient and unsupervised 
fuzzy approach based on GFGRF is developed to address these 
problem well, which has shown its great effect by overcoming 
the problems brought by multklass and having proved to be a 
practical and powerful one in managing the t i u y  segmentation. 

The fuzzy framework adopted in this paper contains two 
components: a "hard" component, which describes the "pure" 
pixels and a ''fuzzy'' one, which describes the 'mixed" pixels. In 
order to make the concept of fuzzy more understood, a tweclass 
satellite image is used to explain why by adding a fuzzy class into 
the classical models of determinate GRF would enrich the 
statistical 'hard" model to be more consnnant with the reality of 
data. Let us consider the problem of segmenting a satellite image 
mto two classes 'houses" and 'Yrees". There may be some pixels 
with only houses and others with only trees, saying class 0 and 
class I. On the other hand, there may also be many pixels, as in 
suburbs, where houses and trees are simultaneously present, 
corresponding to fuzzy class F, whose values are drawn from -1 
to 1. From the point of view, each pixel in the image is associated 

with a vector Us = [U, ] ,BsK E [ - 1 , 1 I K  , and the 'hard" 
segmentation or the determinate problem a p p m  as a particular 
case in such fuzzy framework 

In recent years, Bayesian approaches for image segmentation 
have become more and more popular because they form a natural 
framework for integrating both statistical models of image 
behavior, the secalled likelihood distribution, and prior bowledge 
about contexhlal structure of accurate segmentations, the SD 
called prior distribution [6]. In practice, when the contextual 
srmchxe is modeled by a Markov Random Fields, or equivalently 
to a Gibbs dishibution 171, the specification of global minmum for 
potential energy requires only that of local one, which makes the 
Bayesian approaches to be more accepted for its tractable and 
less time cost. To be more precise, a Gibbs distribution is defined 
with respect to a neighborhood V as 

(1) 

where Z is a partition function, and U ( X ) ,  called as energy 

function, is the sum of potential functions #(X) defined on 

' -*(4 p ( X  = x) = - e  
2 
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cliques. Fmm the view of fuzzy, the energy U ( X )  must COnSiSt of 

a "hard" o n e , u h ( x ) ,  and a '%my" one, U,(X). So ( I )  can 

be rewritten as [3] 

(2) 

The organization of ths paper is as follows. Section two 
shows the generalized fuzzy set and its corresponding random field. 
In section three, two mulhclass ftuzy approaches named PFGRF 
and GFGRF are described in detail. In the experiments of section 
four, both real MRI and simulated image are provided fur the 
comparison with the hvo fuzzy algorithms and the "hard" one. 
And the last section contains the conclusions. 

1 +J,(x)tU,(r)l p ( X = x ) = - e  
Z 

2. GENERALIZED FUZZY SET AND RANDOM FIELD 

In 1995, the definition of the generalized fuzzy set (GFS) was 
presented for the first time by Professor CHEN IS], and from then 
on, a lot of methods based on GFS have been proved to be quite 
succpssful in the field of image processing. 

Denoting GFS A on reion L as 

A = S  u , ( x ) / x  
.SE L 

or 

A = {(u,,(x), X E  L ) }  (3 ) 

where U A ( X ) E  [-1,1] is called the generalized membership 
function (GMF). For a M by N image X, its GFS is denoted as 

(4) 

Thus, a generalized firuy random field can be conshucted 
based on GFS easily. And wery pixel in the fuzzy image of t w ~  
class can be divided into three kinds: two for 'bure" pixels, i.e. 
class 0 and I ,  and one for "mixed" pixels, called class F. Let their 
probability be 

no = h(0) = p ( y  = 0) 

n, = h(1) = p ( y  = I) 
I C F  = h(F)  = p ( y  = F )  = 1 - x ,  --IC, ( 5 )  

where h(.)  means the degrees of fuzzy for the prior distribution. 
And the generalized fuzzy random tield Y can be defined by 

Y, = 0 ex,= - 1  
Y, = 1 -Xp + I  
r, = F HI,€ (-1,l) (6) 

Normally, assume that an observed image can be obtained 
from a noise-free image by adding some kind of noise. Thus, the 
observed and conupted random field X can be seen as the 
combination of an unobservable one Y and an adding noise. In 
addition, the likelihwd of P ( X / Y )  is supposed to be a 

Gaussian form and the parameters on each fuzzy pixel is assumed 
to depend linearly on that of the both "hard" classes [4]. To be 

2 
more precise, suppose ",, 0, be the mean and variance of 

class 0, and m, , 0: be that of class 1. So, the likelihwd 
distnbution for the fuzzy random field can be shown as 

= Nm(&),o2(&)1 (7) 

m(&) = (1 - &)m, + m,, d(&) = (1 - &)O,z +&O? 
where 

And its corresponding density function f(&, X) is 
-- (x-m(zI? 

(8) 
1 2 d ( E )  f(w) = 

As many classical Bayesian segmentation approaches, MAP 
is still the most popular estimator in GFCRF. It is well known that 
to get the segmentation of an image means to estimate the 
realization of Y from its observation X .  According to Bayesian 
rules, the posterior distribution p ( Y  / x) can be expressed from 
the likelihood distribution and its prior distribution as 

P(Y lx) cc P(Y).P(X / Y )  (9) 
Therefore, the MAP for posterior distribution now changes to 

the process of getting the maximum of h(&).f( E,  X) . 
In the paper, for simplicity, only eight nearest neighbors and 

those cliques whose cardinal is not superior to two are taken into 
account, and the model of fuzzy GRF (FGRF) is supposed to be 
homogeneous and isotropy. Therefore, the fiuzy clique potentials 

with respect to t E v, can be redefined by 
For singleton clique, we consider 

$(Y,)= V,, if Y, = O  
g ( Y , ) = V , ,  if Y, = 1  

$ ( c ) = k ,  if Y S g  F (10) 

For pair cliques and (c , Y,) E (0,112 , we considei 

$(T,q)=-/?,  if q=Y, 
# ( Y , , Y , ) = + P ,  if Y,*yI 0 1) 

Forpaircliquesand(YX,K)6I (0,112, weconsider 

N ( y , , y , ) = - P . ( l - 2 x l Y s  -TI) (12) 

where V,, , V I ,  A, p are constant. 

3. MULTI-CLASS FUZZY APPROACHES 

As pointed out about the definition of clique potentials for f u z y  
pixels, the spatial contextual constraints are more tine and rich 
than that of "hard" one. Hence, in theory, it is clear that the mdel 
based on funy Cibbs random field may have more powerful ability 
to solve the problems of image segmentation, especially m deabng 
with fwzy images or degraded ones. 

Now let us recall how the two-class FGRF work firstly, a 
three-class segmentation is applied by taking the maximum 
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-t in {O,l,F}to get the digital i imy  image. ~econdly, 
reclassify those pixels in the digital fupy image labeled with F by 
taking& in ( - 1 ,  I) .  Finally, get the twc-class segmentation by 
some determinate tule. 

Thus, the algorithm of PFGRF can be accomplished by 
performing several twoclass FGRF in succession: divide the 
image into a series of gray regions firstly with some clustering 
algorithms. Then the twc-class fizzy approach is adopted in each 
region to get its 'bard" result respectively. 

Obviously, the result of PFGRF segmentation is sensitive to 
the precise of subsection and dependent on some parameten 
concerned e.g., mean and variance. So the key shortcomings of 
PFGRF are its sensibility to initial segmentation and the difficult 
choice of parameters, which will lead us to perform the approach 
more than one time until getting the desirable result for a pmiculax 
segmentation. 

To cope with these limitations brought by PFGRF, an 
unsupervised and automatic funy approach named GFGRF is 
developed, which is based on the main ideas of GFS and take 
advantage of its corresponding GMT. Firstly, convert the gray 
space into generalized fuzzy set. Secondly, perform fuzzy 
segmentation on the whole GFS. Details for this approach are 
summarized as following: 

Specify some process parameters as iterative number 
IN=15, sample number SN=I?Q, iterative variant n=O. 

Transform the gray space x = {X,} into the GFS 

A = {A, } according to mapping T. 

Perform initial segmentation with FCM to get its means 
.2 

andvariances:p'i,cT i ,  i €  [1,K] inGFS. 
Perform sampler on the whole GFS, and accomplish the 
funy segmentation with (3, (E), ( I  I ) ,  (12) and by ICM, 
then increase n by 1 .  

5~ Repeat step 4), and stop when n=IN or some 
convergence conditions are reached 

6) Re-convert the GFS back into gray space according to 
the inverrely mappingXg = T - ' ( A , ) .  

1) 

2) 

3) 

4) 

The main difference between the two mult<class fuzzy 
approaches is that a GMF is imported in GFFRF, which extends 
the fuzzy class F to the whole GFS, corresponding to the whole 
gray space, but not on one subsection as PFGRF. Therefore, the 
advantages of GFGRF instead of PFGRF may be its less 
dependence an initial segmentation and not concerting the 
problem of parameters. On the other hand, from the view of 
minimum of energy, such labeling about funy class F in the whole 
gray space may usually overcome the constraint of local minimum 
which oilen takes place in the MAP with ICM. 

4. EXPERIMENTS AND RESULTS 

In this section, we use two 256x256 pixels images, one for real 
MRI and another for simulated image (SI), to compare the results 
by the three approaches: PFGRF, GFGRF, and the classical 
''hard" one. For simplicity, we omit singleton clique, adopt FCM [9] 
as clustering method, use ICM to get the MAP, and abbreviate the 
classical "hard" approach as HGRF 

Fig I Results oiMRI by three dillerem appmxches: (a) origin31 
mngc, ch) HGRF rciiill, (c) P K R F  resill. IJ) ( iHiRF h.suII 

'.,:! 
Fig. 2 Results of SI by three different approaches: (a) original 
image, (b) HGRF result, (c) PFGRF result, (d) GFGRF result 

In Fig. I and Fig. 2, (a) is original image, @) (c) (d) show the 
results of HGRF, PFGRF, and GFGRF respectively. 

In Fig.1, all algorithms are assumed to segment the image into 
four classes corresponding to background, gray maner (GM), 
white maner (WM), and cerebrospinal fluid (CSF). Obviously, Fig. 
I@) and Fig.l(c) are not as excellent as expected, for there are 
still a lot of unconnected regions m Fig. I@) and some over- 
smooth in Fig. I(c), especially between the boundary of WM and 
GM. The most reasons are that those statistic characters derived 
from FCM are not so exact, which are used to get the MAP in 
HGRF and get the subsection in PFGRF. On the contrary, these 
unexpected results are addressed well by the approach ofGFGRF, 
which takes advantage of the benefits brought by importing a 
fuzzy class in the classical model in the view of eliminating the 
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non-connected regions and shows its less dependence on initial 
segmentation in the view of over-smooth, shown as Fig. l(d). 

Fig. 2 illustrates that (c) and (d) are better a lot than (b) where 
the image has neither recovered from the noises nor been 
segmented nto desired regions successfully, which explains that 
the model of FGRF instead of that of HGRF is more suitable in 
describing the prior contextual constraint, especially of dealing 
with the noise images. Moreover, the Fig. 2(d) shows much 
superiority over Fig. 2(c), which has demonstrated again that 
GFGRF is the best technique among the three approaches in 
segmenting the blurred image into their desired regions. 

Table I shows the computation time for the three different 
approaches in the experiments (s denotes second). 

I I DFCQF I 

Note that the computation time for PFGRF in Table 1 is 
assumed that it is one time success without considering the choice 
of parameters. h practical terms, there are usually many times 
needed for choosing the parameters. Thus, in reality, the 
computation time for PFGRF is oAen much than that of GFGRF. 

5. CONCLUSIONS 

In this paper, two fuzzy approaches named PFGRF and GFGRF 
are developed to address the problem of multkclass, which are 
supported by the model of hidden fiuzy Markov fields [3] and 
based on the generalized fuzzy set [SI. Firstly, a fuzzy class is 
i n d u c e d  to the determinate model of GRF, which has shown to 
be very successful in segmenting the t w ~ c l a s s  satellite image 
when the pixels in an image are fuzzy or the image is blurred The 
aim of such a fuzzy Markov random fields or Gibbs one was to 
allow the simultaneous existence of ‘ b a r d  pixels and “fun$ one, 
according to the assumption that such situations can occur in real 
images. But whcn the class in an image exceeds two, such model 
has to face with some problems such as expensive computation, 
the instability of approach, and so on. It is known to be more 
difficult when =me parameters, e.g., means and variances, need 
to be estimated such as using Iterative Conditional Estimation 
(ICE) [3], [4], [5]. Secondly, an initial segmentation is used to get 
the statistical characters instead of performing ICE that needs 
much computation time. However, these statistical characters 
derived from FCM are not so ideal that some problems mentioned 
as section three and four are come into being. In order to take 
advantage of the benefits brought by the model of FGRF and 
overcome the shoncanings due to non-ideal statistical characters, 
a new multi-class fuvr approach named GFGRF is presented, 
which has been proved, in our experiments, to be a perfect one. 
The essential novelty of this paper is that, for the first time, the 
problem of fuzzy segmentation about multklass has been solved 
automatically by adopting the generalized fuzzy set that has 
extended the fuzzy membership to a generalized one. By which 
we can perform sampler for those pixels labeled with F on the 
whole GFS. ARer recalling the process of GFGRF, we can notice 
that there is nothing except the number of classes for an image 

needs to be assigned before FCM. Thus, in some degrees we can 
say the approach of GFGRF is an unsupervised technique. 

The theoretical studies of fuzzy random field and the results in 
experiments lead us to put forward the following conclusions: 

0 The definition for the model of Gibbs random field, 
describing prior contextual constraints, is extended to a 
fuzzy one by adding a fuzzy class, which enriches the 
current statistical model to be more consistent with the 
reality of data and thereby improves the fine and 
reliability for the result of segmentation. 
The approaches based on generalized fuzzy Gibbs 
random filed provide a powerful segmentation than that 
of hard ones, especially when an image is suffered from 
noise or the pixels on an image consist of fuzzy ones. 
The two multkclass fuzzy approaches shown in this 
paper have proved to be very successful and eficient 
according to the computation time and their stability. 
The approach based on GFGRF presented in this paper 
has been proved to be a quick, automatic, and precise 
one in fuzzy segmentation ofmulti-class. 

0 

0 
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