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Abstract

Jackson’s theorem, which is the basis of the mathe-
matical theory of networks of queues, does not hold.

1 Introduction

Networks of queues are basic models for the analy-
sis and design of computer networks [5], and represent,
in their own right, an important research field, origi-
nated by the seminal work of Jackson [3, 4]. Various
networks of queues, proposed after [3], are different
generalizations or variations of a class of fundamen-
tal models, referred to as Jackson networks of queues,
studied in [3]. For this reason, the classical result of
Jackson, known as Jackson’s theorem [3], is consid-
ered the cornerstone of the mathematical theory of
networks of queues. However, Jackson’s theorem does
not hold.

In Section 2, we revisit Jackson’s theorem. In Sec-
tion 3, we disprove Jackson’s theorem with simple
counterexamples. In Section 4, we show that the lim-
itation of the existing theory of stochastic modeling
may explain why Jackson’s proof and all other proofs
of Jackson’s theorem are flawed. After a brief dis-
cussion, we conclude in Section 5 by pointing out the
implication of our result to networking studies.

2 Jackson’s Theorem Revisited

We first introduce the notations used, and the as-
sumptions made, by Jackson [3]. There are M queues
(referred to by Jackson as “departments”) in a Jack-
son network, labeled by m = 1, 2, · · · ,M . At queue
m, there are nm servers; the service time required

∗The corresponding author.

by a customer is exponentially distributed, with mean
1/µm; customers arrive from outside the network ac-
cording to a Poisson process at rate λm ≥ 0.

Once served at queue m, a customer may either go
to queue k in the network with probability θkm, or
leave the network with probability θ∗m = 1 − ∑

k θkm,
where k = m is allowed. The total arrival rate at
queue m is denoted by Γm. It is assumed

Γm < µmnm, m = 1, 2, · · · ,M. (1)

The number of customers waiting and in service
at queue m is km. At time t, the state of the net-
work is defined by a vector (k1, k2, · · · , kM ), which is
further assumed to be a Markov process, with proba-
bility Pk1,···,kM

(t). Finally, write αi(k) = min{k, ni}
and δi = min{ki, 1}.

Jackson’s theorem says, in essence, that “so far
as steady states are concerned,” queue m for m =
1, 2, · · · ,M in a Jackson network behaves as if it was an
M/M/nm queue in isolation, independent of all other
queues in the network. The proof given by Jackson
begins with the following equation [3].

Pk1,···,kM
(t + h) ={

1 −
(∑

λi

)
h −

[∑
αi(ki)µi

]
h
}

Pk1,···,kM
(t)

+
∑

αi(ki + 1)µiθ
∗
i hPk1,···,ki+1,···,kM

(t)

+
∑

λiδihPk1,···,ki−1,···,kM
(t)

+
∑ ∑

αj(kj + 1)µjθijh

Pk1,···,kj+1,···,ki−1,···,kM
(t) + o(h) (2)

where h is a small time increment, and o(h) tends to
zero faster than h, as h → 0. Although not mentioned
explicitly in [3], it should be clear that the condition
j �= i must be imposed on the double summation in
(2).
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3 Counterexamples

We give two simple counterexamples to Jackson’s
theorem. More counterexamples can be constructed
similarly.

Counterexample 1: Single-Server Queue with
Feedback

The simplest Jackson network, consisting of only one
single-server queue with feedback, is a counterexample
of Jackson’s theorem.

This single-server queue with feedback has been
used in the literature to explain Jackson’s theorem,
and is directly obtained from Jackson’s model [3],
by setting M = 1 and n1 = 1. In addition, write
k1 = k, λ1 = λ > 0, µ1 = µ > 0, and θ11 = θ > 0.
Now for k > 1, (2) becomes

Pk(t + h) = (1 − λh − µh)Pk(t)
+µ(1 − θ)hPk+1(t) + λhPk−1(t) + o(h). (3)

Denote by Q(t) the number of customers waiting
and being served in the single-server queue at time t.
Equation (3) is actually

P{Q(t + h) = k}
= P{Q(t + h) = k|Q(t) = k}P{Q(t) = k}
+P{Q(t + h) = k|Q(t) = k + 1}P{Q(t) = k + 1}
+P{Q(t + h) = k|Q(t) = k − 1}P{Q(t) = k − 1}
+o(h). (4)

For simplicity, we follow the convention of ignoring
higher order of infinitesimal. This will not affect our
conclusion. Compare (3) with (4). We see immedi-
ately

P{Q(t + h) = k|Q(t) = k} = 1 − λh − µh.

Replace k respectively by k − 1 and k + 1 in (3) and
(4), and then compare the obtained equations. We see

P{Q(t + h) = k − 1|Q(t) = k} = µ(1 − θ)h

and
P{Q(t + h) = k + 1|Q(t) = k} = λh.

We arrive at a contradiction: The sum of the above
probabilities is not equal to one. Since (3) is not valid,
a steady state derived based on (3) does not exist, and
(1) is not meaningful. The contradiction shows that
Q(t) is not a Markov process. This can also be seen
without diagnosing (3).

Two time epochs, r and s, where r < s, define
a time interval [r, s), such that Q(r−) �= k, where

k > 0 is given, Q(t) = k for t ∈ [r, s), and Q(s) =
k − 1. Clearly, s − r is a sum of a random number of
exponential random variables of rate µ. Denote by Yj

the jth random variable in [r, s).

s − r =
N∑

j=1

Yj (5)

where N is a geometric random variable.
For Q(t) to be a Markov process, s − r should be

an exponential random variable. In an effort to sal-
vage Jackson’s theorem, it is claimed that s − r is
exponential with parameter µ(1 − θ). Since s − r is a
directly observable quantity, if the claim is true, in a
sample path of Q(t), realized values of the exponen-
tial random variable of rate µ(1−θ) should be directly
observed. So the claim can be tested by the following
experiment.

For given λ, µ, and θ, let us simulate Jackson’s feed-
back queue, and observe the realized values of s−r. If
a sampled r − s is a realized value of the exponential
random variable with parameter µ, we color this s− r
red. If the sampled r − s consists of at least two re-
alized values of the exponential random variable with
parameter µ, we color it blue.

Such realized values of r− s are what we can see in
the experiment. The different colors indicate that r−s
is not a random variable with an unvarying distribu-
tion. Realized values of r− s colored red and blue are
clearly not sampled from the same distribution. It is
not even necessary for realized values of r − s colored
blue to be sampled from the same distribution.

As shown by the experiment, realized values of the
exponential random variable of rate µ(1 − θ) do not
exist in any sample path of Q(t). In other words, the
claim that r − s is exponential with rate µ(1 − θ) is
false. On the contrary, since r−s is not a random vari-
able with any fixed distribution, Q(t) is not a Markov
process, i.e., the experiment confirms the flaw in Jack-
son’s proof.

Counterexample 2: Two Queues in Tandem

To show that Jackson’s theorem may not necessarily
hold, even if customers are restricted to visiting any
queue in a Jackson network at most once, we impose
this restriction in the following analysis.

Consider a simple Jackson network of two single-
server queues in tandem, such that all customers arrive
at the first queue, go to the second queue after service,
and leave the network from there.

For this network, Jackson’s theorem is a corollary
of Burke’s theorem [1]: By applying Burke’s theorem
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to the first queue, the output from the first queue is
considered a Poisson process [1], and the second queue
is considered an M/M/1 queue. This is, however, in-
correct.

Let us simulate the first queue, or do the simula-
tion as a thought experiment, and observe the inter-
departure time sequence of this stable M/M/1 queue
in steady state.

Let s and t, where s < t, be two arbitrary, consec-
utive departure epochs of the queue. There are two
cases: The server is exclusively either (a) busy, or (b)
idle, at time s. From a straightforward observation,
the inter-departure time t − s is distributed as a ser-
vice time in case (a), and as the sum of an idle time
of the server and a service time in case (b).

An inter-departure time t − s is sampled in either
case. In case (a), we color a line segment of length
t − s red, and use “R” to represent the segment. In
case (b), we color a segment of length t − s blue, and
use “B” to represent the segment.

Corresponding to every sample path of the inter-
departure time sequence, we now have a sequence of
colored segments, which may look like

RRRBRRRRBBBRRRRBBRR · · · .
We can see a tendency for the segments with the same
color to aggregate. This is because the segments are
colored according to the state of the queue, which is a
Markov process. So, the colored segments are Markov
dependent. Due to the same reason, the corresponding
inter-departure times in the physical departure pro-
cess are also Markov dependent, not mutually inde-
pendent.

As visualized by the colored segments, the inter-
departure times in the physical departure process de-
pend on the state of the queue, and follow two different
distributions. Clearly, such inter-departure times can-
not form an i.i.d. exponential sequence. The phys-
ical departure process corresponding to such inter-
departure times is evidently not a Poisson process.

Burke discovered the Poisson output, by averaging
out the impact of the state of the queue [1]. Taking
the sequence of colored segments as an example, we
illustrate how the impact of the state of the queue
is averaged out, and hence the Poisson output is ob-
tained based on the physical departure process. We
begin with constructing a histogram, using the lengths
of the colored segments as raw materials.

Consider interval (0,H) on the real line. Divide the
interval into N(H) consecutive, disjoint small subin-
tervals of equal length. As H increases, the number
of subintervals N(H) increases, and the length of the
subinterval decreases.

For all segments with lengths less than H, calculate
the relative frequencies that the lengths of the seg-
ments are in the small subintervals, regardless of their
colors. Increase H gradually. As H → ∞, we obtain a
probability density function (pdf), which is exponen-
tial with parameter identical to the arrival rate of the
queue.

Sample random variables independently, regardless
of the state of the queue, from so constructed expo-
nential pdf. The sampled random variables are then
mutually independent, follow an identical exponential
distribution, and hence form an i.i.d. exponential se-
quence. Clearly, the Markov dependence observed in
the sequence of colored segments does not exist in
the exponential sequence, and the random variables
of the exponential sequence are distributed neither as
the lengths of the red segments, nor as the lengths of
the blue segments. The Poisson process, correspond-
ing to the exponential sequence, is the Poisson output
constructed analytically by Burke in [1].

Actually, Burke’s theorem was motivated by isolat-
ing queues (referred to by Burke also as “stages”) in
a tandem system, rather than analyzing them jointly,
as said by Burke himself [1]:

“It is intuitively clear that, in tandem queuing pro-
cesses of the type mentioned above, if the output dis-
tribution of each stage was of such character that
the queuing system formed by the second stage was
amenable to analysis, then the tandem queue could be
analyzed stage-by-stage insofar as the separate delay
and queue-length distributions are concerned. Such a
stage-by-stage analysis can be expected to be consider-
ably simpler than the simultaneous analysis heretofore
necessary. Fortunately, under the conditions stated
below, it is true that the output has the required sim-
plicity for treating each stage individually.”

If the two queues in tandem are considered jointly
as a network, the output from the first queue is the
physical departure process. Since the physical depar-
ture process is not a Poisson process, the second queue
in the network is not an M/M/1 queue.

Furthermore, the only output that can make the
second queue amenable to a steady-state analysis is the
constructed Poisson process, since the physical depar-
ture process is not stationary. As can be seen from the
experiment, the inter-departure times in the physical
departure process always follow two different distri-
butions, even if the first queue is in steady state, and
hence they cannot form a stationary random sequence.
If the physical departure process is used as the input
of the second queue, (1) is again not meaningful, since
the arrival rate of the non-stationary arrival process
at the second queue is not a constant. Thus, driven
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by the non-stationary input process, the state of the
second queue is not a stationary process, and hence
the state of the tandem system as a whole cannot be
modeled by a stationary process.

4 Theoretical Explanation

Consider again t − s, the inter-departure time in
the physical departure process of the first queue in
counterexample 2. If we do not assume the state of the
first queue at s, what is t − s then? According to the
existing literature, t− s may only be modeled by (i) a
random variable conditioned on the state of the queue
at s, or (ii) an unconditional random variable, i.e., an
exponential random variable following the inter-arrival
time distribution [1].

Option (i) is not suitable, since we do not assume
the state of the queue. Option (ii) contradicts the fact
observed in the experiment. Thus, t − s exemplifies a
phenomenon that cannot be described by a random
variable. To describe such phenomena, we define a
double random element, based on a random variable
X, a collection E of random variables, and a map
from A, the set of all possible values of X, to E. The
random variable X and the set A are respectively the
index and the index set of the double random element.
Denote such an object by X|E. We may read X|E as
“double random element X,E,” or “double random
element indexed by X,” if omission of E will not cause
confusion. The members of E are components of X|E.

Definition 1 A double random element X|E is a bi-
jection from A to E, where A is the set of all possible
values of a random variable X, and E is a collection
of random variables. Any realization of X|E begins
with a realization of X.

Corresponding to x ∈ A, the random variable in
E is denoted by x|E. We call x|E “the component of
X|E indexed by x,” or “the component indexed by x,”
if X and E can be omitted without causing confusion.
The theorem below is an immediate result of Defini-
tion 1, and can be used as an alternative definition of
double random elements.

Theorem 1 (a) Any realization of X|E follows two
steps: X must be realized first, and a realization of
x|E follows, where x is the realized value of X. (b) z
is a realized value of X|E, if and only if z is a realized
value of some x|E, where x ∈ A.

In this paper, we shall focus on a special type of
double random elements, such that X is a discrete ran-
dom variable, and x|E is a continuous random variable
for each x ∈ A.

Definition 2 The marginal version of a double ran-
dom element X|E, denoted by [X|E], is a random
variable with a distribution

P{[X|E] ≤ z} =
∑
x∈A

P{x|E ≤ z}P{X = x}.

If A is a set of nonnegative integers, we denote X
and X|E by N and N |E, respectively. The distribu-
tion of the marginal version of N |E is

P{[N |E] ≤ z} =
∑
n∈A

P{n|E ≤ z}P{N = n}.

Consider the feedback queue again. As indicated
clearly by (5), any realization of s−r follows two steps:
N must be realized first, and a realization of

∑n
j=1 Yj

follows, where n is a realized value of N . Moreover,
any realized value of s− r must be a realized value of∑n

j=1 Yj for some realized value n of N .
From Theorem 1, we recognize that s−r is a double

random element. We use N |E to represent this dou-
ble random element, where E is a collection of Erlang
random variables with parameters µ and n, denoted
by n|E,n = 1, 2, · · ·.
Theorem 2 The state of Jackson’s feedback queue,
i.e., Q(t), is not a Markov process.

Proof: Since s−r is a double random element N |E,
whose components n|E,n = 1, 2, · · · follow different
distributions, s − r is not a random variable with an
unvarying distribution. The result to be proved then
follows.

�

It can be seen similarly that, t − s, the inter-
departure time in the physical departure process of
the first queue in counterexample 2, is also a double
random element. Denote by Y a service time, and Z
the idle time of the server of the first queue. Write

I =
{

1, the server is busy at s
0, otherwise.

We recognize now that t−s is a double random element
I|E, which has two components: 0|E = Z + Y , and
1|E = Y .

Theorem 3 The physical inter-departure times of the
first queue cannot form a stationary random sequence.
The second queue and hence the network of the two
queues in tandem cannot be stable.

Proof: The results follow directly from the fact
that t − s is a double random element I|E with com-
ponents 0|E = Z + Y and 1|E = Y .

0-7803-8239-0/03/$17.00 ©2003 IEEE. 157



�

The marginal version of the double random element
N |E is an exponential random variable of rate θ(1−µ).
The marginal version of I|E is also an exponential
random variable, with a parameter equal to the Pois-
son arrival rate of the M/M/ 1 queue. Since double
random elements are not included in the existing lit-
erature, the double random elements N |E and I|E
are confused with their marginal versions. This may
explain why Jackson’s proof, and all other proofs of
Jackson’s theorem, are flawed.

We have suggested two experiments for the feed-
back queue and the two queues in tandem. The reader
is encouraged to perform the experiments, at least to
perform them as thought experiments, to see firsthand
the difference between the double random elements
and their marginal versions.

5 Discussion and Conclusion

If a Jackson network prohibits customers to visit
any queue in the network more than once, we may
apply Burke’s theorem in a “stage-by-stage” way [1],
so as to isolate the queues in the network, and then
treat each queue individually. Only after such treat-
ment, the queues, which used to be connected but now
stand alone, are M/M/m queues amenable to analysis.
If any loop, such as direct or indirect feedback, exists
in a Jackson network, the traffic within the network
cannot be modeled by Poisson processes. In this case,
the “stage-by-stage” method is no longer applicable.

The single-server queue with feedback and the two
queues in tandem are basic components of more com-
plicated Jackson networks. As demonstrated by the
counterexamples, Jackson’s theorem may not hold for
a network constructed based on the two components,
since the assumptions made by Jackson (and in other
proofs of Jackson’s theorem), such as the state of the
network can be modeled as a stationary Markov pro-
cess, may not be valid. Consequently, it may be im-
possible to describe the actual process of the network
with Jackson’s theorem.

Networks of queues, including those allowing cus-
tomers to visit the same queue more than once, are
widely used in networking studies, e.g., cf. [2, 6].
However, Jackson’s theorem, which is the basis of the
mathematical theory of networks of queues, does not
hold in general. A reinvestigation of all related issues
may be necessary.

For example, it is typical to assume that traffic
processes in computer networks are (asymptotically)
stationary. This assumption is, however, unlikely to

hold. Even if a computer network can be modeled by a
Jackson network of queues without any loop, the traf-
fic process within the network is not stationary, and
will never approach any stationary process, since the
output of a queue in the network is not a stationary
process.

Consequently, a steady state may not exist for a
network considered as a whole. So, it may not make
sense to study “steady-state” behavior of the network,
either by analysis or by simulation, and the results
obtained in “steady-state” may not be meaningful ap-
proximation to the real process of the system.

In particular, if a network is studied by simula-
tion, the simulated output from a link, modeled as
a queue, is not stationary. Although a downstream
queue driven by this non-stationary process does not
have a steady state, a “steady-state” version of the
queue may be constructed from the simulation. But
such version differs essentially from the true behavior
of the queue. To see this, suppose that the behavior
of a system is described by X(n), a function of dis-
crete time n = 1, 2, · · ·. For simplicity, let X(n) = 0
if n = 1, 3, 5, · · ·, and X(n) = 1 otherwise. By doing
a “steady-state” simulation of X(n), a “steady-state”
version X can be constructed, such that X may be
either 0 or 1, with equal probability, for any n. Evi-
dently, this “steady-state” version fails to capture the
true behavior of X(n).
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