
Title A paracasting model for concurrent access to replicated content

Author(s) Leung, KC; Li, VOK

Citation
The 18th IEEE Annual Workshop on Computer Communications
Proceedings, Dana Point, California, USA, 20-21 October 2003, p.
105-111

Issued Date 2003

URL http://hdl.handle.net/10722/46487

Rights

©2003 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be
obtained from the IEEE.

A Paracasting Model for Concurrent Access to
Replicated Content

(Invited Paper)

Ka-Cheong Leung
Department of Computer Science

Texas Tech University
Lubbock, Texas 79409-3104, U.S.A.

E-mail: kcleung@cs.ttu.edu

Victor O. K. Li
Department of Electrical and Electronic Engineering

The University of Hong Kong
Pokfulam Road, Hong Kong, China

E-mail: vli@eee.hku.hk

Abstract— In this paper, we propose a framework to study how
to effectively download a copy of the same document from a set
of replicated servers. A generalized application-layer anycasting,
known as paracasting, has been proposed to advocate concurrent
access of a subset of replicated servers to cooperatively satisfy a
client’s request. Each participating server satisfies the request in
part by transmitting a subset of the requested file to the client.
The client can recover the complete file when different parts of
the file sent from the participating servers are received. This
framework allows us to estimate the average time to download
a file from the set of homogeneous replicated servers, and the
request blocking probability when each server can accept and
serve a finite number of concurrent requests. Our results show
that the file download time drops when a request is served
concurrently by a larger number of homogeneous replicated
servers, although the performance improvement quickly saturates
when the number of servers used increases. If the total number
of requests that a server can handle simultaneously is finite,
the request blocking probability increases with the number of
replicated servers used to serve a request concurrently. Therefore,
paracasting is effective in using a small number of servers to serve
a request concurrently, say, up to four.

I. INTRODUCTION

The convergence of the computer, communications, entertain-
ment, and consumer electronics industry is driving an explosive
growth in multimedia applications [8]. The Internet provides a con-
venient and cost-effective communication platform for electronic
commerce, collaboration on research and development, education,
and entertainment. The success of the Internet arises from the
capabilities to support efficient, survivable, robust, and reliable end-
to-end data transfer services for adaptive applications running over
a set of end-systems. Popular (multimedia) documents maintained
at a non-replicated server can attract tremendous access requests
to the server so that the server may not be able to handle the load
and becomes the bottleneck.

To improve the user response time, throughput, and reliability,
server replication [11] is an effective technique to provide a copy
of the same document from a set of, possibly geographically dis-
persed, replicated servers. However, application-layer anycasting,
which chooses the best replicated server for accessing a document
is a non-trivial problem as the user response time depends on the
load of the selected server and the characteristics (e.g. delay and
available bandwidth) of the network path connecting the server to
the client making the access request. Existing approaches proposed
for the “best” server selection [10], [14], [15] rely on the uses
of the round-trip times between client-server pairs and the server

response times. This cannot help in spreading requests across a
set of replicated servers. The server performance can therefore
fluctuate dramatically due to significant load imbalance during a
download session [13], resulting in the deterioration of the user’s
quality of service, such as the response time and the packet drop
rate (for multimedia streaming).

Instead of finding the “best” server to fulfill a client’s request,
concurrent access to a set of servers for satisfying requests has
been proposed [13]. The idea is to partition a document into a
large number of small blocks and forward block-based requests
to all replicated servers until all blocks are received. However, as
discussed in [13], issues such as the conditions under which it is
beneficial to apply the proposed dynamic parallel access and the
optimal/preferred block size are still unresolved.

Since replicated servers are generally located at geographically
dispersed locations, packets from different servers can take differ-
ent paths to the servers. As the response time depends partly on the
path delay, it can be inferred from the results of multipath routing1

that it is effective in using a small number of paths, say up to
three [6]. Moreover, the complexity and overhead for maintaining
a large number of concurrent requests can be substantial [5].

Thus, we believe that, though we may select more than one
server to satisfy a request, only a few replicated servers, instead
of all, should be used to achieve load balancing at the servers and
networks. We then need to address the questions of how many and
which replicated servers should be used to satisfy a client’s request,
so as to provide a better quality of service to users and improved
utilizations for a given set of replicated servers. Therefore, the
concept and framework of such a generalized application-layer
anycasting, known as paracasting, are needed.

A. Our Contributions

The focus of this work is to propose a framework to study
the performance of the application-layer paracasting for concurrent
access to replicated content over a set of homogeneous servers. This
framework allows us to estimate the average time to download a
file from the set of homogeneous replicated servers, and the request
blocking probability when each server can accept and serve a finite
number of concurrent requests.

There is a lack of analytical models to study the behaviour of
parallel server access. To the best of our knowledge, there is only

1Multipath routing [1], [7], [9], where packets of a source may travel over
multiple routes from a source to a destination, is a load balancing technique
to spread out the traffic load across the network in order to alleviate network
congestion.

0-7803-8239-0/03/$17.00 ©2003 IEEE. 105

one analytical study to investigate all-server parallel downloading
with homogeneous clients and servers [5]. All-server parallel down-
loading does not necessitate to meet the desired system objectives,
but it incurs substantial complexity and overhead for maintaining a
large number of concurrent requests. Thus, this cannot provide an
answer to the issues raised in paracasting. Hence, an analytical
model for paracasting should be developed for optimizing the
system performance.

We will investigate the effectiveness of paracasting by examining
three basic questions:

• Does paracasting improve the system performance? If so,
when?

• How many replicated servers should be participated concur-
rently to satisfy a download request so as to achieve the best
performance?

• What is the cost of employing paracasting?

B. Organization of the Paper

This paper is organized as follows. Section II gives a paracasting
model to conceptualize how replicated servers are participated
concurrently to satisfy a download request. It also states the as-
sumptions needed to simplify the subsequent discussion. Section III
presents an analytical model to compute the average file download
time, and the request blocking probability when a replicated server
can handle up to a certain finite number of concurrent requests for
file download. Section IV examines the analytical results derived
from the framework and studies the effectiveness of paracasting.
Section V concludes and discusses some possible extensions to our
work.

II. PARACASTING MODEL

Application-layer anycasting [15] is a communication service
implemented at the application layer so that a sender can choose
and interact with a destination belonging to an anycast group for
performing the desired communication activity. To perform a file
download by application-layer anycasting, a client generally selects
a replicated server from a server pool based on the server load and
the network path characteristics. This reactive approach cannot help
in spreading requests across a set of replicated servers. Application-
layer paracasting is thus proposed to exploit further load balancing
proactively over a set of replicated servers.

Paracasting is a generalized communication technique for
application-layer anycasting. By application-layer paracasting, a
communication activity is divided into several tasks. A sender can
freely choose a destination within a group of destinations (defined
as a paracast group) for performing each of these tasks. In other
words, there can have more than one destination within the paracast
group involved for the communication activity, though the sender
interacts with a single destination for carrying out a task of the
given communication activity.

To perform a file download by paracasting, the file is divided into
several parts. Each portion of the file is then downloaded from one
of the replicated servers. The client requesting the file download
can recover the complete file by resembling various parts of the
file downloaded from these servers.

The scope of this work is to study the performance of
application-layer paracasting for concurrent access to replicated
content over a set of homogeneous servers. The following assump-
tions are made to simplify the discussion:

1) There are N homogeneous replicated file servers in the
system. Each server has the maximum capacity of Cs bits
per second. It can serve up to K requests concurrently using
the processor-sharing policy. An incoming request to a server
will be blocked when the server already has K requests. Any
blocked request is considered lost and will not be retried.

2) The average file size for a download request is S bits.
Whenever w replicated servers are involved, these servers
are selected randomly from the server pool and the client
will request 1

w of the file to be downloaded concurrently
from each of these servers.

3) The service rate of each request at a server depends on the
number of requests that the server is serving concurrently.
The service time conditioned with the state of the server is
assumed to be exponentially distributed in Section III-A. This
assumption can be relaxed in Section III-B, where the service
time is assumed to be generally distributed when an infinite
value of K is considered.

4) There are a large number of clients in the system. Each client
can make requests independently to the replicated servers
for downloading files. The inter-arrival time between any
two successive requests to the server pool is assumed to be
exponentially distributed with the mean of λ requests per
second.

5) The maximum aggregate download capacity for a client’s
request is Cc bits per second. This bottleneck bandwidth is
shared statistically and fairly by all participating servers to
the client. The available bandwidth for file download from a
participating server to the client is r bits per second, where
0 < r ≤ Cc.

When K is finite, the Markovian service rate as stated in As-
sumption 3 is necessary so as to make the analysis mathematically
tractable. The relaxation of this assumption can be part of the future
work.

Assumption 5 is not overly restrictive, because many clients are
connected to the Internet over a bandwidth-constrained connection,
such as a cable modem connection. This bandwidth-constrained
connection is thus the bottleneck for downloading a (large) file
from the replicated servers to a client and its bandwidth remains
unchanged regardless of how many replicated servers are partic-
ipating for satisfying a download request. Moreover, active TCP
(Transmission Control Protocol) flows tend to share the available
bandwidth equally when these flows have the same or similar RTT
(round-trip time) [3].

III. QUEUEING ANALYSIS

In this section, we present the analytical results about the
performance of application-layer paracasting for concurrent file
access over a set of N homogeneous servers. By paracasting, w out
of N replicated servers are selected randomly to satisfy a client’s
request. Denote λ as the average request arrival rate (in requests
per second) to the server pool, which can be computed as:

λs =
wλ

N
(1)

Consider each homogeneous replicated server has a capacity Cs

bits per second and the average file size for a download request
is S bits. The load for the replicated server can be computed as
follows:

ρ =
λs · S

w

Cs
=

λ S

N Cs
(2)

0-7803-8239-0/03/$17.00 ©2003 IEEE. 106

This discussion will proceed as follows. Section III-A discusses
the analysis by assuming the Markovian request service rate when
K is finite. This assumption is relaxed when the analysis is carried
out with an infinite value of K in Section III-B.

A. Finite K with Markovian Service Rate

Let ξ = Cs
r and m = �ξ�, where the available bandwidth for file

download from a participating replicated server to a client is r bits
per second. The average service rate of a server (in requests per
second) when there are i requests being served can be calculated
as:

µ(i) =

{
i w r

S
if i = 1, 2, ..., min(m, K);

w Cs
S

if m < K, i = m + 1, m + 2, ..., K.
(3)

When the request service time conditioned with the number of
requests being served is exponentially distributed, each replicated
server can be modelled as an M/M/1/K/PS queue. It can be
shown [4] that the steady-state probability of having i requests
being served by a replicated server, p(i), can be written as:

p(i) = p(0)
i∏

j=1

λs

µ(j)

=

{
(ξ ρ)i

i!
· p(0) if i = 1, 2, ..., min(m, K);

ξm ρi

m!
· p(0) if m < K, i = m + 1, m + 2, ..., K.

(4)

where p(0) = 1∑m−1
i=0

(ξ ρ)i

i! +
∑K

i=m
ξm ρi

m!

since
∑K

i=0 p(i) = 1.

By Little’s Theorem [4], the average time (in seconds) to
download a file from the set of replicated servers to a client can
be determined as:

TF (r, S, Cc) =

∑K
i=1 i p(i)

λs · [1 − p(K)]

=
S · (∑m−1

i=1
(ξ ρ)i

(i−1)!
+

∑K
i=m

i ξm ρi

m!
)

w Cs ρ · (∑m−1
i=0

(ξ ρ)i

i!
+

∑K−1
i=m

ξm ρi

m!
)

(5)

By normalizing TF (r, S, Cc) with respect to the average file size
for a download request and the download capacity for a client’s
request, the normalized average download time is:

T̃F (r) =
Cc TF (r, S, Cc)

S

=
Cc · (∑m−1

i=1
(ξ ρ)i

(i−1)!
+

∑K
i=m

i ξm ρi

m!
)

w Csρ · (∑m−1
i=0

(ξ ρ)i

i!
+

∑K−1
i=m

ξm ρi

m!
)

(6)

A client’s request is considered blocked whenever any one of its
requested servers to block its request. Thus, the request blocking
probability can be calculated as:

PF (r) = 1 − [1 − p(K)]w (7)

1) Evaluation of r: Denote BF (r) as the normalized average
aggregate download capacity used for file download when the
available bandwidth for file download from a participating server
to the client is r bits per second. Since the bottleneck download
capacity is shared fairly by all participating servers to the client, the
optimal value of r, r∗, can be determined by solving the following
optimization problem:

Minimize |BF (r) − 1|
subject to 0 < r ≤ Cc

(8)

Fig. 1. Normalized average download time against normalized server capacity
plot when ρ = 0.95, Cs

Cc
= 5, and w = 2.

where BF (r) = 1
T̃F (r)

.

The relationship between the normalized average download time,
T̃F (r), and the normalized server capacity, ξ, is demonstrated in
Fig. 1. The normalized average download time increases when
ξ increases from 0 to 120. A larger value of ξ means a smaller
available bandwidth for file download from a participating server
to the client. This in turns reduces the average aggregate file
download capacity and thus increases the normalized download
time. Since the normalized average aggregate download capacity
used for file download, BF (r), is inversely proportional to the
normalized average download time, BF (r) decreases when ξ in-
creases. In addition, the available bandwidth for file download from
a participating server to the client, r, is also inversely proportional
to ξ, BF (r) increases when r increases. The results follow for
all of the numerical experiments we have performed in this paper.
Thus, BF (r) is a monotonic increasing function in r in general.

Intuitively, whenever the available download bandwidth is fully
utilized, BF (r∗) attains a maximum value of 1. If all replicated
servers are fully saturated, BF (r∗) is lower-bounded by w Cs

K Cc
. In

other words, the normalized average download time varies between
1 and K Cc

w Cs
.

When BF (r) is monotonic increasing in r and BF (r) is at most
r for 0 < r ≤ Cc, there exists an unique solution to the aforemen-
tioned optimization problem as exhibited in (8). Numerical root
finding techniques like the secant method [12] can be adopted to
compute the optimal value of r to the optimization problem. All
of our numerical results presented in Section IV can be found
correctly based on the captioned numerical root finding techniques
and thus the monotonicity property of BF (r) holds in general.

B. Infinite K with General Service Rate

Let ξ = Cs
r and m = �ξ�, where the available bandwidth for

file download from a participating replicated server to a client
is r bits per second. When the request service time is generally
distributed and each server can serve any number of file download
requests concurrently, each replicated server can be modelled as an
M/G/1/∞/PS queue. It can be shown [2], [3] that the average time
(in seconds) to download a file from the set of replicated servers
to a client is as follows:

TI(r, S, Cc) =
S

w
· {1

r
+

f(ρ) · [1 − (ξ − m) · (1 − ρ)]

Cs · (1 − ρ)
} (9)

where 0 ≤ ρ < 1 and f(ρ) =
(ξ ρ)m

m!

(1−ρ)
∑m−1

i=0
(ξ ρ)i

i! + (ξ ρ)m

m!

denotes

the probability that a replicated server is saturated.
By normalizing TI(r, S, Cc) with respect to the average file size

for a download request and the download capacity for a client’s

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120

N
or

m
al

iz
ed

 A
ve

ra
ge

 D
ow

nl
oa

d
Ti

m
e

Normalized Server Capacity

K = 100
K = 500

0-7803-8239-0/03/$17.00 ©2003 IEEE. 107

request, the normalized average download time is:

T̃I(r) =
Cc

w Cs
· {ξ +

f(ρ)

1 − ρ
· [1 − (ξ − m) · (1 − ρ)]} (10)

1) Evaluation of r: Denote BI(r) as the normalized average
aggregate download capacity used for file download when the
available bandwidth for file download from a participating server
to the client is r bits per second. The optimal value of r, r∗, can be
determined by solving the following optimization problem similar
to (8) in Section III-A.1:

Minimize |BI(r) − 1|
subject to 0 < r ≤ Cc

(11)

where BI(r) = 1
T̃I(r)

.
Intuitively, whenever the available download bandwidth is fully

utilized, BI(r∗) attains a maximum value of 1. The following three
lemmas establish that BI(r) is monotonically increasing in r.

Lemma 1: For any natural number m, BI(r) is a monotonically
increasing function in r ∈ (Cs

m+1 , Cs
m], where ξ = Cs

r and
ξ · (1 − ρ) ≥ (ξ − m) · f(ρ) · {[1 + (1 − ρ) · (m − ξ ρ)] − ρ ·
[1 − (1 − ρ) · (ξ − m)] · f(ρ)}.

Proof: Differentiating f(ρ) with respect to ξ,

∂f

∂ξ
=

m ρ·(ξ ρ)m−1

m!

(1 − ρ)
∑m−1

i=0
(ξ ρ)i

i!
+ (ξ ρ)m

m!

−
(ξ ρ)m

m!
· [(1 − ρ)

∑m−1
i=1

i ρ·(ξ ρ)i−1

i!
+ m ρ·(ξ ρ)m−1

m!
]

[(1 − ρ)
∑m−1

i=0
(ξ ρ)i

i!
+ (ξ ρ)m

m!
]2

= (
m

ξ
− ρ) · f(ρ) + (1 − m

ξ
) · ρ · [f(ρ)]2

(12)

Differentiating T̃I(r) with respect to ξ,

∂T̃I

∂ξ

=
Cc

w Cs
· [1 +

1

1 − ρ
· ∂f

∂ξ
+ (m − ξ) · ∂f

∂ξ
− f(ρ)]

=
Cc{ξ · (1 − ρ) + (m − ξ) · [1 + (1 − ρ) · (m − ξ ρ)] · f(ρ)}

w Cs ξ · (1 − ρ)

+
Cc · (ξ − m) · ρ · [1 + (1 − ρ) · (m − ξ)] · [f(ρ)]2

w Cs ξ · (1 − ρ)

≥ 0
(13)

since ξ · (1− ρ) ≥ (ξ −m) · f(ρ) · {[1 + (1− ρ) · (m− ξ ρ)]− ρ ·
[1 − (1 − ρ) · (ξ − m)] · f(ρ)}.

Differentiating BI(r) with respect to r,

∂BI

∂r
=

∂BI

∂T̃I

· ∂T̃I

∂ξ
· ∂ξ

∂r

=
Cs

(r T̃I)2
· ∂T̃I

∂ξ

≥ 0

(14)

since BI(r) = 1
T̃I(r)

and ξ = Cs
r .

Thus, the monotonicity of BI(r) follows.
The inequality ξ · (1 − ρ) ≥ (ξ − m) · f(ρ) · {[1 + (1 − ρ) ·

(m − ξ ρ)] − ρ · [1 − (1 − ρ) · (ξ − m)] · f(ρ)} generally holds for
a sufficiently large ξ as 0 ≤ ξ − m < 1 and 0 ≤ f(ρ) � ρ < 1.
This result follows for all of the numerical experiments we have
performed in this paper.

Lemma 2: BI(r) is continuous in r, where 0 < r ≤ Cc.
Proof: Taking r = γ+ = Cs

m ,

f(ρ)|r=γ+ =

(ξ ρ)m−1

(m−1)!

(1 − ρ)
∑m−2

i=0
(ξ ρ)i

i!
+ (ξ ρ)m−1

(m−1)!

=

m
ξ ρ

· (ξ ρ)m

m!

(1 − ρ)
∑m−1

i=0
(ξ ρ)i

i!
+ m

ξ
· (ξ ρ)m

m!

=
1

ρ
· f(ρ)|r=γ =

1

ρ
· f(ρ)|r=γ−

(15)

for any positive integer m.
Hence,

BI(γ+)

=
w Cs

Cc
· 1

m +
f(ρ)|r=γ+

1−ρ
· {1 − [m − (m − 1)] · (1 − ρ)}

= BI(γ) = BI(γ−)

(16)

Thus, the continuity of BI(r) follows.
Lemma 3: BI(r) is a monotonic increasing function in r, where

0 < r ≤ Cc, provided that ξ · (1− ρ) ≥ (ξ −m) · f(ρ) · {[1 + (1−
ρ) · (m − ξ ρ)] − ρ · [1 − (1 − ρ) · (ξ − m)] · f(ρ)}.

Proof: The results follow directly from Lemmas 1 and 2.
When BI(r) is a monotonic increasing in r and BI(r) is at

most r for 0 < r ≤ Cc, there exists an unique solution to the
aforementioned optimization problem as stated in (11). Numerical
root finding techniques like the secant method [12] can be utilized
to find the optimal value of r to the optimization problem.

IV. PERFORMANCE EVALUATION

This section discusses the numerical results based on the an-
alytical expressions obtained in Section III. To support paracast-
ing, up to 20 replicated servers are used to serve a single file
download request concurrently. The ratio between the maximum
server capacity and the maximum aggregate download capacity for
a client’s request, Cs

Cc
, takes two different values, namely 5 and

30. These values can be used to simulate the various combinations
of link/server speeds in a network. For example, each replicated
server connects to the network with the T3 link speed of 45 Mbps,
whereas a client connects to the network behind a cable modem
connection with the download speed of 9 Mbps and 1.5 Mbps,
corresponding to the first and second values respectively.

The results are provided in four sets. The first set examines the
effect of the maximum number of concurrent requests a replicated
server can handle to the normalized average file download time.
The second set investigates the relationship among the normalized
average download time, server load, and number of servers used
to serve a single request concurrently. The third set studies the
relationship among the request blocking probability, server load,
and number of servers used to serve a single request concurrently.
The fourth set observes the impact of the server load and number of
servers used to serve a single request concurrently to the normalized
effective download capacity.

A. Effect of K to T̃•(r)
The effect of the maximum number of concurrent requests

a replicated server can handle, K, to the normalized average
download time, T̃•(r), is demonstrated in Fig. 2. When K is very
small, a replicated server can serve all requests such that their
download bandwidths are constrained by the maximum aggregate

0-7803-8239-0/03/$17.00 ©2003 IEEE. 108

Fig. 2. Normalized average download time against K plot when ρ = 0.95,
Cs
Cc

= 5, and w = 2.

download capacities at the client sides. Thus, the file download
time is determined by the incoming bottleneck bandwidth to the
client.

When K is greater than a certain value, the normalized average
download time increases as the bandwidths sustained by some of
the download requests are limited by the maximum capacities of
the replicated servers. When K increases further, the normalized
average download time increases slightly and then flattens. The
converged download time is the same as the one computed based
on the infinite buffer model discussed in Section III-B, as the tail
distribution of the number of requests being served concurrently by
a server can be captured when K is sufficiently large. Therefore,
this shows an agreement between the results produced by both the
finite buffer model (where K is finite) and infinite buffer model
(where K tends to infinity) as they converge to the same download
time when K increases.

B. Relationship Among T̃•(r), ρ, and w

Fig. 3 exhibits the normalized average download time when
the server load varies between 0 and 1.2 (finite buffer model) or
between 0 and 1 (infinite buffer model). The normalized average
download time increases with the server load. The download time
rises substantially when the server load is high (about 0.9 and
larger). When K is finite and the server load exceeds 1, the
normalized average download time flattens and is upper-bounded
by K Cc

w Cs
, since each replicated server can serve up to K concurrent

requests at any time. Moreover, the normalized average download
time grows unboundedly when K tends to infinity.

Besides, the normalized average download time is approximately
inversely proportional to the number of servers used to serve a
single request concurrently, w. This suggests that it is beneficial to
use more replicated servers to serve a single request concurrently
until the minimum normalized average download time (which is
1) is achieved. Thus, this suggests that paracasting is effective in
performance improvement when the server load is high.

Fig. 4 shows the normalized average download time when w
varies between 1 and 20. The normalized average download time
decreases when w increases. However, the improvement flattens
with further increases in w. This suggests that the download time
is approximately inversely proportional to w. The marginal cost of
having an additional server to serve a single request concurrently
increases with w. Hence, the argument favors that an appropriate
value of w should be chosen to minimize the normalized average
download time as well as the system cost, such as the request
blocking probability, should be kept to an acceptable level.

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1 1.2

N
or

m
al

iz
ed

 A
ve

ra
ge

 D
ow

nl
oa

d
T

im
e

Server Load

w = 1
w = 2
w = 4
w = 8

w = 16

(a) Cs
Cc

= 5 and K = 100.

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1 1.2

N
or

m
al

iz
ed

 A
ve

ra
ge

 D
ow

nl
oa

d
T

im
e

Server Load

w = 1
w = 2
w = 4
w = 8

w = 16

(b) Cs
Cc

= 5 and K = 500.

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1 1.2

N
or

m
al

iz
ed

 A
ve

ra
ge

 D
ow

nl
oa

d
T

im
e

Server Load

w = 1
w = 2
w = 4
w = 8

w = 16

(c) Cs
Cc

= 30 and K = 100.

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1 1.2

N
or

m
al

iz
ed

 A
ve

ra
ge

 D
ow

nl
oa

d
T

im
e

Server Load

w = 1
w = 2
w = 4
w = 8

w = 16

(d) Cs
Cc

= 30 and K = 500.

0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 A
ve

ra
ge

 D
ow

nl
oa

d
T

im
e

Server Load

w = 1
w = 2
w = 4
w = 8

w = 16

(e) Cs
Cc

= 5 and K → ∞.

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 A
ve

ra
ge

 D
ow

nl
oa

d
T

im
e

Server Load

w = 1
w = 2
w = 4
w = 8

w = 16

(f) Cs
Cc

= 30 and K → ∞.

Fig. 3. Normalized average download time against server load plots for
various settings.

C. Relationship Among PF (r), ρ, and w

Fig. 5 and 6 exhibit the impact of the server load and w to
the request blocking probability when K is finite. The request
blocking probability increases from 0 towards 1 when the server
load increases from 0 to 1.2. The blocking probability increases
when K decreases from 500 to 100 or w increases from 1 to 20.
This means that the server pool administrators need to properly
set the minimum value of K in order to limit the request blocking
probability at a certain level for a given server load. In addition,
the argument does not favour using a large w, say more than four,
for paracasting. The determination of an optimal value of w by
taking the system cost (including the request blocking probability
and the overheads of using more than one server to satisfy a single
request) into account is part of the future work.

D. Relationship Among B•(r), ρ, and w

The relationship between the normalized effective download
capacity and w is shown in Fig. 7. The normalized effective
download capacity, which is defined as w r

Cc
, represents the sum

of all perceived download capacities from a set of participating
replicated servers to a client when the bottleneck is at the client’s
side, such as the last-hop link to the client. Initially, the normalized

0

0.5

1

1.5

2

2.5

3

50 100 150 200 250 300 350 400 450 500

N
or

m
al

iz
ed

 A
ve

ra
ge

 D
ow

nl
oa

d
Ti

m
e

K

Finite Buffer Model
Infinite Buffer Model

0-7803-8239-0/03/$17.00 ©2003 IEEE. 109

0

5

10

15

20

2 4 6 8 10 12 14 16 18 20

N
or

m
al

iz
ed

 A
ve

ra
ge

 D
ow

nl
oa

d
T

im
e

w

Server Load = 0.8
Server Load = 0.9

Server Load = 0.95
Server Load = 1

Server Load = 1.05

(a) Cs
Cc

= 5 and K = 100.

0

20

40

60

80

100

2 4 6 8 10 12 14 16 18 20

N
or

m
al

iz
ed

 A
ve

ra
ge

 D
ow

nl
oa

d
T

im
e

w

Server Load = 0.8
Server Load = 0.9

Server Load = 0.95
Server Load = 1

Server Load = 1.05

(b) Cs
Cc

= 5 and K = 500.

0

0.5

1

1.5

2

2.5

3

2 4 6 8 10 12 14 16 18 20

N
or

m
al

iz
ed

 A
ve

ra
ge

 D
ow

nl
oa

d
T

im
e

w

Server Load = 0.8
Server Load = 0.9

Server Load = 0.95
Server Load = 1

Server Load = 1.05

(c) Cs
Cc

= 30 and K = 100.

0

5

10

15

20

2 4 6 8 10 12 14 16 18 20

N
or

m
al

iz
ed

 A
ve

ra
ge

 D
ow

nl
oa

d
T

im
e

w

Server Load = 0.8
Server Load = 0.9

Server Load = 0.95
Server Load = 1

Server Load = 1.05

(d) Cs
Cc

= 30 and K = 500.

0

5

10

15

20

25

2 4 6 8 10 12 14 16 18 20

N
or

m
al

iz
ed

 A
ve

ra
ge

 D
ow

nl
oa

d
T

im
e

w

Server Load = 0.8
Server Load = 0.9

Server Load = 0.95
Server Load = 0.98
Server Load = 0.99

(e) Cs
Cc

= 5 and K → ∞.

0

1

2

3

4

5

2 4 6 8 10 12 14 16 18 20

N
or

m
al

iz
ed

 A
ve

ra
ge

 D
ow

nl
oa

d
T

im
e

w

Server Load = 0.8
Server Load = 0.9

Server Load = 0.95
Server Load = 0.98
Server Load = 0.99

(f) Cs
Cc

= 30 and K → ∞.

Fig. 4. Normalized average download time against w plots for various
settings.

effective download capacity increases with w. The servers may not
be able to serve the download request by saturating the client’s
incoming bottleneck. This means that a faster file download can be
realized by using more replicated servers to serve a single request
concurrently, i.e. increasing w. Since each replicated server is
operated independently with another, statistical multiplexing on the
shared bottleneck bandwidth is possible. The metric thus denotes
the effectiveness of such statistical multiplexing on the bottleneck
for the client’s incoming capacity through paracasting.

However, the normalized effective download capacity drops to 1
when w continues to increase. This means that, when the bottleneck
for the client’s incoming capacity is saturated, it results in no
further reduction on the download time by increasing w further.
Thus, to improve the file download time, this argument does not
favour to setting the value w greater than the one at which the
normalized effective download capacity has begun to drop when w
increases.

V. CONCLUSIONS

In this paper, we have proposed a framework to study the
performance of application-layer paracasting for concurrent access

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

0 0.2 0.4 0.6 0.8 1 1.2

R
eq

ue
st

 B
lo

ck
in

g
P

ro
ba

bi
lit

y

Server Load

w = 1
w = 2
w = 4
w = 8

w = 16

(a) Cs
Cc

= 5 and K = 100.

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

0 0.2 0.4 0.6 0.8 1 1.2

R
eq

ue
st

 B
lo

ck
in

g
P

ro
ba

bi
lit

y

Server Load

w = 1
w = 2
w = 4
w = 8

w = 16

(b) Cs
Cc

= 5 and K = 500.

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

0 0.2 0.4 0.6 0.8 1 1.2

R
eq

ue
st

 B
lo

ck
in

g
P

ro
ba

bi
lit

y

Server Load

w = 1
w = 2
w = 4
w = 8

w = 16

(c) Cs
Cc

= 30 and K = 100.

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

0 0.2 0.4 0.6 0.8 1 1.2

R
eq

ue
st

 B
lo

ck
in

g
P

ro
ba

bi
lit

y

Server Load

w = 1
w = 2
w = 4
w = 8

w = 16

(d) Cs
Cc

= 30 and K = 500.

Fig. 5. Request blocking probability against server load plots for various
settings.

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

2 4 6 8 10 12 14 16 18 20

R
eq

ue
st

 B
lo

ck
in

g
P

ro
ba

bi
lit

y

w

Server Load = 0.8
Server Load = 0.9

Server Load = 0.95
Server Load = 1

Server Load = 1.05

(a) Cs
Cc

= 5 and K = 100.

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

2 4 6 8 10 12 14 16 18 20

R
eq

ue
st

 B
lo

ck
in

g
P

ro
ba

bi
lit

y

w

Server Load = 0.8
Server Load = 0.9

Server Load = 0.95
Server Load = 1

Server Load = 1.05

(b) Cs
Cc

= 5 and K = 500.

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

2 4 6 8 10 12 14 16 18 20

R
eq

ue
st

 B
lo

ck
in

g
P

ro
ba

bi
lit

y

w

Server Load = 0.8
Server Load = 0.9

Server Load = 0.95
Server Load = 1

Server Load = 1.05

(c) Cs
Cc

= 30 and K = 100.

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

2 4 6 8 10 12 14 16 18 20

R
eq

ue
st

 B
lo

ck
in

g
P

ro
ba

bi
lit

y

w

Server Load = 0.8
Server Load = 0.9

Server Load = 0.95
Server Load = 1

Server Load = 1.05

(d) Cs
Cc

= 30 and K = 500.

Fig. 6. Request blocking probability against w plots for various settings.

0-7803-8239-0/03/$17.00 ©2003 IEEE. 110

0

5

10

15

20

2 4 6 8 10 12 14 16 18 20

N
or

m
al

iz
ed

 E
ffe

ct
iv

e
D

ow
nl

oa
d

C
ap

ac
ity

w

Server Load = 0.8
Server Load = 0.9

Server Load = 0.95
Server Load = 1

Server Load = 1.05

(a) Cs
Cc

= 5 and K = 100.

0

5

10

15

20

2 4 6 8 10 12 14 16 18 20

N
or

m
al

iz
ed

 E
ffe

ct
iv

e
D

ow
nl

oa
d

C
ap

ac
ity

w

Server Load = 0.8
Server Load = 0.9

Server Load = 0.95
Server Load = 1

Server Load = 1.05

(b) Cs
Cc

= 5 and K = 500.

0

0.5

1

1.5

2

2.5

3

2 4 6 8 10 12 14 16 18 20

N
or

m
al

iz
ed

 E
ffe

ct
iv

e
D

ow
nl

oa
d

C
ap

ac
ity

w

Server Load = 0.8
Server Load = 0.9

Server Load = 0.95
Server Load = 1

Server Load = 1.05

(c) Cs
Cc

= 30 and K = 100.

0

5

10

15

20

2 4 6 8 10 12 14 16 18 20

N
or

m
al

iz
ed

 E
ffe

ct
iv

e
D

ow
nl

oa
d

C
ap

ac
ity

w

Server Load = 0.8
Server Load = 0.9

Server Load = 0.95
Server Load = 1

Server Load = 1.05

(d) Cs
Cc

= 30 and K = 500.

0

5

10

15

20

2 4 6 8 10 12 14 16 18 20

N
or

m
al

iz
ed

 E
ffe

ct
iv

e
D

ow
nl

oa
d

C
ap

ac
ity

w

Server Load = 0.8
Server Load = 0.9

Server Load = 0.95
Server Load = 0.98
Server Load = 0.99

(e) Cs
Cc

= 5 and K → ∞.

0

1

2

3

4

5

2 4 6 8 10 12 14 16 18 20

N
or

m
al

iz
ed

 E
ffe

ct
iv

e
D

ow
nl

oa
d

C
ap

ac
ity

w

Server Load = 0.8
Server Load = 0.9

Server Load = 0.95
Server Load = 0.98
Server Load = 0.99

(f) Cs
Cc

= 30 and K → ∞.

Fig. 7. Normalized effective download capacity against w plots for various
settings.

to replicated content over a set of replicated servers. This frame-
work allows us to estimate the average time to download a file
from the set of homogeneous replicated servers, and the request
blocking probability when each server can accept and serve a finite
number of concurrent requests. The paracasting model has been
developed to conceptualize how replicated servers are participated
concurrently to satisfy a download request. The queueing analysis
to paracasting has been performed to allow us to compute the
average file download time, and the request blocking probability
when a replicated server can handle up to a certain finite number
of concurrent requests for file download.

Our results show that the file download time drops when a
request is served concurrently by a larger number of homogeneous
replicated servers, although the performance improvement quickly
saturates when the number of servers used increases. If the total
number of requests that a server can handle simultaneously is
finite, the request blocking probability increases with the number of
replicated servers used to serve a request concurrently. Therefore,
paracasting is effective in using a small number of servers to serve
a request concurrently, say, up to four.

Now we re-visit the three questions posed in Section I. As
expected, paracasting improves the system performance by serving

a request through multiple replicated servers, thereby achieving
load balancing. An optimal number of servers involved ensures that
the server and network loads are well balanced. However, the use
of paracasting may require a client to select a subset of replicated
servers to satisfy a request, determine how a request is divided and
which server downloads a specific portion of the file to the client,
and combine downloaded fragment to recover the file. Moreover,
the replicated servers are capable to download a selected portion
of a file to a client.

There are several possible extensions to our work, some of which
are listed as follows:

• extend the queueing analysis so that the Markovian service
rate assumption can be relaxed when the total number of
requests that a server can handle simultaneously is finite;

• extend the framework for determining an optimal number of
replicated servers employed to serve a request concurrently
by taking the system cost (including the request blocking
probability and the overheads of using more than one server
to satisfy a single request) into account; and

• devise a measurement-based algorithm for paracasting.

REFERENCES

[1] S. N. Chiou and V. O. K. Li. Diversity Transmissions in a Commu-
nication Network with Unreliable Components. Proceedings of IEEE
ICC ’87, Vol. 2, pp. 968-973, Seattle, WA, USA, 7-10 June 1987.

[2] J. W. Cohen. The Multiple Phase Service Network with Generalized
Processor Sharing. Acta Informatica, Vol. 12, pp. 245-284, 1979.

[3] S. B. Fredj, T. Bonald, A. Proutiere, G. Régnié, and J. W. Roberts.
Statistical Bandwidth Sharing: A Study of Congestion at Flow Level.
Computer Communication Review, Vol. 31, No. 4, pp. 111-122, Octo-
ber 2001.

[4] L. Kleinrock. Queueing Systems (Volume I: Theory). John Wiley & Sons,
January 1975.

[5] S. G. M. Koo, C. Rosenberg, and D. Xu. Analysis of Parallel Down-
loading for Large File Distribution. Proceedings of the 9th IEEE
International Workshop on Future Trends in Distributed Computing
Systems (FTDCS 2003), San Juan, Puerto Rico, 28-30 May 2003.

[6] K.-C. Leung and V. O. K. Li. A Resequencing Model for High
Speed Networks. Proceedings of IEEE ICC ’99, Vol. 2, pp. 1239-1243,
Vancouver, BC, Canada, 6-10 June 1999.

[7] K.-C. Leung and V. O. K. Li. Generalized Load Sharing for Packet-
Switching Networks. Proceedings of ICNP 2000, pp. 305-314, Osaka,
Japan, 14-17 November 2000.

[8] V. O. K. Li and W. Liao. Distributed Multimedia Systems. Proceedings
of the IEEE, Vol. 85, No. 7, pp. 1063-1108, July 1997.

[9] N. F. Maxemchuk. Dispersity Routing in High-Speed Networks. Com-
puter Networks and ISDN Systems, Vol. 25, No. 6, pp. 645-661,
January 1993.

[10] T. S. E. Ng, Y.-H. Chu, S. G. Rao, K. Sripanidkulchai, and
H. Zhang. Measurement-Based Optimization Techniques for Bandwidth-
Demanding Peer-to-Peer Systems. Proceedings of IEEE INFO-
COM 2003, San Francisco, CA, USA, 30 March - 3 April 2003.

[11] K. Obraczka and P. B. Danzig. Evaluating the Performance of Flood-d:
A Tool for Efficiently Replicating Internet Information Services. IEEE
Journal on Selected Areas in Communications, Vol. 16, No. 3, pp. 369-
382, April 1998.

[12] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling.
Numerical Recipes in C: The Art of Scientific Computing. Second
Edition. Cambridge University Press, January 1993.

[13] P. Rodriguez and E. W. Biersack. Dynamic Parallel Access to Replicated
Content in the Internet. IEEE/ACM Transactions on Networking, Vol. 10,
No. 4, pp. 455-465, August 2002.

[14] M. Sayal, Y. Breitbart, P. Scheuermann, and R. Vingralek. Selection
Algorithms for Replicated Web Servers. ACM Performance Evaluation
Review, Vol. 26, No. 3, pp. 44-50, December 1998.

[15] E. W. Zegura, M. H. Ammar, Z. Fei, and S. Bhattacharjee. Application-
Layer Anycasting: A Server Selection Architecture and Use in a Repli-
cated Web Service. IEEE/ACM Transactions on Networking, Vol. 8,
No. 4, pp. 455-466, August 2000.

0-7803-8239-0/03/$17.00 ©2003 IEEE. 111

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

