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Abstract— The problem of super-resolution time delay esti-
mation in multipath environments is addressed in this paper.
Two cases, active and passive systems, are considered. The
time delay estimation is first converted into a sinusoidal pa-
rameter estimation problem. Then the sinusoidal parameters
are estimated by generalizing the Multiple Signal Classification
(MUSIC) algorithm for single-experiment data. The proposed
method, referred to as the MUSIC-type algorithm, approximates
the Cramer-Rao bound (CRB) in terms of the mean square
errors (MSEs) for different signal-to-noise ratios (SNRs) and
separations of multipath components. Simulation results show
that the MUSIC-type algorithm performs better than the classical
correlation approach and the conventional MUSIC method for
the closely spaced components in multipath environments.

Index Terms— time delay estimation, multipath environments,
Eigenanalysis, Sequential Quadratic Programming

I. INTRODUCTION

The time delay estimation is a fundamental signal process-
ing problem with application in many areas, such as radar [1],
sonar [1], communications [2], etc.. The classical time delay
estimation techniques are based on correlations [1], and are
only effective when multipath components are well separated
in arrival time or when only one component is present in the
received signal. Their performance will degrade significantly
when the signal components are closely spaced in multipath
environments.

A number of super-resolution techniques that can separate
closely-spaced multipath components have been developed.
Initially, the problem was studied in the time domain [3].
However, they offer marginal performance gain against the
classical methods. Hou and Wu [4] first proposed a model-
based sinusoidal estimation method, which converts the time
delay estimation problem into a sinusoidal parameter estima-
tion problem. Several other model-based sinusoidal estimation
methods were also presented in [5], [6]. These methods involve
a spectral-division operation, so they are only suitable for
signals with flat spectra [7], [8]. The approaches in [9]-[11]
can be applied to signals with non-flat spectra. However, these
methods do not guarantee global convergence and require large
numbers of data samples.

In this paper, a super-resolution time delay estimation
method is proposed, based on a generalization of the Multiple

†This work was supported in part by the Innovation Fund (No. 091205056)
of the School of Information Science and Technology at Tsinghua University
and in part by the Research Grant Council of Hong Kong, under grant No.
HKU 7047/00E.

Signal Classification (MUSIC) algorithm [17]. Two cases,
active and passive systems, are considered. In particular, the
transmitted signal is always unknown in passive systems.
Our method is applicable to signals with non-flat spectra, as
opposed to the model-based sinusoidal estimation methods [4]-
[6]. In addition, our method requires much fewer samples than
those in [9]-[11]. The performance of the proposed time delay
estimator is evaluated by numerical simulations. The mean
square errors (MSE) for different SNRs and the time delay sep-
arations in a multipath environment are shown to approximate
the Cramer-Rao bound (CRB), and the proposed estimator
performs better than the classical correlation approach and the
conventional MUSIC method.

This paper is organized as follows. Section 2 presents the
data models for estimating the time delay. In Section 3, we
derive the super-resolution time delay estimators. Simulation
results are shown in Section 4. Conclusions are provided in
Section 5.

II. DATA MODEL

In this section, we give the data models for the time delay
estimation. First, the notations in this paper are listed as
follows:

* , complex conjugate,
T , transpose,
H , Hermitian transpose,

Re(·) and Im(·), real part and imaginary part ,
E(·), expected value,
‖·‖, Euclidean norm,

DFT, discrete Fourier transform (DFT),
DFT−1, inverse DFT (IDFT).

A. The Data Model in Active Systems

In active systems, the time delay estimation is always
accomplished by matched filter or cross-correlation where the
reference signal is the known transmitted signal. Suppose that
the received signal is described as

r (t) =
D∑

i=1

λis (t − τ̃i) + w (t) , 0 ≤ t ≤ Tr, (1)

where D is the number of multipath components, s (t) is
the transmitted signal with duration Ts, λi and τ̃i are the
corresponding random amplitudes and time delays, w (t) is
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additive white Gaussian noise (AGWN), Tr is the duration of
r (t). The resulting discrete-time sequence can be written as

r (n) =
D∑

i=1

λis (n − τi)+w (n) , n = 0, 1, · · · , Kr−1, (2)

where τi, i = 1, 2, · · · , D, are the discrete time delays, and Kr

is the length of r (n). We zero-pad s (n) and r (n) to length
KxA = Kr + Ks − 1, where Ks is the length of s (n). Then
by computing the circular correlation between s (n) and r (n),
and carrying out the square envelope detection, we have

|RA (τ)|2 =
∣∣∣∑KxA

−1

n=0 s (n) · r∗ (n + τ)
∣∣∣2

=
∣∣∣∑KxA

−1

k=0

{∑D
i=1 λ∗

i |S (k)|2 ej2πkτi/KxA

+S (k) · W ∗ (k)} e−j2πkτ/KxA

∣∣2 ,
(3)

where S (k) and W (k) are the discrete Fourier transforms of
s (n) and w (n), respectively. We denote

xA (k) =
D∑

i=1

λ∗
i |S (k)|2 ej2πkτi/KxA + S (k) · W ∗ (k) , (4)

and have the following relation,

|RA (τ)|2 = (DFT [xA (k)])2 . (5)

In vector form, (4) is given by

xA=
∑D

i=1 λ∗
i Λ(τi)S + WA

= ΦAλA + WA
, (6)

where

xA =
[

xA (0) xA (1) · · · xA (KxA − 1)
]T

,

λA =
[

λ∗
1 λ∗

2 · · · λ∗
D

]T
,

Λ (τi) = diag
(

1 e
j2πτi
KxA · · · e

j2π(KxA
−1)τi

KxA

)
,

S =
[ |S (0)|2 |S (1)|2 · · · |S (KxA−1)|2 ]T

,

ΦA =
[

Λ (τ1)S Λ (τ2)S · · · Λ (τD )S
]
,

WA = [S (0) ·W ∗ (0) S (1) · W ∗ (1)
· · · S (KxA − 1) · W ∗ (KxA − 1)]T .

B. The Data Model in Passive Systems

In passive systems, signals are received at spatially sepa-
rated sensors and their time difference of arrival are always
measured by cross-correlation, where the reference signal is
one of the received signals. Suppose that two received signals
at two spatially separated sensors can be modeled as

{
r1 (t) =

∑D1
j=1 λ1j · s (t − τ̃1j) + w1 (t)

r2 (t) =
∑D2

i=1 λ2i · s (t − τ̃2i) + w2 (t)
, 0 ≤ t ≤ Tr,

(7)
where D1 and D2 are the number of multipaths, τ̃1j and τ̃2i

are the time delays of the received signals for each multipath,
λ1j and λ2i are the random amplitudes which are mutually
uncorrelated, w1 (t) and w2 (t) are AWGNs, respectively.

For the sake of simplicity, we assume r1 (t) has one signal
component, i.e., D1 = 1, and r2 (t) has multiple signal
components, i.e., D2 = D > 1, which are to be resolved
by the proposed super-resolution algorithm. Nevertheless, our
results can be easily extended to the cases of D1 > 1 using
the auxiliary processing in [4]. Then the resulting discrete-time
sequences can be written as

{
r1 (n) = λ11 · s (n − τ11) + w1 (n)
r2 (n) =

∑D
i=1 λ2i · s (n − τ2i) + w2 (n)

,

n = 0, 1, · · · , Kr − 1,

(8)

where τ11 and τ2i, i = 1, 2, · · · , D, are the discrete time
delays, and Kr is the length of the sequences.

The above two discrete-time sequences are then zero-padded
to length KxP = 2Kr − 1. Let W1 (k) and W2 (k) be the
discrete Fourier transform of w1 (t) and w2 (t), respectively.
By computing the circular correlation function between r1 (t)
and r2 (t), and carrying out square envelope detection, we have

|RP (τ)|2 =
∣∣∣∑KxP

−1

n=0 r1 (n) · r∗2 (n + τ)
∣∣∣2

=
∣∣∣∣∑KxP

−1

k=0

{∑D
i=1 λ11λ

∗
2i |S (k)|2 e

j2πk(τ2i−τ11)
KxP

+λ11S (k) · e
−j2πkτ11

KxP W ∗
2 (k) + W1 (k) · W ∗

2 (k)

+W1 (k)
∑D

i=1 λ∗
2iS

∗ (k) e
j2πkτ2i

KxP

}
e

−j2πkτ
KxP

∣∣∣∣
2

,

(9)
We denote

xP (k) =
∑D

i=1 λ11λ
∗
2i |S (k)|2 e

j2πk∆τi
KxP

+λ11S (k) · e
−j2πkτ11

KxP W ∗
2 (k) + W1 (k) · W ∗

2 (k)

+W1 (k)
∑D

i=1 λ∗
2iS

∗ (k) e
j2πkτ2i

KxP

=
∑D

i=1 λ11λ
∗
2i |S (k)|2 e

j2πk∆τi
KxP + WP (k) ,

(10)
where ∆τi = τ2i − τ11, i = 1, · · · , D, which are the time
difference of arrivals to be estimated, and WP (k) = λ11S (k)·
e

−j2πkτ11
KxP W ∗

2 (k)+W1 (k)
∑D

i=1 λ∗
2iS

∗ (k) e
j2πkτ2i

KxP +W1 (k) ·
W ∗

2 (k). Then we have the following relation

|RP (τ)|2 = (DFT [xP (k)])2 . (11)

In vector form, (10) is given by

xP=
∑D

i=1 λ11λ
∗
2iΛ(∆τi)S + WP

= ΦPλP + WP ,
(12)

where
xP =

[
xP (0) xP (1) · · · xP (KxP − 1)

]T
,

λP = λ11 ·
[

λ∗
21 λ∗

22 · · · λ∗
2D

]T
,

Λ (∆τi) = diag
(

1 e
j2π

∆τi
KxP · · · e

j2π
(KxP

−1)∆τi

KxP

)
,

ΦP =
[

Λ (∆τ1)S Λ (∆τ2)S · · · Λ (∆τD )S
]
,

WP =
[

WP (0) WP (1) · · · WP (KxP − 1)
]T

.
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C. About Models and Colored Noise

In the above two subsections, the time delay estimations in
(2) and (8) are converted into sinusoidal parameter estimation
problems as in (4) and (10), where |RA (τ)|2 and |RP (τ)|2
can be regarded as the power spectral densities of xA (k) and
xP (k) as in (5) and (11), respectively. In later sections, we
will propose a MUSIC-type algorithm to estimate τi in (4)
and ∆τi in (10). Following common practices as in [4]-[6],
we assume the SNRs of the received signals in (2) and (8)
are high, thus neglecting the colored noises S (k) ·W ∗ (k) in
(4) and WP in (10) (see [5],[12] and references therein) in
algorithm derivation.

III. TIME DELAY ESTIMATION

The time delay estimation problem in (4) and (10) is
a parameter estimation of sinusoidal signals with lowpass
envelopes [13]-[15]. The data models in (4) and (10) contain a
multiplicative noise term |S (k)|2. When the conventional MU-
SIC algorithm is applied to this case, Besson and Stoica [16]
have shown that the estimator performance degrades slightly
with very slowly varying envelopes, but the degradation is
significant when the envelope fluctuation is not very slow.
Thus the conventional methods should be modified to take
into account the envelope variation.

A. The Time Delay Estimation in Active Systems

1) Multiple-experiment Data: Since |S (k)|2 is the power
spectral density of s (t) and deterministic, the covariance
matrix of xA in (6) can be written as

RxA = E
(
xAxH

A

)
= ΦAE

(
λAλH

A

)
ΦH

A + RWA , (13)

where RWA is colored noise matrix and defined as
RWA =

{
E

[(∑D
i=1 λ∗

i Λ (τi)S
)

WH
A

]
+E

[
WA

(∑D
i=1 λ∗

i Λ (τi)S
)H

]
+ E

[
WAWH

A

]}
.

Since |S (k)|2 is always non-zero and the time of ar-
rivals τ1, τ2, · · · , τD are different from each other, we have
rank {Φ} = D . Under the assumption that λ1, λ2, · · · , λD

are mutually uncorrelated, rank
{
E

(
λAλH

A

)}
= D . Then

we have the following criterion [15] for estimating τi, i =
1, 2, · · · , D, as in [17]

ΦH
AGA

∼= 0 , (14)

where GA is the noise subspace corresponding to RxA . The
approximation in (14) arises from RWA .

2) Single-experiment Data: In many cases, multiple-
experiment data may not be available. Thus, rank

(
xAxH

A

)
=1

if xA is obtained from single-experiment data, which makes
the above method incapable of resolving multipath compo-
nents. Here we will present a method to estimate τi, i =
1, 2, · · · , D in the case of single-experiment data.

The estimate of covariance matrix RxA in the case of single-
experiment data can be expressed as [18]

R̂xA =
D∑

i=1

|λi |2 R̂Φ̃Ai
+ R̂WA = R̂SA + R̂WA , (15)

where

R̂Φ̃Ai
= Φ̃A (τi) Φ̃H

A (τi) / (KxA − MA+1)

=
∑KxA

−MA

q=0

(
φ̃A (q, τi) φ̃H

A (q, τi)
)

/ (KxA − MA+1) ,

Φ̃A (τi) =[
φ̃A(0, τi) φ̃A(1, τi) · · · φ̃A(KxA − MA, τi)

]
,

φ̃A (q, τi) =
[
|S (q)|2 e

j2π q
KxA

τi |S (q + 1)|2 e
j2π

(q+1)
KxA

τi

· · · |S (q + M A − 1)|2 e
j2π

(q+M−1)
KxA

τi

]T

q = 0, 1, · · · , Kx − MA,

and R̂WA is the estimated covariance matrix of noise. We
simply write Φ̃Ai instead of Φ̃A (τi) whenever there is no con-
fusion. According to the common assumptions of the MUSIC
algorithm in [18], it is necessary to have KxA−MA+1 > MA

and MA > D, or equivalently (KxA + 1) /2 > MA > D.
In general, the rank of R̂Φ̃Ai

in (15) is larger than 1 and
sometimes equals MA [15], [19]. Even though the covariance
matrix for the ith signal is full rank, the signal energy usually
concentrates on the largest eigenvalue [15],[19]. The remaining
dimensions of the matrix can be regarded as the quasi-noise
subspace. Here, the concentration largely depends on |S (k)|2
in (4) and (9) [13]-[15], [19]. Due to the orthogonality between
signal and noise subspaces, there is

R̂SAĜA
∼= 0 , (16)

where ĜA is the noise subspace corresponding to R̂xA . Here
the approximation also arises from the colored noise R̂WA .
In practice, we can determine the approximate quasi-signal
subspace dimension by examining the number of dominant
eigenvalues. In this paper we assume that the number of
signal components is known and only address the parameter
estimation. Since R̂SA is a linear combination of R̂Φ̃Ai

, we
have

R̂Φ̃Ai
ĜA

∼= 0 . (17)

By premultiplication of ĜH
A with (17), we have

ĜH
A R̂Φ̃Ai

ĜA = ĜH
A Φ̃Ai Φ̃H

AiĜA
∼= 0 . (18)

Therefore, we have the following relation

Φ̃H
AiĜA

∼= 0, i = 1, 2, · · · ,D . (19)

Then we denote

PA (τ) =
1

S̃H Λ̃H
A (τ) ĜA

, (20)

where Λ̃A (τ) = diag
(

1 e
2πτ

KxA · · · e
2π(MA−1)τ

KxA

)
, S̃ is

an MA × 1 sub-vector formed by |S (k)|2. In our simulations,
we always take the segment that contains the main spectral
components of s (n). Since |S (k)|2 is known, we can perform
a 1-dimensional search with respect to τ to find the maxima
of (20), whose locations are the time delay estimates τ̂i, i =
1, 2, · · · , D.
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In this paper, since we have the power spectrum of xA as
in (5), we adopt the idea in [21] to estimate the covariance
matrix from single-experiment data, instead of that in (15). We
first obtain the correlation function R

′
xA

(l) from
∣∣R̄A (τ)

∣∣2
according to the Wiener-Khinchine theorem [20]

R
′
xA

(l) = DFT−1
[∣∣R̄A (τ)

∣∣2] , l = 0, 1, · · · , 2KxA − 1.

(21)
where

∣∣R̄A (τ)
∣∣2 is a sequence formed by zero-padding

|RA (τ)|2 to length 2KxA − 1. Thus, R
′
xA

(l) can be viewed
as the correlation function of an analytic signal. Then the
covariance matrix can be formed based on R

′
xA

(l) [21]. The
dimension of the covariance matrix is decreased to MA to get
the following truncated covariance matrix

R̂
′
xA

=
[
R

′
Aij

]
MA×MA

, (22)

where R
′
Aij = R

′
xA

(i − j) for i ≥ j, and R
′
Aji = R

′∗
Aij for

i < j. It has been shown that R̂xA in (15) and R̂
′
xA

in (22) are
the consistent estimates of RxA[20]. Thus, we can substitute
R̂

′
xA

for R̂xA in our algorithm.

B. The Time Delay Estimation in Passive Systems

In passive systems, if the transmitted signal is known,
the time delay ∆τi, i = 1, 2, · · · , D, in (12) can also be
estimated by the above method. However, the transmitted
signal in passive systems is always unknown. Therefore, the
minimization requires the search not only on ∆τ , but also
on the unknown transmitted signal. Thus the above method
can not be directly applied to obtain ∆τ̂i, i = 1, 2, · · · , D.
However, in the case of single-experiment data, we still have

Φ̃H
PiĜP

∼= 0, (23)

where

Φ̃Pi
�
= Φ̃P (∆τi ) =[

φ̃P (0, ∆τi) φ̃P (1, ∆τi) · · · φ̃P (KxP − MP , ∆τi)
]
,

φ̃P (q, ∆τi) =
[
|S (q)|2 e

j2π q
KxP

∆τi |S (q + 1)|2 e
j2π

(q+1)
KxP

∆τi

· · · |S (q + M P − 1)|2 e
j2π

(q+MP −1)
KxP

∆τi

]T

,

q = 0, 1, · · · , KxP − MP ,

and ĜP is the noise subspace corresponding to the estimated
covariance matrix R̂xP of xP . Similar to that in active
systems, R̂xP is substituted by R̂

′
xP

, which can be obtained
as in (24) and (25):

R
′
xP

(l) = DFT−1
[∣∣R̄P (τ)

∣∣2] , l = 0, 1, · · · , 2KxP − 1,

(24)
where

∣∣R̄P (τ)
∣∣2 is a sequence produced by zero-padding

|RP (τ)|2 to length 2KxP − 1.

R̂
′
xP

=
[
R

′
Pij

]
MP×MP

, (25)

where R
′
Pij = R

′
xP

(i − j) for i ≥ j, and R
′
Pji = R

′∗
Pij for

i < j. It is necessary to have (KxP + 1) /2 > MP > 2D
[15].

Here the time delay estimation can be further expressed as(
∆τ̂i, S̃

)
= arg min

(∆τ,Ψ)

{
ΨH Λ̃H

P (∆τ) ĜPĜH
P Λ̃P (∆τ)Ψ

}
,

(26)
where Ψ is a vector of real-valued variables representing
the power spectrum of the unknown transmitted signal s (t),
and Λ̃P (∆τ) = diag

(
1 e

2π∆τ
KxP · · · e

2π(MP −1)∆τ

KxP

)
. In

theory, a perfect estimate on Ψ should be equal to S̃. Since S̃
and

{
ΨH Λ̃H

P (∆τ) ĜPĜH
P Λ̃P (∆τ)Ψ

}
are real-valued, but

Λ̃H
P (∆τ) ĜPĜH

P Λ̃P (∆τ) is complex-valued, there must be

ΨH Im
{
Λ̃H

P (∆τ) ĜPĜH
P Λ̃P (∆τ)

}
Ψ = 0, and we have

ΨH Λ̃H
P (∆τ) ĜPĜH

P Λ̃P (∆τ)Ψ

= ΨHRe
{
Λ̃H

P (∆τ) ĜPĜH
P Λ̃P (∆τ)

}
Ψ.

(27)

The operation of taking the real part in (27) is necessary [15].
Thus (26) is further written as(

∆τ̂i, S̃
)

= arg min
(∆τ,Ψ)

{
ΨHΘ (∆τ )Ψ

}
, (28)

where Θ (∆τ ) = Re
{
Λ̃H

P (∆τ) ĜPĜH
P Λ̃P (∆τ)

}
. The so-

lution to (28) is a general optimization problem [22]. To
estimate the time delay by using optimization, some con-
straints are imposed. Since S̃ > 0 , it is reasonable to
require Ψ > 0 [15] to avoid pseudo estimates [14], where
0 =

[
0 0 · · · 0

]T
is an MP × 1 column vector. Then

the time delay estimates can be expressed as(
∆τ̂i, S̃

)
= arg min

(∆τ,Ψ)

{
ΨHΘ (∆τ )Ψ

}
,

s. t. ΨHΨ= 1,
Ψ > 0,

(29)

where ΨHΨ= 1 is a nonlinear constraint and normalization.
Since

{
ΨHΘ (∆τ )Ψ

}
is nonnegative for any real Ψ, Θ (∆τ )

is a nonnegative definite Hermitian matrix, which ensures the
global convergence of the quadratic form

{
ΨHΘ (∆τ)Ψ

}
[22].

The parameter estimation in (29) can be done in two steps.
First, we minimize

{
ΨHΘ (∆τ )Ψ

}
with respect to Ψ, and

yield ξmin (∆τ) as a function of ∆τ

ξmin (∆τ) = min
(Ψ)

{
ΨHΘ (∆τ )Ψ

}
,

s. t. ΨHΨ= 1,
Ψ > 0.

(30)

Then, a search step is performed on ∆τ to find the minima
of ξmin (∆τ)

∆τ̂i = arg min
(∆τ)

{ξmin (∆τ)} , (31)

where ∆τ̂i, i = 1, 2, · · · , D, are the estimates of ∆τi.

IV. PERFORMANCE AND SIMULATION RESULTS

In this section, we evaluate the performance [1], [23] of the
proposed methods.
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A. Transmitted and Received Signals

In our simulations, the transmitted signal is a chirp signal

s (n) = sin ((β · n + α) · n + ϕ0) ,
n = 0, 1, · · · , Ks − 1,

(32)

where β = π · (f2 − f1) /Ks, f2 and f1 are the upper and
lower frequencies of s (n), respectively, α = 2π ·f1, ϕ0 is the
initial random phase, Ks is the length of s (n). The bandwidth

of s (n) is defined as Bs
�
= (f2 − f1), and the correlation time

is ζ
�
= 1/Bs. In our simulations, s (n) can not be considered

as having flat spectrum since Bs � 0.5.
In active systems, we assume the received signal in (2) has

two signal components with the same valued amplitudes . Then
the received signals are modeled as

r (n) = λ · s (n − τ1) + λ · s (n − τ2) + w (n) ,
n = 0, 1, · · · , Kr − 1,

(33)

where τ1 and τ2 are the unknown time delays. In the received
signal r (n), both s (n − τ1) and s (n − τ2) are padded with
zeros to length Kr and nonzero values only occupy the range
τ1 ≤ n ≤ τ1 +Ks−1 and τ2 ≤ n ≤ τ2 +Ks−1, respectively.
Let ∆DA = |τ2 − τ1| denote the time delay separation.

In passive systems, we assume the received signals can be
modeled as

{
r1 (n) = λ · s (n) + w1 (n)
r2 (n) = λ · s (n − τ21) + λ · s (n − τ22) + w2 (n)

n = 0, · · · , Kr − 1,
(34)

where τ11 = 0, τ21 and τ22 are the unknown time delays. Then
∆τ1 = τ21 and ∆τ2 = τ22 are the time differences of arrival
to be estimated. In the received signal r1 (n), s (n) is padded
with zeros to length Kr and nonzero values only occupy the
range 0 ≤ n ≤ Ks − 1. In the received signal r2 (n), both
s (n − τ21) and s (n − τ22) are padded with zeros to length
Kr and nonzero values only occupy the range τ21 ≤ n ≤
τ21 + Ks − 1 and τ22 ≤ n ≤ τ22 + Ks − 1, respectively.
Let ∆DP = |∆τ2 − ∆τ1| denote the separation of the time
differences of arrival.

B. Simulation Results

Fig. 1 and Fig. 2 show the MSE’s of the time delay
estimation for different SNRs and time delay separations
(∆DA and ∆DP ), which are also compared with CRB. The
results are obtained through 500 independent Monte Carlo
trials. SNR is defined as 10 log10 (Ps/Pn), where Ps is the
power of the signal, Pn is the power of the noise. Since
the CRBs of the time delay estimates degrade slightly due
to the closely spaced sources as in (33) and (34) for the chirp
signal, we do not consider the difference in our simulations.
We note that the MSEs are close to the corresponding CRBs
over a wide range of SNRs. Further, there is slight performance
variation for different ∆DA and ∆DP .

In Fig. 3 and Fig. 4, we compare the performance of a
MUSIC-type algorithm with the conventional MUSIC algo-
rithm [2], [6] by using only a signal component. It is clear

that our MUSIC-type algorithm outperforms the convention
MUSIC algorithm for all bandwidth values. The performance
gap is especially noticeable for small bandwidth values (cor-
responding to high variations of the power spectrum envelope
|S (k)|2 in (4) and (10) ), where the conventional MUSIC
algorithm has severe performance degradations. The better per-
formance of MUSIC-type algorithm comes from the matching
of the data models in (4) and (10). The results in Fig. 3 and
Fig. 4 are consistent with the conclusions in [16].

In Fig. 5 and Fig. 6, we compare the MUSIC-type algorithm
with the correlation approach and the conventional MUSIC
algorithm. We set f1 = 0.3, f2 = 0.33, and ∆DA = ∆DP = 3.
Then ∆DA = ∆DP � ζ ∼= 33. We have two observations.
First, the correlation approach is unable to resolve the two
closely-spaced signal components. Second, MUSIC-type algo-
rithm has a satisfactory estimation quality and is better than
the conventional MUSIC algorithm.

V. CONCLUSIONS

In this paper, we have studied the super-resolution time
delay estimation. Two cases, active and passive systems, are
considered. After transforming the time delay estimation into a
sinusoidal parameter estimation problem, we propose a super-
resolution time delay estimation method by generalizing the
MUSIC algorithm from the single-experiment data. The time
delay estimates are improved since the multiplicative noise is
taken into account. Simulation results show that the MSE of
the time delay estimates for different SNRs are very close to
the CRB over a wide range of SNRs. In comparison with the
conventional MUSIC algorithm and the correlation approach,
the MUSIC-type algorithm has better performance.
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Fig. 1. CRB and MSE of time delay estimation versus SNR and ∆DA

in active systems (Ks = 20, τ1 = 5, f1 = 0.30, f2 = 0.33).
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Fig. 2. CRB and MSE of time delay estimation versus SNR and ∆DP

in passive systems (Ks = 20, τ21 = 5, f1 = 0.30, f2 = 0.33)

0 0.1 0.2 0.3 0.4
-40

-35

-30

-25

-20

-15

M
S

E
(d

B
)

Normalized Bandwidth

MUSIC

MUSIC-type

CRB

Fig. 3. CRB and MSE of time delay estimation versus normalized bandwidth
in active systems (Ks = 20, Kr = 28, SNR = 20dB, MA= 23, f1= 0.1)
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Fig. 4. CRB and MSE of time delay estimation versus normalized bandwidth
in passive systems (Ks = 20, Kr = 28, SNR = 20dB, MP = 27, f1= 0.1)
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(Ks = 20, Kr = 28, SNR = 15dB, MA= 23, τ1 = 5, τ2 = 8)
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