
Title
A performance study of packet scheduling algorithms for
coordinating colocated Bluetooth and IEEE 802.11b in a Linux
machine

Author(s) Yip, HK; Kwok, YK

Citation

The 7th International Symposium on Parallel Architectures,
Algorithms, and Networks, Hong Kong, China, 10-12 May 2004.
In International Symposium on Parallel Architectures,
Algorithms, and Networks, 2004, p. 533-538

Issued Date 2004

URL http://hdl.handle.net/10722/46465

Rights

©2004 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be
obtained from the IEEE.

1

A Performance Study of Packet Scheduling
Algorithms for Coordinating Colocated Bluetooth

and IEEE 802.11b in a Linux Machine
Hoi Kit Yip and Yu-Kwong Kwok

Department of Electrical and Electronic Engineering
The University of Hong Kong, Pokfulam Road, Hong Kong

Corresponding Author: Yu-Kwong Kwok (email: ykwok@hku.hk)

Abstract— Due to the proliferation of hand-held short-
range communication devices, coexistence between Blue-
tooth and IEEE 802.11b has become a performance critical
issue. In this study, we performed an actual implementa-
tion of a Linux based network access point (NAP), in which
Bluetooth and IEEE 802.11b are colocated. Such an NAP
is expected to be crucial in supporting “hot-spot” systems
targeted to serve nomadic users carrying either a Bluetooth
or a IEEE 802.11b device. Specifically, the goal of our study
is to investigate the efficacy of a software based interference
coordination approach. We consider five most commonly
used scheduling algorithms in a Linux environment. Our ex-
tensive experimental results obtained in a real environment
indicate that a hierarchical scheduling approach exhibits the
best performance in terms of aggregate bandwidth achieved
by Bluetooth and IEEE 802.11b.
Keywords: Linux, packet scheduling, wireless communica-
tions, coexistence, Bluetooth, IEEE 802.11b, interference,
fair queueing.

I. Introduction

Bluetooth [5] and IEEE 802.11b [2] short-range wireless
technologies are rapidly proliferating in the various ubiq-
uitous hand-held gadgets. This is a direct consequence of
their low-cost (both operate in the free ISM 2.4 GHz fre-
quency spectrum) and low-power features. Indeed, in “hot-
spot” systems (e.g., wireless cafe, airport, convention cen-
ter, etc.), a network access point (NAP) is expected to serve
nomadic users carrying either Bluetooth or IEEE 802.11b
devices. As such, transceivers with these two disparate
(albeit both operate in the same frequency band) short-
range wireless technologies will “coexist” within a small
geographical area. Such coexistence, if not coordinated ju-
diciously, will inevitably lead to degraded performance (i.e.,
low bandwidth) for both types of devices.

To combat this coexistence problem, in a broad sense,
there are currently two different approaches. The first
approach is the MAC (multiple access control) layer ap-
proach, in which the firmware of the Bluetooth and IEEE
802.11b WLAN devices have to be significantly modified.
Recently, this approach has been employed in some com-
mercial products, such as TrueRadio by Mobilian [15] and
Blue802 by Silicon Wave [17]. In this approach, two
types of mechanisms can be used: collaborative and non-
collaborative. Collaborative mechanisms require a central-

This research was supported by a grant from the Hong Kong Re-
search Grants Council under project number HKU 7162/03E.

ized controller. For instance, in MEHTA (MAC Enhanced
Temporal Algorithm) [10], traffic information is exchanged
between the Bluetooth and 802.11b firmware to calculate
the accurate traffic timings at the MAC layer, avoiding in-
terference by proper synchronizations. Non-collaborative
mechanisms are mainly based on adaptive frequency hop-
ping (AFH) [7], [18]. In AFH, frequency channels are dy-
namically classified as good or bad so that only the good
ones are used in the frequency hopping process. However,
AFH has limited applicability as it requires fundamental
changes in the hardware and firmware of the transceiver in
order to implement the channel classification and adaptive
hopping mechanisms.

The second approach is the network layer approach,
which is a software based technique. Specifically, the trans-
missions of Bluetooth and IEEE 802.11b are coordinated
by a packet scheduling algorithm. The advantage of this
approach is that it can be used for existing Bluetooth and
IEEE 802.11b devices. Indeed, for a dual-channel NAP
considered in our study, this software based approach is
attractive. In this paper, we focus on this approach. We
conduct an experimental study to investigate the perfor-
mance of various different coordination mechanisms for
colocated Bluetooth and IEEE 802.11b (using point coor-
dination function) wireless interfaces in a single Linux ma-
chine. In Section II, we briefly survey the various schedul-
ing algorithms that are being used in the Linux environ-
ment. In Section III, we describe the performance evalu-
ation environment in our study. Section IV contains our
experimental results obtained in a real environment. We
conclude this paper in Section V.

II. Scheduling in Linux

In Linux, packet scheduling (also known as traffic con-
trol) mechanisms are mainly based on different queueing
disciplines [1], [8]. Specifically, there are four basic compo-
nents [1]:
1. queueing discipline: a specific scheduling algorithm;
2. classes: classification of the network traffic;
3. filters: tools to divide the network traffic into classes;
and
4. policing: rules to bound network traffic.

The queueing disciplines and classes implementation
source code reside in the files net/sched/sch *.c, while

Proceedings of the 7th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’04)
1087-4089/04 $ 20.00 © 2004 IEEE

2

the net/sched/cls *.c files contain the code for the fil-
ters. Each queueing discipline provides operations with the
struct Qdisc ops in include/net/pktsched.h [1]. The
operations include enqueue, dequeue, requeue, reset, and
so on.

The enqueue operation is triggered when a packet is en-
queued on an interface (dev queue xmit in net/core/dev.c).
Next, dev queue xmit calls qdisc wakeup in
net/pktsched.h to send the packet on that de-
vice. Afterward, qdisc wakeup calls qdisc restart
in net/sched/sch generic.c, which polls the queueing
discipline so as to transmit packets. The operation
qdisc restart first fetches a packet from the queue-
ing discipline of the device. If it is done, the device’s
hard start xmit is called to send the packet. If this fails,
the packet is sent to the requeue function of the queueing
discipline. The function qdisc wakeup can also be called
by a timer event, which, for example, signifies the system
to send a packet at the expiration time.

Classes in Linux traffic control use two ID schemes
for identification: class ID and internal ID. The in-
ternal ID must be unique within a queueing discipline
while it may not be so for class ID. Classes have to
be supported by queueing disciplines with the struct
Qdisc class ops in include/net/pkt sched.h. The
Linux kernel selects a class with the enqueue opera-
tion in the queueing discipline by calling tc classify
in include/net/pkt cls.h which returns a struct
tcf result defined in include/net/pkt cls.h. If the
return value of tc classify is −1, it means that
TC POLICE UNSPEC, i.e., unclassified traffic, occurs. The
header file include/linux/pkt cls.h declares the return
values of tc classify.

For locally generated traffic, there is a shortcut to se-
lect the class. If the skb->priority (struct sk buff
in include/linux/skbuff.h) contains the ID of a class
of the current queueing discipline, that class is selected.
The struct tcf proto ops in include/net/pkt cls.h
provides the necessary functions to control the filters,
such as classify, init, get, and so on. In particu-
lar, classify performs the main role as it gives the clas-
sification and returns one of the TC POLICE * values in
include/linux/pkt cls.h.

There are 12 types of queueing disciplines commonly sup-
ported in Linux [3], [19], namely,

1. Class Based Queue (CBQ)
2. Hierarchical Token Bucket (HTB)
3. Token Bucket Flow (TBF)
4. Clark-Shenker-Zhang (CSZ)
5. First in First Out (FIFO)
6. Priority Queueing (PRIO)
7. Priority Traffic Equalizer (TEQL)
8. Stochastic Fair Queueing (SFQ)
9. Asynchronous Transfer Mode (ATM)
10. Random Early Detection (RED)
11. Generalized RED (GRED)
12. Diffserv-Marker (DS MARK)

In this paper, we focus on five of them: FIFO, HTB,
SFQ, PRIO, and TBF. FIFO is the default Linux queueing
discipline for every network interface. While both HTB
and CBQ belong to the group of hierarchical link-sharing
queueing disciplines, HTB is an improved version of CBQ
[6]. As indicated in [8], CBQ is considered to be the most
complicated queueing discipline and it is quite difficult to
configure it properly. We only consider HTB in this study.
HTB divides the network traffic into a hierarchy of classes.
Each class can enjoy at least the minimum of the amount
of bandwidth it requests. In the case of excess bandwidth
available, it can be shared among the classes at the same
hierarchy level [6]. SFQ is a probabilistic variant of max-
min fairness queueing [14]. It uses a hash function to di-
vide the network traffic into a pretty large number of FIFO
queues, one for each connection. The traffic is then sent in
a round-robin manner. PRIO divides the network traffic
into a number of queues, according to their relative prior-
ities. Packets can take their turns only if all the queues
of higher priorities are empty. Within each queue, packets
are managed using traditional FIFO [16]. TBF is specially
designed to allow users to set the maximum rate of packets
to be transmitted. Once this is set, a buffer (bucket), which
holds “tokens,” is created according to the maximum rate.
The tokens are filled in the bucket at maximum rate set.
As long as there are tokens in the bucket, the packets can
be dequeued and get transmitted [8].

A major difficult issue in using Linux queueing disci-
plines for both Bluetooth and IEEE 802.11b interfaces at
the same time is that each queueing discipline can only be
attached to one interface. To tackle this problem, Inter-
mediate Queueing Device (IMQ) [12], which is a virtual
networking interface in the Linux kernel, is used to bind
the WLAN and Bluetooth interfaces. As all the queueing
disciplines in Linux lie in the Linux Kernel, they can only
be invoked by the user via user-space tools. IPROUTE2
[9] is the package providing such tools. The most impor-
tant tool in the package is tc, which is a user-space pro-
gram allowing us to manipulate various Linux traffic con-
trol elements. In the kernel, net/core/rtnetlink.c and
include/linux/rtnetlink.h provide the rtnetlink which
acts as a bridge to connect the user-space tools to the kernel
code [1].

III. Experimental Environment

The design of the Linux traffic control architecture con-
tains ready-made classes and filters which are for IP (In-
ternet Protocol) traffic. Thus, it is natural for Linux to
schedule the network traffic at the IP level. In this study,
we use the environment as shown in Figure 1.

In the setup depicted in Figure 1, all the links were
brought up to the IP level. And each of the two clients
downloaded a 600 MB file from the NAP (i.e., the Linux
machine) via the FTP protocol. For the NAP (or FTP
server), the outflow transmission was preprocessed by some
QoS techniques in the Linux kernel. As mentioned above,
the queuing disciplines (qdisc) considered are: HTB,
PRIO, SFQ, and TBF. All the Linux traffic control set-

Proceedings of the 7th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’04)
1087-4089/04 $ 20.00 © 2004 IEEE

3

NAP
WLAN
Interface

Wireless
Link

Wireless
Link

Bluetooth Interface

WLAN Client

BT Client

Fig. 1. The testing environment.

tings done in the tests are for egress traffic only. That is,
we only scheduled the out-bound traffics of the NAP (the
FTP download traffics of the clients).

Furthermore, all the three machines are Linux PCs. The
FTP server used is the WU-2.6.1-16 bundled with Redhat
7.1 and the ftp client software is the NCFTP client. We use
the modified xnetload [13] program to measure the band-
width in bytes per second of the WLAN and BT interfaces
at the NAP (only the out-bound traffic). The sampling
period is around 700 secs to 800 secs in all tests.

For the WLAN driver, we used the HOSTAP driver [11].
This driver enables an easy configuration of the AP (access
point) mode of the IEEE 802.11b interface. Indeed, in all
the tests done, the WLAN is set in AP mode, which uses
the point coordination function (PCF) as the MAC layer
scheme. Moreover, the WLAN transceivers used are the
Linksys WPC11 PCMCIA cards.

For the Bluetooth interface, we used the Billionton USB
Bluetooth Dongle as the transceiver for both the NAP and
the client. BlueZ [4] driver is the software driver of the
devices. The Bluetooth connection is bought up to the
IP level with the PAN (personal area network) profile [5]
of Bluetooth, in which Bluetooth network encapsulation
protocol (BNEP) and Bluetooth logical link control and
adaptation protocol (L2CAP) [5] are employed. As the
NAP is the master and the client is the slave, we deliber-
ately set DH5 as packet type for network transmission at
the NAP because DH5 gives the fastest data rate for the
Bluetooth as the baseband layer at 723 Kbits/sec, which is
about 90.375 KBytes/sec.

The following four types of tests were done:
FIFO. This is the Linux default scheduling setting.
HTB+SFQ. In this configuration, we used HTB as the first
hierarchy to divide the traffic depending on the interfaces,
i.e., WLAN and Bluetooth. Then, within each queue, an
SFQ is attached. As indicated in Figure 2, the WLAN
interface is at class 1:2 while the Bluetooth interface is

at class 1:3. According to the HTB property, any excess
bandwidth from class 1:2 or class 1:3 will be shared by
them, as they are under the class 1:0.

Class 1:2

Class 1:3

Class 1:0

SFQ

SFQ

HTB

Fig. 2. The HTB+SFQ configuration.

PRIO+TBF. It is widely conceived that Bluetooth trans-
mission survives more robustly than the IEEE 802.11b
transmission in a colocated environment. Thus, we used
the PRIO queueing discipline in Linux to give the WLAN
connections a higher priority class. However, in order not
to starve the traffic with lower priority (the Bluetooth traf-
fic in this case), we attached a TBF scheduling algorithm
for each of the class, as illustrated in Figure 3.

TBF

TBFhigher priority

lower priority

Filter

Filter

PRIO

Fig. 3. The PRIO+TBF configuration.

SFQ. Finally, we simply used SFQ to schedule the WLAN
and Bluetooth traffics in a mixed manner at the IMQ in-
terface. We set ten seconds as the time for the system to
change its hash functions to increase the randomness of the
algorithm.

In our tests, we used the IMQ virtual network device to
bind the WLAN and the Bluetooth interfaces together to
be the IMQ0 interface in the Linux implementation. Thus,
using the modified xnetload [13] program to monitor the
network bandwidth in bytes/sec at the IMQ0 interface au-
tomatically gives us the aggregate bandwidth of both the
WLAN and the Bluetooth interfaces. For simplicity, the
aggregate bandwidth of the two interfaces is our metric
of performance comparison among different queueing dis-
ciplines.

IV. Results

In this study, we compare the performance of different
queueing disciplines in two major aspects:
• trend of the peak bandwidth; and
• range of major fluctuation of bandwidth.

We assume that the network transmission is performed
in the best effort manner. Hence, the trend of the peak
bandwidth could indicate us the channel condition. In this
study, we presume that the channel condition varies ac-
cording to the interference between WLAN and Bluetooth.

Proceedings of the 7th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’04)
1087-4089/04 $ 20.00 © 2004 IEEE

4

Among all the results, we notice that the WLAN trans-
mission fluctuates every 5 seconds. And there exists a cycle
of fluctuation of around 90 to 100 sec. Relative to WLAN,
Bluetooth transmission fluctuates in a more random man-
ner, from which no clear cycle can be seen. Such pattern
can be seen in the figures below, which show the aggregate
bandwidth of WLAN and Bluetooth. As the fluctuation
could be as wide as from 100 KBytes/sec to 700 Kbytes/sec
in extreme cases, it is more appropriate to consider the
range of major fluctuation.

A. Default Scheduling in Linux

In Figure 4, we can see that the peak bandwidth of
WLAN and Bluetooth together exhibits a gradual down-
ward trend over the sampling period of around 800 seconds.
The range of major fluctuation, as indicated by thicker or
darker lines in the graph, is between 300 KBytes/sec and
600 KBytes/sec. A closer look at the data reveals that
the downward trend of peak bandwidth results from the
gradual deterioration of WLAN bandwidth under the in-
terference of Bluetooth, as shown in Figure 5.

0

100000

200000

300000

400000

500000

600000

700000

0 100 200 300 400 500 600 700 800

T
ra

ns
m

is
si

on
 R

at
e

(B
yt

es
/s

ec
)

Time (sec)

Performance of WLAN + BT Aggregate (IMQ0) with FIFO

WLAN+BT

Fig. 4. Performance of WLAN and Bluetooth under default FIFO
scheduling.

B. HTB+SFQ

Figure 6 shows that the peak bandwidth is steady around
600 KBytes/sec and it begins to rise well above this value
toward the end of the sampling period of 800 seconds.
The major range of fluctuation is from 350 KBytes/sec to
around 600 KBytes/sec.

Figure 7 tells us the steady performance of HTB + SFQ
mainly comes from its magic in protecting the WLAN
bandwidth to be above 400 KBytes throughout the sam-
pling period. However, the BT bandwidth is still well sup-
pressed due to the scheme’s inability to resolve the inter-
ference between WLAN and BT.

C. PRIO+TBF

The results of this queueing discipline gives us the most
steady peak bandwidth among all the tests we have done,

0

100000

200000

300000

400000

500000

600000

700000

0 100 200 300 400 500 600 700 800
0

10000

20000

30000

40000

50000

60000

70000

80000

T
ra

ns
m

is
si

on
 R

at
e

-
W

LA
N

 (
B

yt
es

/s
ec

)

T
ra

ns
m

is
si

on
 R

at
e

-
B

T
 (

B
yt

es
/s

ec
)

Time (sec)

Performance of WLAN and BT with FIFO

WLAN BT

Fig. 5. Performance of WLAN and Bluetooth under default FIFO
scheduling.

0

100000

200000

300000

400000

500000

600000

700000

0 100 200 300 400 500 600 700 800 900

T
ra

ns
m

is
si

on
 R

at
e

(B
yt

es
/s

ec
)

Time (sec)

Performance of WLAN + BT Aggregate (IMQ0) with HTB + SFQ

WLAN+BT

Fig. 6. Performance of the HTB+SFQ configuration.

0

100000

200000

300000

400000

500000

600000

700000

800000

0 100 200 300 400 500 600 700 800 900
0

10000

20000

30000

40000

50000

60000

70000

T
ra

ns
m

is
si

on
 R

at
e

-
W

LA
N

 (
B

yt
es

/s
ec

)

T
ra

ns
m

is
si

on
 R

at
e

-
B

T
 (

B
yt

es
/s

ec
)

Time (sec)

Performance of WLAN and BT with HTB + SFQ

WLAN BT

Fig. 7. Performance of WLAN and BT under HTB+SFQ configura-
tion.

Proceedings of the 7th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’04)
1087-4089/04 $ 20.00 © 2004 IEEE

5

as illustrated in Figure 8. The peak bandwidth is rather
stable at 660 KBytes/sec throughout the sampling period
of 700 sec. More importantly, its range of major fluctuation
is from 400 KBytes/sec to 660 KBytes/sec, indicating a
more robust performance.

0

100000

200000

300000

400000

500000

600000

700000

800000

0 100 200 300 400 500 600 700 800

T
ra

ns
m

is
si

on
 R

at
e

(B
yt

es
/s

ec
)

Time (sec)

Performance of WLAN + BT Aggregate (IMQ0) with PRIO + TBF

WLAN+BT

Fig. 8. Performance of the PRIO+TBF configuration.

Figure 9 gives us the picture behind the robust perfor-
mance due to PRIO + TBF. Under that scheme, the band-
width of WLAN could be steady above the 400 KBytes/sec
mark. What is even more impressing is that the BT band-
width could fluctuate in a rising trend over the sampling pe-
riod, though it is still suppressed under interference. Also,
this rising trend for the BT bandwidth does not accom-
pany with a deterioration of the WLAN bandwidth. Such
a rising trend could not be found in all other scheduling
schemes tested in this study.

0

100000

200000

300000

400000

500000

600000

700000

0 100 200 300 400 500 600 700 800 900
0

10000

20000

30000

40000

50000

60000

T
ra

ns
m

is
si

on
 R

at
e

-
W

LA
N

 (
B

yt
es

/s
ec

)

T
ra

ns
m

is
si

on
 R

at
e

-
B

T
 (

B
yt

es
/s

ec
)

Time (sec)

Performance of WLAN and BT with PRIO + TBF

WLAN BT

Fig. 9. Performance of WLAN and BT under PRIO+TBF configu-
ration.

D. SFQ

As can be seen from Figure 10, the performance of SFQ
looks pretty much like that of FIFO. Yet there is appar-
ently no clear downward or upward trend of the bandwidth

fluctuation. The range of major fluctuations remains wide,
between 300 KBytes/sec and 600 KBytes/sec. The peak
bandwidth is around 560 KBytes/sec. Though lower than
that of the FIFO, it is still better than that of the FIFO in
terms of steadiness.

0

100000

200000

300000

400000

500000

600000

700000

0 100 200 300 400 500 600 700 800

T
ra

ns
m

is
si

on
 R

at
e

(B
yt

es
/s

ec
)

Time (sec)

Performance of WLAN + BT Aggregate (IMQ0) with SFQ

WLAN+BT

Fig. 10. Performance of SFQ.

V. Concluding Remarks

Based on the results obtained, we find that the perfor-
mance ranking (in descending order) of the five scheduling
algorithms are: PRIO+TBF, HTB+SFQ, SFQ, and FIFO.
Specifically, our results indicate that to properly manage
the two disparate (in terms of peak raw bandwidth; albeit
they both operate in the ISM band) wireless technologies,
a hierarchical approach seems to be more efficient. We are
now designing a new hierarchical scheduling algorithm that
can give even better performance in an interference-prone
environment (e.g., existence of other microwave sources) in
terms of aggregate bandwidth.

References

[1] W. Almesberger, “Linux Network Traffic Control—
Implementation Overview,” EFPL ICA., 2001.

[2] ANSI/IEEE Standard 802.11, Local and Metropolitan Area Net-
works: Wireless LANs, 1999 Edition.

[3] L. Balliache, “Differentiated Service on Linux HOWTO,”
http://opalsoft.net/qos/DS.htm, Aug. 2003.

[4] BlueZ, Official Linux Bluetooth Protocol Stack,
http://www.bluez.org/, 2003.

[5] Bluetooth.org, Bluetooth Specifications,
http://www.bluetooth.com/dev/specifications.asp, 2003.

[6] M. Devera, HTB Linux Queueing Discipline Manual: User
Guide, http://luxik.cdi.cz/~devik/qos/htb/manual/userg.htm,
2003.

[7] H. Gan and B. Treister, “Adaptive Frequency Hopping
Implementation Proposals for IEEE 802.15.1/2 WPAN,”
IEEE 802.15-00/367r0, http://www.ieee802.org/15/pub/TG2-
Coexistence-Mechanisms.html, Nov. 2000.

[8] B. Hubert, G. Maxwell, R. van Mook, M. van Oosterhout, P.
B. Schroeder, and J. Spaans, “Linux 2.4 Advanced Routing
and Traffic Control HOWTO,” http://www.ds9a.nl/2.4Routing,
Apr. 2001.

[9] A. Kuznetsov, IPROUTE2, ftp://ftp.inr.ac.ru/ip-routing/,
2003.

[10] J. Linseed, “MEHTA: A Method for Coexistence between Co-
located 802.11b and Bluetooth Systems,” IEEE 802.15-00/360r0,
http://www.ieee802.org/15/pub/TG2.html, Nov. 2000.

Proceedings of the 7th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’04)
1087-4089/04 $ 20.00 © 2004 IEEE

6

[11] J. Malinen, “Host AP Driver for Intersil Prism2/2.5/3,” SSH
Security Communications Corp., http://hostap.epitest.fi/, 2003.

[12] P. McHardy, Intermediate Queueing Device.
http://trash.net/~kaber/imq/, 2003.

[13] R.F. Smith xnetload, http://www.xs4all.nl/ rsmith/software/,
2003.

[14] P. E. McKenney, “Stochastic Fairness Queuing,” Proc. INFO-
COM’90, June 1990.

[15] Mobilian, TrueRadio, http://www.mobilian.com/images/sim-
op final.pdf, 2003.

[16] C. Semeria, “Supporting Differentiated Service Classes: Queue
Scheduling Disciplines,” Juniper Networks, Dec. 2001.

[17] Silicon Wave, Blue802, http://www.siliconwave.com/Blue802.html,
2003.

[18] B. Treister, H. B. Gan, K. C. Chen, H. K. Chen, A. Ba-
tra, and O. Eliezer, “Components of the AFH Mechanism,”
IEEE 802.15-01/252r0, http://www.ieee802.org/15/pub/TG2-
Coexistence-Mechanisms.html, May 2001.

[19] L. Wischhof and J. W. Lockwood, “Packet Schedul-
ing for Link-Sharing and Quality of Service Support
inWireless Local Area Networks,” Technical Report
WUCS-01-35, Department of Computer Science, Ap-
plied Research Laboratory, Washington University,
http://www.cs.wustl.edu/cs/techreports/2001/wucs-01-35.pdf,
Nov. 2001.

Proceedings of the 7th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’04)
1087-4089/04 $ 20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

