
Title TCP-Swift: An end-host enhancement scheme for TCP over
satellite IP networks

Author(s) Leung, KF; Yeung, KL

Citation Proceedings - International Symposium On Computers And
Communications, 2004, v. 1, p. 551-555

Issued Date 2004

URL http://hdl.handle.net/10722/46459

Rights Creative Commons: Attribution 3.0 Hong Kong License

TCP-Swift: An End-Host Enhancement Scheme for TCP over Satellite
IP Networks

Kui-Fai Leung and Kwan L. Yeung

Department of Electrical and Electronic Engineering
The University of Hong Kong

Hong Kong, PRC.
Tel: (852) 2857-8493 Fax: (852) 2559-8738

Abstract: A new transport layer protocol called TCP-
Swift is proposed for enhancing the TCP performance
over satellite /P networks. TCP-Swift replaces the
conventional TCP slow start and fast recovery
algorithms by speedy start and speedy recovery. With
speedy start, a TCP-Swift sender opens up its
congestion window in only two round trip times. This
signiJicantly shortens the tinie needed in probing the
network for equilibrium state. With speedy recovery, we
can infer the cause of a packet loss by observing the
ACK stream received at the sender. l f the loss is due to
wireless transmission error, the sender's congestion
window can be re-opened up more aggressively to fully
utilize the available satellite link bandwidth. We show
that TCP-Swift outperforms existing TCP schemes by
simulations.

I. Introduction
The market need for Internet access via broadband
satellite networks is increasing. Although TCP has been
designed, improved and tuned to work efficiently in the
wireline network, extending it to satellite networks is
problematic. This is mainly due to the following
satellite link characteristics.

Large bandwidth-delay product. TCP spends a long
time in its slow start phase because of long latency of
the satellite link. Current TCP applications, like HTTP,
consist of many transfers of small files. Very likely
such transfers will be completed within the slow start
phase. In other words, TCP may not be able to fully
utilize the available bandwidth of the network.

Transmission errors in satellite links. TCP interprets
packet loss as a signal of network congestion, which
then triggers the congestion control mechanism to
reduce the transmission window size. Such
interpretation is no longer valid when applied to
satellite links. Due to factors like atmospheric
conditions, RF interference, weak signal and so on,
satellite links usually experience high bit error rate
(BER).

Channel asymmetric. In many satellite systems, the
bandwidths on the forward and backward channels are
asymmetric. This is mainly due to cost limitation,

increased transmitter power, and antenna size
requirements for high bandwidth transmission. Using
slower reverse channels can make more cost effective
designs and save the scarce satellite bandwidth.

Many studies [I-2,4,6-81 have been carried out to
enhance the performance of TCP over satellite IP
networks. Recently an efficient scheme called TCP-
Peach [4] was designed. It adopts two new algorithms,
sudden start and rapid recovery. Dummy segments are
used in these algorithms for fast probing the availability
of the network resources.

In this paper, a new transport layer protocol called
TCP-Swift is proposed based on TCP-Peach. TCP-
Swift replaces the conventional TCP slow start and fast
recovery algorithms by speedy start and speedy
recovery. With speedy start, a TCP-Swift sender opens
up its congestion window size in only two round trip
times (RTTs). With speedy recovery, we can infer the
cause of a packet loss by observing the ACK stream
received at the sender. If a packet loss is due to wireless
transmission error, the sender's congestion window can
be re-opened up more aggressively to fully utilize the
available bandwidth. In the next section, we first
summarize our two major observations on TCP-Peach.
Then TCP-Swift is proposed in Section 111 based on
these observations. The performance of TCP-Swift is
evaluated in Section IV. Finally we conclude the paper
in Section V.

11. Observations on TCP-Peach
A. Using Dunrmy Segment

The dummy segments used in TCP-Peach [4] are low-
priority segments generated by the sender as a copy of
the last transmitted data segment. Efforts on
transmitting dummy segments into the network can be
treated as the network overhead since they do not carry
any new information to the receiver (assuming the last
transmitted data segment is correctly received). Dummy
segments may be transmitted through the network but
dropped in subsequent routers along the transmission
path. Hence dummy segments may cause network
inefficiency.

0-7803-8623-W04/$20.00 02004 IEEE 551

B. Window Expanding Period (WEP)

The information that conveyed by ACKs for data
segments after rapid recovery [4] is not fully utilized.
TCP-Peach sends a number of dummy segments to
probe the availability of the network resources and
expand its congestion window size according to the
receipt of ACK for these dummy segments. Fig. 1
shows the corresponding window expanding period
(WEP). WEP lasts for one RTT which is the period
from the time the sender exiting/quitting the rapid
recovery algorithm to receiving the ACK of the last
data segment sent in the rapid recovery [4].

4@i>Recovery Phase

Fig. 1. Window Expanding Period

In rapid recovery, cwndd2 data segments and mndo
dummy segments are injected into the network. During
the WEP, the TCP sender will receive dummy ACKs
(i.e. ACKs for dummy segments) and data ACKs (i.e.
ACKs for regular data segments) respectively. TCP-
Peach starts increasing its congestion window upon
receiving the (cwnd(/2+1)-th dummy ACK. Similar to
the implementation of TCP-Reno, TCP-Peach enters
the congestion avoidance phase after exiting the rapid
recovery. Thus the congestion window is increased by
one for each RTT during the congestion avoidance
phase.

TCP is designed to adapt its transmission rate to
bandwidth along the sender-to-receiver’s transmission
path. The return of data ACKs (for those data segments
transmitted during rapid recovery) during WEP does
indicate to the sender that there are still resources
available in the network. As such, the congestion
window should be further expanded for each data ACK
received during WEP.

111. Our Approach: TCP-Swift

A.
To increase the network bandwidth utilization, we
replace the dummy segments by outstanding segments
for probing the available network resources. Dummy
segment is a copy of the last transmitted data segment,
whereas outstanding segments are chosen randomly
from the set of packets/segments that have been sent
but not-yet-acknowledged. So they serve as a backup in
case the earlier sent packets are lost. This gives some
extra loss repairing capability as compared with the
dummy segment approach. Please note that the

Outstanding Segment & Speedy Start

outstanding segment concept and the NIL segments in
[9] share the same idea.

The priority implementation of outstanding segments
can be supported in IP layer by the Type of Service
(TOS) option in IPv4. Some recent commercial routers,
like Cisco 7000 series and 12000 series emerge to
support TP TOS.

The speedy start algorithm is summarized in Fig. 2 for
replacing the original sudden start of TCP-Peach.

Speedy Start (1

cwnd = 1;
T = RTT / rwnd;
send(data-segment); //the first data segment;
for (i= 1 to rwnd - 1)

wait (T) ;
send(0utstandingsegment);

end; . end:
Fig. 2. Speedy start algorithm

B. Congestion Window Incremeni Function &
Speedy Recovery

To improve the efficiency of congestion window
increment in WEP for a large bandwidth-delay product
transmission path (like satellite links). We propose that
TCP sender should be aggressive in increasing its
transmission rate in order to fill up the available
transmission pipe.

In our TCP-Swift, the resulting algorithm is called
speedy recovery, as detailed in Fig. 3. (The definitions
of variables used are described in Table I.) A
congestion window increment function is added to the
speedy recovery. The operation of this function is
described as follows. When a sender exits from the
rapid recovery in Fig. 1 (i.e. also the start time of
WEP), the sequence number of the last data segment
sent is recorded in a variable swifi_wep-recv. During
WEP, in case of the arrival of dummy ACKs, the sender
behaves like TCP-Peach. For each data ACK arrived,
the sender increases its congestion window by one until
the ACK corresponding to the value of swip-wep-recv
is received. Therefore, the congestion window size
opens up more quickly and aggressively than rapid
recovery of TCP-Peach. In short, speedy recovery
differs from TCP-Peach’s rapid recovery algorithm in
two ways:

Outstanding Segments are used instead of dummy
segments. This replacement helps receiver to
recover extra segment losses.

Congestion Window Increment Function is added
during the WEP. The sender’s window keeps on
growing during the WEP so that TCP-Swift is more
aggressive to increase its transmission rate after an
event of segment loss.

552

Speedy Recovery()

aosn= cwnd;
wdsn = cwnd 12;
apsn = 0;
pipe = cwnd - ndupacks + 1;
END=O;

while (END=O)
if (ACK-ARRIVE)

if (Duplicate ACK)
pipe =pipe - 1 ;
update scoreboard;
cwnd = cwnd + 1;
if (ACK-for-outstanding-segment)

if (wdsn > 0)

end;
wdsn = wdsn - 1;

end;
end;

else if (Partial ACK)
cwnd = cwnd + 1 ;
pipe = pipe - amountacked;
update HighACK;
update scoreboard;

cwnd = cwnd + 1;
Ifcongestion window increment;

else if (ACKI swift-wep-recv)

end;

if (Recover ACK)
update HighAck;
clear scoreboard;
swift-wep-recv = tSeq;
End = I ;

end;
adps = cwnd -pipe;
nss = min(maxburst, adsn);

if (nss > 0)
send nss missing packets and/or new

pipe = pipe f nss;

send outstanding segment;
send outstanding segment;
aosn = aosn - 2;

packets;

else if (adps>O)

end;
end;

end;
Fig. 3. Speedy recovery algorithm.

Number of sendersReceivers
Buffer size at ground stations
A & B
Receiver’s window size
Satellite link capacity

Round trip time of satellite
link
Initial TCP Slow Start
threshold
TCP segment size
ACK size

Satellite link packet loss rate

Variable I Definition

N 20
K 50 segments

rwnd 64 segments
C lOMbps

RTT 550ms

ssthresh 64 pkts

Packet-size 1000 bytes
ACK size 40 bytes

P,,,, 1 02-1 0-5

V. Performance Evaluation

We evaluate, the performance of TCP-Swift by
simulations using ns version 2.lb7a [IO]. For
comparison, TCP NewReno, TCP NewReno with
SACK option [3], TCP-Peach, and TCP-Peachplus [9]
are also implemented. We assume that a large file is
transmitted between each sender-receiver pair using
FTP protocol. Other related simulation parameters are
summarized in Table 2.

Pipe

HighACK

Partial ACK -7

number of outstanding data segment can
be sent during Speedy Recovely
preventing sender to increase its
congestion window size for cwndtJ2
ACKs for outstanding segments
number of segments allowed to be sent
number of segments have been sent
number outstanding of segments in the
network during speedy recovery
sequence number of the highest
cumulative ACK received
an ACK that increases the HighACK
value but not acknowledging all sent
packets
sequence number of the current segment

Ndupacks number of duplicated ACKs to trigger

Table 1 Variable definitions in speedy recovery
algorithm of TCP-Swift.

Parameters 1 Synibols I Values

Table 2 Simulation Parameters

A. Goodput Performnnce

Our first set of simulations is based on the network
topology shown in Fig. 4. The system consists of N
sender-receiver pairs. The senders and receivers are
connected through satellite channel by ground stations
A and B. In this simulation we consider a GEO satellite
system where the round trip time of the satellite link is
550ms, and a bandwidth of 10 Mbps is assumed. All
terrestrial links are characterized by 1 ms propagation
delay and 10 Mbps bandwidth. The router buffer sizes
at ground stations A and B are set to 50 and managed
by droptail queuing mechanism.

Fig. 5 shows the goodput performance of TCP-Swift
against the packet error rate. We can see that TCP-Swift
gives the highest goodput performance. This accredits
to the speedy start and seedy recovery algorithms
adopted by TCP-Swift. We can also see that TCP-

553

NewReno with SACK option outperforms the general
TCP-NewReno. This shows that SACK option can
overcome the problem of multiple segment losses
within a transmission window.

Sender 1

Sender N d Receiver N b
Fig. 4. Simulated network topology 1.

1.00E-06 1.00E-05 PacdiPt);!iatel .00E-03 1.00E-02

Fig. 5 . Goodput performance comparison.

B. Fairness Performance

(M = N = 5), and the bottleneck router buffer size is set
to 50 and rwnd = 64 segments.

The fairness performance is measured by the ratio
between the average goodput (rx) of type X’s
connections and the average goodput (ry) of type Y’s
connections. So r x / r,, = 1 gives the ideal fairness
performance. In Fig. 7, we show that the fairness
performance in the heterogeneous scenario. The legend
“NewReno & Swift” means that connections of type X
use TCP-Swift passing through satellite link and
connections of type Y use TCP-NewReno passing
through terrestrial link.

From Fig. 7, we can see that “NewReno & Swift” gives
the best fairness performance as compared to
BewReno & Peach” and ‘WewReno & NewReno”. This
is due to TCP-Swift’s aggressiveness in maintaining the
high transmission rate. So TCP-Swift can acquire
enough network resource when competing with TCP-
NewReno.

1 I
0.8

10.6
E 2 0.4

0.2

0 ’ L

1.00E-06 1.00E-05 1.00E-04 1.00E-03 1.00E-02
Packet Loss Rate

W

Fig. 6. Simulated network topology 2.

We study the case of heterogeneous scenario by
considering the network topology shown in Fig. 6.
There are M connections of type X and N connection of
type Y. All connections pass through the same
bottleneck link that connects routers A and B. The
bottleneck link capacity is 10 Mbps. We assume type X
connections pass through a GEO satellite link with
round trip time RTTx = 550 ms, and packet loss
probability PLorsx varied from to IO”. On the other
hand, type Y connections pass through a terrestrial link,
where no losses occur due to link error, i.e. PLolsy = 0
and the round trip time RZTy for the terrestrial link is
set to 200 ms [4]. In our simulations, the number of
connections X and connections Y are set to be the same

Fig. 7. Fairness performance comparison.

VI. Conclusions
In this paper, a new transport layer protocol called
TCP-Swift was proposed for enhancing the TCP ,

performance over satellite IP networks. TCP-Swift .
replaces the conventional TCP slow start and fast

w y recovery algorithms by speedy start and speedy
recovery. With speedy start, a TCP-Swift sender opens
up its congestion window in only two round trip times.
This significantly shortens the time needed in probing
the network for equilibrium state. With speedy recovery,
we can infer if a packet loss is due to wireless
transmission errors by observing the ACK stream
arrived at the sender. The sender’s congestion window
can be re-opened up more aggressively if the loss is due
to transmission error.

Acknowledgements

This work was supported by Competitive Earmarked
Research Grant HKU 1180/00E.

References:

[I] C. Metz, “TCP over satellite ... The final frontier,”
IEEE Internet Computing, pp. 76-80, Jan./Feb.
1999.

554

M. Allman et al., “Ongoing TCP research related to
satellites,” RFC 2760, Feb. 2000.

M. Mathis, J. Mahdavi, S. Floyd and A. Romanow,
“TCP Selective Acknowledgment Options,” RFC
20 18, Oct. 1996.

I. F. Akyildiz, G. Morabito, S. Palazzo, “TCP
Peach: A New Congestion Control Scheme for
Satellite IP Networks,” IEEE/ACM Transactions
on Networking, 307-32 1. Jun. 2001.

V. N. Padmanabhan and R. H. Katz, “TCP Fast
Start: A Technique for Speeding Up Web
Transfers,” Proc. IEEE Globecom’98 Internet
Mini-Conference, Sydney, Australia, November
1998.

C. Partridge and T. J. Shepard, “TCPIIP
performance over satellite links,” IEEE Network
Mag., pp. 44-49, Sept./Oct. 1997.

T. R. Henderson and R. H. Katz, “Transport
protocols for Internet-compatible satellite
networks,” IEEE J. Select. Areas Commun., vol.
17, pp. 326-344, Feb. 1999.

M. Allman, ”On the generation and use of TCP
acknowledgments,” ACM Computer Commun.
Review, vol. 28, Oct. 1998.

I.F. Akyildiz, X. Zhang and J. Fang, “TCP-Peach+:
Enhancement of TCP-Peach for Satellite IP
Networks,” IEEE Communications Letters, vol. 6
Issue: 7, pp. 303 -305, Jul. 2002

[lo] S. McCanne and S. Floyd. Ns-LBNL Network
Simulator. URL: http://www-nrg.ee.lbl.gov/ns/

555

http://www-nrg.ee.lbl.gov/ns

