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Abstract: A new transport layer protocol called TCP- 
Swift is proposed for enhancing the TCP performance 
over satellite /P networks. TCP-Swift replaces the 
conventional TCP slow start and fast recovery 
algorithms by speedy start and speedy recovery. With 
speedy start, a TCP-Swift sender opens up its 
congestion window in only two round trip times. This 
signiJicantly shortens the tinie needed in probing the 
network for equilibrium state. With speedy recovery, we 
can infer the cause of a packet loss by observing the 
ACK stream received at the sender. l f the loss is due to 
wireless transmission error, the sender's congestion 
window can be re-opened up more aggressively to fully 
utilize the available satellite link bandwidth. We show 
that TCP-Swift outperforms existing TCP schemes by 
simulations. 

I. Introduction 
The market need for Internet access via broadband 
satellite networks is increasing. Although TCP has been 
designed, improved and tuned to work efficiently in the 
wireline network, extending it to satellite networks is 
problematic. This is mainly due to the following 
satellite link characteristics. 

Large bandwidth-delay product. TCP spends a long 
time in its slow start phase because of long latency of 
the satellite link. Current TCP applications, like HTTP, 
consist of many transfers of small files. Very likely 
such transfers will be completed within the slow start 
phase. In other words, TCP may not be able to fully 
utilize the available bandwidth of the network. 

Transmission errors in satellite links. TCP interprets 
packet loss as a signal of network congestion, which 
then triggers the congestion control mechanism to 
reduce the transmission window size. Such 
interpretation is no longer valid when applied to 
satellite links. Due to factors like atmospheric 
conditions, RF interference, weak signal and so on, 
satellite links usually experience high bit error rate 
(BER). 

Channel asymmetric. In many satellite systems, the 
bandwidths on the forward and backward channels are 
asymmetric. This is mainly due to cost limitation, 

increased transmitter power, and antenna size 
requirements for high bandwidth transmission. Using 
slower reverse channels can make more cost effective 
designs and save the scarce satellite bandwidth. 

Many studies [I-2,4,6-81 have been carried out to 
enhance the performance of TCP over satellite IP 
networks. Recently an efficient scheme called TCP- 
Peach [4] was designed. It adopts two new algorithms, 
sudden start and rapid recovery. Dummy segments are 
used in these algorithms for fast probing the availability 
of the network resources. 

In this paper, a new transport layer protocol called 
TCP-Swift is proposed based on TCP-Peach. TCP- 
Swift replaces the conventional TCP slow start and fast 
recovery algorithms by speedy start and speedy 
recovery. With speedy start, a TCP-Swift sender opens 
up its congestion window size in only two round trip 
times (RTTs). With speedy recovery, we can infer the 
cause of a packet loss by observing the ACK stream 
received at the sender. If a packet loss is due to wireless 
transmission error, the sender's congestion window can 
be re-opened up more aggressively to fully utilize the 
available bandwidth. In the next section, we first 
summarize our two major observations on TCP-Peach. 
Then TCP-Swift is proposed in Section 111 based on 
these observations. The performance of TCP-Swift is 
evaluated in Section IV. Finally we conclude the paper 
in Section V. 

11. Observations on TCP-Peach 
A. Using Dunrmy Segment 

The dummy segments used in TCP-Peach [4] are low- 
priority segments generated by the sender as a copy of 
the last transmitted data segment. Efforts on 
transmitting dummy segments into the network can be 
treated as the network overhead since they do not carry 
any new information to the receiver (assuming the last 
transmitted data segment is correctly received). Dummy 
segments may be transmitted through the network but 
dropped in subsequent routers along the transmission 
path. Hence dummy segments may cause network 
inefficiency. 
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B. Window Expanding Period (WEP) 

The information that conveyed by ACKs for data 
segments after rapid recovery [4] is not fully utilized. 
TCP-Peach sends a number of dummy segments to 
probe the availability of the network resources and 
expand its congestion window size according to the 
receipt of ACK for these dummy segments. Fig. 1 
shows the corresponding window expanding period 
(WEP). WEP lasts for one RTT which is the period 
from the time the sender exiting/quitting the rapid 
recovery algorithm to receiving the ACK of the last 
data segment sent in the rapid recovery [4]. 

4@i>Recovery Phase 

Fig. 1. Window Expanding Period 

In rapid recovery, cwndd2 data segments and mndo 
dummy segments are injected into the network. During 
the WEP, the TCP sender will receive dummy ACKs 
(i.e. ACKs for dummy segments) and data ACKs (i.e. 
ACKs for regular data segments) respectively. TCP- 
Peach starts increasing its congestion window upon 
receiving the (cwnd(/2+1)-th dummy ACK. Similar to 
the implementation of TCP-Reno, TCP-Peach enters 
the congestion avoidance phase after exiting the rapid 
recovery. Thus the congestion window is increased by 
one for each RTT during the congestion avoidance 
phase. 

TCP is designed to adapt its transmission rate to 
bandwidth along the sender-to-receiver’s transmission 
path. The return of data ACKs (for those data segments 
transmitted during rapid recovery) during WEP does 
indicate to the sender that there are still resources 
available in the network. As such, the congestion 
window should be further expanded for each data ACK 
received during WEP. 

111. Our Approach: TCP-Swift 

A.  
To increase the network bandwidth utilization, we 
replace the dummy segments by outstanding segments 
for probing the available network resources. Dummy 
segment is a copy of the last transmitted data segment, 
whereas outstanding segments are chosen randomly 
from the set of packets/segments that have been sent 
but not-yet-acknowledged. So they serve as a backup in 
case the earlier sent packets are lost. This gives some 
extra loss repairing capability as compared with the 
dummy segment approach. Please note that the 

Outstanding Segment & Speedy Start 

outstanding segment concept and the NIL segments in 
[9] share the same idea. 

The priority implementation of outstanding segments 
can be supported in IP layer by the Type of Service 
(TOS) option in IPv4. Some recent commercial routers, 
like Cisco 7000 series and 12000 series emerge to 
support TP TOS. 

The speedy start algorithm is summarized in Fig. 2 for 
replacing the original sudden start of TCP-Peach. 

Speedy Start  (1 

cwnd = 1; 
T = RTT / rwnd; 
send(data-segment); //the first data segment; 
for ( i= 1 to rwnd - 1) 

wait ( T )  ; 
send(0utstandingsegment); 

end; . end: 
Fig. 2. Speedy start algorithm 

B. Congestion Window Incremeni Function & 
Speedy Recovery 

To improve the efficiency of congestion window 
increment in WEP for a large bandwidth-delay product 
transmission path (like satellite links). We propose that 
TCP sender should be aggressive in increasing its 
transmission rate in order to fill up the available 
transmission pipe. 

In our TCP-Swift, the resulting algorithm is called 
speedy recovery, as detailed in Fig. 3. (The definitions 
of variables used are described in Table I.) A 
congestion window increment function is added to the 
speedy recovery. The operation of this function is 
described as follows. When a sender exits from the 
rapid recovery in Fig. 1 (i.e. also the start time of 
WEP), the sequence number of the last data segment 
sent is recorded in a variable swifi_wep-recv. During 
WEP, in case of the arrival of dummy ACKs, the sender 
behaves like TCP-Peach. For each data ACK arrived, 
the sender increases its congestion window by one until 
the ACK corresponding to the value of swip-wep-recv 
is received. Therefore, the congestion window size 
opens up more quickly and aggressively than rapid 
recovery of TCP-Peach. In short, speedy recovery 
differs from TCP-Peach’s rapid recovery algorithm in 
two ways: 

Outstanding Segments are used instead of dummy 
segments. This replacement helps receiver to 
recover extra segment losses. 

Congestion Window Increment Function is added 
during the WEP. The sender’s window keeps on 
growing during the WEP so that TCP-Swift is more 
aggressive to increase its transmission rate after an 
event of segment loss. 
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Speedy Recovery( ) 

aosn= cwnd; 
wdsn = cwnd 12; 
apsn = 0; 
pipe = cwnd - ndupacks + 1; 
END=O; 

while (END=O) 
if (ACK-ARRIVE) 

if (Duplicate ACK) 
pipe =pipe - 1 ;  
update scoreboard; 
cwnd = cwnd + 1; 
if (ACK-for-outstanding-segment) 

if (wdsn > 0) 

end; 
wdsn = wdsn - 1; 

end; 
end; 

else if (Partial ACK) 
cwnd = cwnd + 1 ; 
pipe = pipe - amountacked; 
update HighACK; 
update scoreboard; 

cwnd = cwnd + 1; 
Ifcongestion window increment; 

else if (ACKI swift-wep-recv) 

end; 

if (Recover ACK) 
update HighAck; 
clear scoreboard; 
swift-wep-recv = tSeq; 
End = I ;  

end; 
adps = cwnd -pipe; 
nss = min(maxburst, adsn); 

if (nss > 0) 
send nss missing packets and/or new 

pipe = pipe f nss; 

send outstanding segment; 
send outstanding segment; 
aosn = aosn - 2; 

packets; 

else if (adps>O) 

end; 
end; 

end; 
Fig. 3. Speedy recovery algorithm. 

Number of sendersReceivers 
Buffer size at ground stations 
A & B  
Receiver’s window size 
Satellite link capacity 

Round trip time of satellite 
link 
Initial TCP Slow Start 
threshold 
TCP segment size 
ACK size 

Satellite link packet loss rate 

Variable I Definition 

N 20 
K 50 segments 

rwnd 64 segments 
C lOMbps 

RTT 550ms 

ssthresh 64 pkts 

Packet-size 1000 bytes 
ACK size 40 bytes 

P,,,, 1 02-1 0-5 

V. Performance Evaluation 

We evaluate, the performance of TCP-Swift by 
simulations using ns version 2.lb7a [IO]. For 
comparison, TCP NewReno, TCP NewReno with 
SACK option [3], TCP-Peach, and TCP-Peachplus [9] 
are also implemented. We assume that a large file is 
transmitted between each sender-receiver pair using 
FTP protocol. Other related simulation parameters are 
summarized in Table 2. 

Pipe 

HighACK 

Partial ACK -7 

number of outstanding data segment can 
be sent during Speedy Recovely 
preventing sender to increase its 
congestion window size for cwndtJ2 
ACKs for outstanding segments 
number of segments allowed to be sent 
number of segments have been sent 
number outstanding of segments in the 
network during speedy recovery 
sequence number of the highest 
cumulative ACK received 
an ACK that increases the HighACK 
value but not acknowledging all sent 
packets 
sequence number of the current segment 

Ndupacks number of duplicated ACKs to trigger 

Table 1 Variable definitions in speedy recovery 
algorithm of TCP-Swift. 

Parameters 1 Synibols I Values 

Table 2 Simulation Parameters 

A. Goodput Performnnce 

Our first set of simulations is based on the network 
topology shown in Fig. 4. The system consists of N 
sender-receiver pairs. The senders and receivers are 
connected through satellite channel by ground stations 
A and B. In this simulation we consider a GEO satellite 
system where the round trip time of the satellite link is 
550ms, and a bandwidth of 10 Mbps is assumed. All 
terrestrial links are characterized by 1 ms propagation 
delay and 10 Mbps bandwidth. The router buffer sizes 
at ground stations A and B are set to 50 and managed 
by droptail queuing mechanism. 

Fig. 5 shows the goodput performance of TCP-Swift 
against the packet error rate. We can see that TCP-Swift 
gives the highest goodput performance. This accredits 
to the speedy start and seedy recovery algorithms 
adopted by TCP-Swift. We can also see that TCP- 
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NewReno with SACK option outperforms the general 
TCP-NewReno. This shows that SACK option can 
overcome the problem of multiple segment losses 
within a transmission window. 

Sender 1 

Sender N d Receiver N b 
Fig. 4. Simulated network topology 1. 

1.00E-06 1.00E-05 PacdiPt);!iatel .00E-03 1.00E-02 

Fig. 5 .  Goodput performance comparison. 

B. Fairness Performance 

( M  = N = 5), and the bottleneck router buffer size is set 
to 50 and rwnd = 64 segments. 

The fairness performance is measured by the ratio 
between the average goodput (rx) of type X’s 
connections and the average goodput (ry)  of type Y’s 
connections. So r x  / r,, = 1 gives the ideal fairness 
performance. In Fig. 7, we show that the fairness 
performance in the heterogeneous scenario. The legend 
“NewReno & Swift” means that connections of type X 
use TCP-Swift passing through satellite link and 
connections of type Y use TCP-NewReno passing 
through terrestrial link. 

From Fig. 7, we can see that “NewReno & Swift” gives 
the best fairness performance as compared to 
BewReno & Peach” and ‘WewReno & NewReno”. This 
is due to TCP-Swift’s aggressiveness in maintaining the 
high transmission rate. So TCP-Swift can acquire 
enough network resource when competing with TCP- 
NewReno. 

1 I 
0.8 

10.6 
E 2 0.4 

0.2 

0 ’  L 

1.00E-06 1.00E-05 1.00E-04 1.00E-03 1.00E-02 
Packet Loss Rate 

W 

Fig. 6. Simulated network topology 2. 

We study the case of heterogeneous scenario by 
considering the network topology shown in Fig. 6. 
There are M connections of type X and N connection of 
type Y. All connections pass through the same 
bottleneck link that connects routers A and B. The 
bottleneck link capacity is 10 Mbps. We assume type X 
connections pass through a GEO satellite link with 
round trip time RTTx = 550 ms, and packet loss 
probability PLorsx varied from to IO”. On the other 
hand, type Y connections pass through a terrestrial link, 
where no losses occur due to link error, i.e. PLolsy = 0 
and the round trip time RZTy for the terrestrial link is 
set to 200 ms [4]. In our simulations, the number of 
connections X and connections Y are set to be the same 

Fig. 7. Fairness performance comparison. 

VI. Conclusions 
In this paper, a new transport layer protocol called 
TCP-Swift was proposed for enhancing the TCP , 

performance over satellite IP networks. TCP-Swift . 
replaces the conventional TCP slow start and fast 

w y  recovery algorithms by speedy start and speedy 
recovery. With speedy start, a TCP-Swift sender opens 
up its congestion window in only two round trip times. 
This significantly shortens the time needed in probing 
the network for equilibrium state. With speedy recovery, 
we can infer if a packet loss is due to wireless 
transmission errors by observing the ACK stream 
arrived at the sender. The sender’s congestion window 
can be re-opened up more aggressively if the loss is due 
to transmission error. 
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