
Title Traffic distribution over equal-cost-multi-paths

Author(s) Chim, TW; Yeung, KL

Citation Ieee International Conference On Communications, 2004, v. 2, p.
1207-1211

Issued Date 2004

URL http://hdl.handle.net/10722/46457

Rights

©2004 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be
obtained from the IEEE.

Traffic Distribution over Equal-Cost-Multi-Paths
Tat Wing Chim and Kwan L. Yeung

Dept. of Electrical and Electronic Engineering
The University of Hong Kong
Pokfulam Road, Hong Kong

E-mail: {twchim, kyeung}@eee.hku.hk

Abstract—To effectively manage the traffic distribution inside a
network, traffic splitting is needed for load sharing over a set of
equal-cost-multi-paths (ECMPs). In this paper, a new traffic
splitting algorithm, called Table-based Hashing with
Reassignments (THR), is proposed. Based on the load sharing
statistics collected, THR selectively reassigns some active flows
from the over-utilized paths to under-utilized paths. The
reassignment process takes place in such a way that the packet
out-of-order problem is minimized. As compared with the existing
traffic splitting algorithms, THR provides close-to-optimal load
balancing performance, less than 2% of packets arrived out-of-
order, and a very small end-to-end packet delay performance.
Although additional traffic monitoring function is needed by
THR, we show that the extra complexity incurred is marginal.

Keywords-Traffic splitting; ECMPs; Packet Reordering.

I. INTRODUCTION
The main objective of traffic engineering is to reduce

congestion hotspots and improve resource utilization across the
network by carefully managing the traffic distribution inside a
network. In today’s Internet, IP routing is destination-based and
forwarding paths are calculated based on shortest-path-first
algorithm. Though IP routing is scalable, it lacks the capability
of explicitly controlling the traffic distribution inside a
network.

To achieve this, two models can be followed, overlay model
and peer model. With overlay model, a fully-meshed logical
topology based on, e.g. MPLS LSPs [1], can be constructed
over the network’s physical topology. Traffic can then be
explicitly routed using logical paths. This model is known to
suffer from the N-square problem [2].

Using the peer model [3][4], balanced traffic distribution
can be achieved by manipulating the link weights in the Open
Shortest Path First (OSPF) routing protocol. Once the link
weights are properly set, the network can operate as it does
today: the OSPF protocol calculates the forwarding paths based
on the shortest-path-first computation. Compared with the
overlay model, peer model is more scalable, does not require
any changes to the basic IP routing architecture, and can be
readily deployed.

For traffic engineering, the problem of finding the optimal
paths for traffic demands is usually solved by formulating it as
a linear programming problem [5]. The optimal solution
usually requires splitting the traffic demand between two nodes
over multiple paths. Besides the extra processing overheads,
traffic splitting must be done carefully so that the packets from
the same flow are not sent over different paths. Otherwise,
different delays may cause packet reordering in TCP flows.
This in turn degrades the TCP performance. Since the peer

model relies on the basic IP routing architecture, the problems
caused by traffic splitting tend to be more pronounced. Under
OSPF routing protocol, if there are more than one equal-cost
path (i.e. equal-cost-multi-paths, or ECMPs) towards a
destination, traffic going to that destination will be distributed
among all ECMPs for load balancing. However, the detailed
traffic splitting mechanisms are subject to individual
implementations.

A number of traffic splitting algorithms have been
proposed. The simplest approach is to split the traffic over
ECMPs in a packet-by-packet round robin fashion [6]. We call
it Packet-by-Packet (PBP) splitting. With PBP, the traffic load
can be perfectly balanced among all ECMPs but serious packet
out-of-order problem will be induced as the delays on different
ECMPs are different. To address this problem, per-flow
forwarding is usually adopted at the expenses of less optimal
load balancing. Three per-flow traffic splitting algorithms have
been proposed, Direct Hashing, Table-based Hashing [6], and
Fast Switching [7]. Please refer to the next section for details.

In this paper, we propose a new traffic splitting algorithm,
called Table-based Hashing with Reassignments (THR). Using
THR, the actual load sharing statistics among all ECMPs are
monitored. This can be easily implemented by incrementing an
associated counter at each ECMP upon a packet departure. For
every pre-determined time interval (which is adjustable), the
counter values are collected and compared to identify the most-
utilized as well as the least-utilized ECMPs. Then we can select
a flow from the most-utilized-path and reassign it to the least-
utilized-path. The reassignment process is carefully designed so
that the packet out-of-order events can be minimized. Inherent
to its design, THR algorithm is capable of handling both equal
and unequal traffic splitting. Our simulation results show that
THR gives a near-optimal load balancing performance as that
of Packet-by-Packet (PBP) algorithm, whereas the packet out-
of-order events induced by THR are 96.6% less than PBP.
Because of better splitting performance, THR also gives a
lower average packet delay performance than all other traffic
splitting algorithms.

This paper is organized as follows. In the next section, three
existing flow-based traffic splitting algorithms are reviewed. In
Section III, our feedback-based traffic splitting algorithm THR
is introduced. In Section IV, THR is compared with other
splitting algorithms via simulations. Finally, we conclude the
paper in Section V.

II. EXISTING TRAFFIC SPLITTING ALGORITHMS
Since packet-by-packet splitting introduces serious packet

out-of-order problem, per-flow forwarding is usually adopted
but at the expenses of less optimal load balancing. Up to our

0-7803-8533-0/04/$20.00 (c) 2004 IEEEIEEE Communications Society 1207

knowledge, three per-flow traffic splitting algorithms have
been proposed, Direct Hashing, Table-based Hashing [6], and
Fast Switching [7].

The first two are hash-based algorithms. A hashing value is
obtained from a hashing function H, or,

Hash value = H (Header invariant fields) modulo x.
The input to the hashing function is usually the four packet
header fields, source IP address, destination IP address, source
port number and destination port number. In Direct Hashing
(Fig. 1), x is the number of ECMPs k. For Table-based Hashing
(Fig. 2), x is replaced by the number of bins b. Note that a bin
is an intermediate pointer that points to a selected ECMP.
Direct Hashing uses the hash value directly to assign a flow to
an ECMP, whereas Table-based Hashing uses the hash value to
determine an intermediate bin, which in turn points to a
selected ECMP for the flow. As compared with the packet-by-
packet algorithm, the packet out-of-order problem becomes less
serious. But a poorer load balancing performance is also
expected.

ECMP 0

ECMP 1

ECMP 2

ECMP k-1

.

.

.

HashFlows

To a unique path

Modulo k

Buffers ECMPs

ECMP 0

ECMP 1

ECMP 2

ECMP k-1

.

.

.

HashFlows

To a unique path

Modulo k

Buffers ECMPs

Fig. 1 Design of Direct Hashing at a typical traffic splitting router

ECMP 0

ECMP 1

ECMP 2

ECMP k-1

.

.

.

HashFlows

To a unique bin

Modulo b

0

1

b - 3

b - 2

b - 1

Bins Buffers ECMPs

.

.

.

ECMP 0

ECMP 1

ECMP 2

ECMP k-1

.

.

.

HashFlows

To a unique bin

Modulo b

0

1

b - 3

b - 2

b - 1

Bins Buffers ECMPs

.

.

.

Fig. 2 Design of Table-based Hashing at a typical traffic splitting router

Fast Switching [7] is proposed by Cisco. It has a cache
which stores the ECMPs assigned to all recently seen flows.
When the traffic belongs to the same flow arrives, it is always
assigned to the same ECMP. When all memory allocated for
the cache is used up and a new cache entry needs to be created,
the oldest entry is deleted in favor of the new one. When a
packet/flow arrives and no matching with the cache can be
found, the flow is assigned to the next ECMP in a round robin
fashion. This flow ID as well as the path assigned to it are then
stored in the cache.

The performance of Fast Switching is affected by its cache
size. With small cache size, most packets cannot find a
matching in the cache. They will always be assigned to the next
ECMP in a round robin fashion. The performance under this

situation is similar to packet-by-packet algorithm – the load can
be nicely balanced but a serious packet-out-of-order problem
will be experienced. With large cache size, most flows and
their assigned ECMPs can be cached without being
replaced/flushed. As a result, packets belong to the same flow
can always be assigned to the same ECMP. The performance
under this situation is similar to the two earlier hash-based
algorithms – the load is not so nicely balanced but the packet-
out-of-order problem is minor.

Besides equal traffic splitting, unequal traffic splitting
among ECMPs is also very important. Among the four traffic
splitting algorithms mentioned above, except Direct Hashing,
both equal and unequal traffic splitting can be supported. Based
on the assumption that equal traffic splitting is easier to
implement (which we tend to disagree), three heuristic
algorithms for emulating the unequal traffic splitting by equal
traffic splitting algorithms are proposed [5] recently.

III. TABLE-BASED HASHING WITH REASSIGNMENTS

A. THR Algorithm
Without loss of generality, Fig. 3 outlines the design of our

proposed Table-based Hashing with Reassignments (THR)
algorithm. The source IP address, destination IP address, source
port number and destination port number fields of a packet are
input to the hash function to produce a hash value, which is
then divided by the number of bins. The remainder of the
division points to one of the bins and this bin in turn determines
the ECMP to which the packet should be assigned. Unlike the
original Table-based Hashing scheme, the connections between
the bins and ECMPs can be adjusted/reassigned according to
traffic loads.

ECMP 0

ECMP 1

ECMP 2

ECMP k-1

.

.

.

HashFlows

To a unique bin

Modulo b

0

1

b - 3

b - 2

b - 1

Bins Buffers

C0, L0

C1, L1

Cb-3, Lb-3

Cb-2, Lb-2

Cb-1, Lb-1

S0

S1

S2

Sk-1

ECMPs

.

.

.

ECMP 0

ECMP 1

ECMP 2

ECMP k-1

.

.

.

HashFlows

To a unique bin

Modulo b

0

1

b - 3

b - 2

b - 1

Bins Buffers

C0, L0

C1, L1

Cb-3, Lb-3

Cb-2, Lb-2

Cb-1, Lb-1

S0

S1

S2

Sk-1

ECMPs

.

.

.

Fig. 3 Design of THR at a typical traffic splitting router

Packets assigned to an ECMP will wait in the
corresponding output buffer for transmission. Without loss of
generality, let hash bins 0, 1, ..., m-1 point to output buffer i of
ECMP i. At output buffer i, m packet counters C0, C1, ..., Cm-1
are maintained to record the number of packets passing
through, one for each bin. For each counter Cx, another
parameter Lx is used to store the last-modified time of Cx. So
the total number of packets passing through ECMP i in a
predefined time interval of T is CurrSi = C0 + C1 + ... + Cm-1.
Let the moving average of the number of packets passing
through ECMP i for each time interval of T be Si. Si can be
found using an exponentially weighted moving average
function as follows:

0-7803-8533-0/04/$20.00 (c) 2004 IEEEIEEE Communications Society 1208

 iii CurrSSS)1(' αα +−= , (1)
where S’i is the moving average calculated in the previous
interval T, and α is the smoothing constant (10 ≤≤ α).

The value of T determines the frequency for updating bin
allocations. A small value gives a finer adjustment (and thus
better load balancing performance) but a higher probability of
packet-out-of-order. We recommend T should be comparable to
the average round trip time for all flows the router carried. In
Section IV, the impact of using different values of T will be
examined by simulations.

Assume the desired traffic splitting ratio among the k
ECMPs is x0:x1:...:xk-1. The algorithm for THR is summarized
in Fig. 4.

Fig. 4 Algorithm for THR

Step 1 calculates the moving average Si for every ECMP.
Step 2 selects the most-utilized ECMP among all ECMPs. Step
3 selects the least-utilized ECMP. Note that the buffer
occupancy of the selected ECMP should not exceed γ (which is
set to 0.8 in our simulations). This helps to avoid transferring
traffic to a full or nearly-full output port buffer. If the buffer
occupancies on all ECMPs exceed γ, no flow reassignment is
needed.

If a least-utilized path is identified in Step 4, Step 5 selects
an appropriate bin pointing to the most-utilized path and
reassigns it to the least-utilized path found. In particular, the
bin with the maximum value of Cx + β(CurrTime – Lx) will be
chosen, where β is a weighting factor for combining the two
components Cx and (CurrTime – Lx) together. A small value of
β implies that we focus more on the first component Cx. If β =
0, we always redirect the largest traffic flow (on the most-
utilized path) to the least-utilized path. This tends to give a
better load balancing performance. On the other hand, a large
value of β implies that we focus more on the second component
(CurrTime – Lx), which indicates the duration that bin x does
not have any packets arrived. If this duration is long enough
and the corresponding bin is selected for reassignment, then by
the time new packets arrived at this bin (which will follow the
new path), the previous packets should have already been on its
way (along the old path) to the destination if not already
arrived. Therefore, a large β has the effect of minimizing the

packet out-of-order problem. In the next section, the value of β
is varied for investigating its impact on the load balancing
performance and the packet out-of-order problem. Finally, Step
6 sets the parameters for the next update period T no matter
whether a reassignment is done in the current update period or
not.

Note that if packets with variable sizes are used, counters
C0, C1, ..., Cm–1 and CurrSi in Fig. 4 should be modified to
function as byte counters instead of packet counters.

B. Complexities
From Fig. 4, we can find that the worst-case time

complexity of the Table-based Hashing with Reassignments
(THR) algorithm is O(b), where b is the total number of bins.
The number of executions of the THR algorithm per unit time
is inversely proportional to the bin allocation update interval T.
We have recommended that the value of T should be
comparable to the average round trip time of all the flows the
router carried. In the next section, we will show that even this T
value is larger than the recommended value, the performance
degradation is minimal.

Regarding the extra hardware required by the THR
algorithm, (2b + k) registers are required for implementing
counters Cx, Lx and Si, where b is the number of bins and k is
the number of ECMPs. The arithmetic operations conducted on
those counters are very simple. In fact, such extra complexity is
much lower than those required by Fast Switching, in which a
reasonably large cache size is required and searching through
the cache is much more time consuming. In short, we believe
that with today’s router technologies, the extra complexity of
implementing THR algorithm at a router is marginal.

IV. SIMULATION RESULTS

A. Simulation Model
Fig. 5 shows the network topology we adopted. Traffic is

generated from two subnets, 0 and 1, each represents 300
traffic-generating hosts. Traffic generated from subnet 1 all
goes to node 15. There are 8 equal-cost-multi-paths (ECMPs)
between subnet 1 and node 15, via routers 3 to 10. Traffic
generated by subnet 0 serves as the background uni-path traffic,
which is uniformly distributed to nodes 3 to 10. We set the
buffer size of routers 2 to 14 to 220 packets, which is
sufficiently large to fully utilize the available network
bandwidths when TCP is used. The bandwidth of each link is
44.736 Mbps (DS3). The number next to each link in Fig. 5
represents its propagation delay in milliseconds.

Our simulations are based on NS-2 [8] and TCP Reno is
used. The simulation time is 30 seconds and the statistics
collected in the initial 10 seconds are ignored. For Table-based
Hashing (TH) and our THR, bin size is set to b = 1024. The
adopted hash function is CRC-32 [9], which operates on the
four packet header fields, source IP address, destination IP
address, source port number and destination port number. For
our THR, the smoothing constant α in Eqn. (1) is set to 0.5. For
Fast Switching (FS), a cache size of 3000 flows (that is about
30% of the total number of flows simulated) is used. This size
can give a balanced performance of low probability of packet-
out-of-order and good traffic splitting performance.

At each interval of T,
1. Calculate the moving average Si. from Eqn.(1) for every ECMP.

2. Find ECMP p such that

∑∑
−

=

−

=

− 1

0

1

0

k

i
i

p
k

i
i

p

x

x

S

S is maximized.

3. Find ECMP q from the set of ECMPs whose buffer occupancy is less
than a pre-defined threshold value γ such that

∑∑
−

=

−

=

− 1

0

1

0

k

i
i

q
k

i
i

q

S

S

x

x is

maximized.
4. If ECMP q is found, go to Step 5. Otherwise, go to Step 6.
5. Among the m bins connected to ECMP p, select bin r such that Cr +
β(CurrTime – Lr) is maximized. Reassign bin r from ECMP p to ECMP
q.

6. Reset all packet counters Cx to 0 and the last modified time Lx to
CurrTime.

0-7803-8533-0/04/$20.00 (c) 2004 IEEEIEEE Communications Society 1209

The Internet traffic is dominated [10] by a very small
percentage of large volume flows, such as FTP. In our
simulations, we assume 2% of the traffic flows is of FTP type
while 98% of the traffic flows is of other types, as detailed
below. We also assume that at each host the flow arrival
follows a Poisson process.

2

4

5

6

7

8

9

10

3

15

Subnet 0 11

12

13

14

10 – Delay (msec)

12

14

16

10

12

14

16

10

10

10

10

10

10

10

10

10

10

10

10

10

10

Subnet 1

ECMP 0ECMP 1ECMP 2
ECMP 3

ECMP 4

ECMP 5

ECMP 6

ECMP 7

2

4

5

6

7

8

9

10

3

15

Subnet 0 11

12

13

14

10 – Delay (msec)

12

14

16

10

12

14

16

10

10

10

10

10

10

10

10

10

10

10

10

10

10

Subnet 1

ECMP 0ECMP 1ECMP 2
ECMP 3

ECMP 4

ECMP 5

ECMP 6

ECMP 7

Fig. 5 Simulated network topology

• 2% of FTP: The amount of data for each flow, or flow
volume, follows Pareto distribution with mean of 5000 KB
and standard deviation of 500 KB.

• 32% of HTTP: The flow volume follows Pareto distribution
with mean of 10 KB and standard deviation of 1 KB.

• 33% of Email: Pareto distribution with mean of 3 KB and
standard deviation of 0.3 KB.

• 33% of DB: Pareto distribution with mean of 2 KB and
standard deviation of 0.2 KB.

B. Equal Traffic Splitting Performance
Refer to Fig. 5, we focus on the traffic flows destined to

node 15, which can be split among the 8 available ECMPs.
Assume the desired traffic splitting ratio among the 8 ECMPs
is 1:1:1:1:1:1:1:1. Initially, we set the bin updating interval
T=80 msec (the longest round trip time in the network), queue
occupancy threshold γ = 0.8 and weighting factor β = 100.

For different traffic splitting algorithms, Fig. 6 shows the
load balancing performance on 8 ECMPs. The numbers in each
column indicate the share (i.e. the percentage of the total load)
carried by the individual paths, from ECMP 0 at the bottom to
ECMP 7 at the top. The total difference between the actual share
and the ideal share of 12.5% over all 8 paths are summarized by
the second row “Deviation” in TABLE I. The third row
“Percentage” shows the percentage of packets arrived at the
receiver (node 15) out-of-order. The last row “Delay”
corresponds to the average end-to-end packet delay. As
expected, Packet-by-Packet (PBP) algorithm gives the perfect
load balancing performance but at the expenses of about 43% of
packets arrived out-of-order. On the other hand, our proposed
THR algorithm gives a load balancing performance very close
to PBP (< 0.4% deviation), and with less than 2% of packets
arrived out-of-order.

In principle, packets should experience no out-of-order
problem under Direct Hashing (DH) and Table-based Hashing

(TH) algorithms. But in our implementation, sequence number
gaps (caused by network congestion) in the received packet
stream are also counted as packet out-of-order events. This
explains the observation of about 1% of packets arrived out-of-
order under these two algorithms.

From TABLE I, we can also see that if the load balancing
performance is good, the average end-to-end packet delay is
small. As expected, THR provides the next-to-the-lowest end-
to-end delay performance.

16.10 14.12 8.79 12.58

6.99
17.54

17.49 12.54

13.42

15.36
10.67 12.51

15.50

11.43

12.35 12.43

12.50 5.86

9.56
12.45

18.04
11.83

13.15 12.42

11.73 10.33 11.68 12.51

12.36 9.82 12.39 12.55

12.50

12.50

12.50

12.50

13.47

12.50

12.50

12.50

PBP DH TH FS THR

Algorithms
Fig. 6 Traffic equal-splitting using different algorithms

TABLE I LOAD BALANCING, PACKET OUT-OF-ORDER AND END-TO-END
DELAY PERFORMANCE FOR EQUAL TRAFFIC SPLITTING

Algorithms PBP DH TH FS THR
Deviation 0% 26.2% 19.05% 20.14% 0.39%

Percentage 43.01% 0.94% 0.97% 1.55% 1.91%
Delay (ms) 53.4 64.2 63.0 60.1 59.7

Fig. 7 shows the goodput at node 15 and the total goodput of
the whole network, which is obtained by adding the goodput at
all individual receivers. We can see that using multiple paths
can generally provide higher goodput than using a single path
(SP). The goodput performance of our THR is comparable to
that of DH, TH and FS.

0.729981
0.795819

0.862119 0.855323 0.864121 0.858284

0.083109
0.158057

0.399754 0.40758 0.393713 0.377563

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SP PBP DH TH FS THR
Algorithms

To
ta

l n
um

be
r o

f u
se

fu
l p

ac
ke

ts
 /

M
ill

io
n Goodput in whole network

Goodput at node 15

Fig. 7 Number of useful packets

Next we change the update interval T of our THR algorithm
to 500 msec and 1 sec for investigating its impact on load
balancing performance. The total deviation from the desired
share of 12.5% over all 8 ECMPs is summarized in TABLE II.
Although the load balancing performance is poorer with larger
update interval, compared with TABLE I, we can see that THR
still outperforms the other three traffic splitting algorithms DH,
TH and FS, by a large margin.

0-7803-8533-0/04/$20.00 (c) 2004 IEEEIEEE Communications Society 1210

TABLE II EFFECT OF UPDATE INTERVAL
T (sec) 0.08 0.5 1

Deviation 0.39% 2.43% 4.02%

Finally, we vary the value of β in THR to study its impact on
both load balancing performance and packet out-of-order
problem. TABLE III summarizes these results. As expected, as
the value of β increases, the load balancing performance
becomes poorer (but still much better than DH, TH and FS) and
the packet out-of-order problem becomes less serious.

TABLE III EFFECT OF β

β 100 300 500
Deviation 0.39% 0.81% 1.53%

Out-of-order packets 1.91% 1.71% 1.57%

C. Unequal Traffic Splitting
Refer to Fig. 5, assume the bandwidth of all links on ECMP

0 and ECMP 1 are doubled while the bandwidth of all links on
ECMP 6 and ECMP 7 are halved. Let the desired traffic
splitting ratio among the 8 ECMPs be 2:2:1:1:1:1:0:0. For
Packet-by-Packet (PBP) and Fast Switching (FS) algorithms,
unequal-splitting is achieved by assigning a weight of 2 to the
first two ECMPs, a weight of 0 to the last two ECMPs and a
weight of 1 to all other ECMPs. For Table-based Hashing
(TH), the hash bins are allocated such that 25% of bins are
associated to each of ECMPs 0 & 1, and 12.5% to each of
ECMPs 2 to 5.

For all four packet splitting algorithms, Fig. 8 shows the
load balancing performance on the 8 ECMPs. TABLE IV
summarizes the total deviation from the desired splitting ratio,
the percentage of packets arrived out-of-order, and the average
end-to-end packet delay. Again, we can see that our THR
algorithm gives the overall best performance.

33.16 31.27 25.32

30.16
25.36

25.19

9.54
9.16

12.64

9.28
11.55 12.46

12.50
8.38

8.83 12.11

9.47 13.84 12.29

25.00

25.00

12.50

12.50

12.50

PBP TH FS THR
Algorithms

Fig. 8 Traffic unequal-splitting using differenct algorithms

TABLE IV LOAD BALANCING, PACKET OUT-OF-ORDER AND END-TO-END
DELAY PERFORMANCE FOR UNEQUAL TRAFFIC SPLITTING
Algorithms PBP TH FS THR
Deviation 0% 26.64% 15.92% 1.29%

Percentage 37.31% 0.09% 0.35% 0.62%
Delay (ms) 44.8 60.9 60.7 58.2

V. CONCLUSIONS
In this paper, a new traffic splitting algorithm, called Table-

based Hashing with Reassignments (THR), was proposed for
load sharing over the set of equal-cost-multi-paths (ECMPs). As
the traffic load in the network is time-varying, THR selectively
reassigns some active flows from the over-utilized paths to
under-utilized paths based on the load sharing statistics
collected from each ECMP. The reassignment process is
carefully designed to minimize the packet out-of-order problem.
The effectiveness of THR was studied for equal and unequal
traffic splitting scenarios. As compared with the existing traffic
splitting algorithms, we found that THR provides a close-to-
optimal load balancing performance, less than 2% of packets
arrived out-of-order, and one of the lowest average end-to-end
packet delays. Although additional traffic monitoring function is
needed by THR, we argued that the extra complexity incurred is
marginal.

REFERENCES
[1] D. Awduche, J. Malcolm, J. Agogbua, M. O’Dell and J. McManus,

“Requirements for Traffic Engineering Over MPLS,” RFC2702, Sep.
1999.

[2] Z. Wang, “Internet QoS, Architectures and Mechanisms for Quality of
Service,” Lucent Technologies, 2001.

[3] B. Fortz and M. Thorup, “Internet Traffic Engineering by Optimizing
OSPF Weights,” Proceedings of IEEE INFOCOM, vol. 2, pp. 519 – 528,
March 2000.

[4] Y. Wang, Z. Wang and L. Zhang, “Internet Traffic Engineering without
Full Mesh Overlaying,” Proceedings of IEEE INFOCOM, vol. 1, pp. 565
– 571, April 2001.

[5] A. Sridharan, R. Guerin and C. Diot, “Achieving Near-Optimal Traffic
Engineering Solutions for Current OSPF/IS-IS Networks,” Proceedings
of IEEE INFOCOM, vol. 2, pp. 1167 – 1177, March 2003.

[6] C. Villamizar, “OSPF optimized multipath OSPF-OMP,” INTERNET-
DRAFT, October 1998, (work in progress)

[7] A. Zinin, “Cisco IP Routing, Packet Forwarding and Intra-domain
Routing Protocols,” Addison Wesley, Section 5.5.1, 2002.

[8] http://www.isi.edu/nsnam/ns/
[9] International Organization for Standardization, "ISO Information

Processing Systems - Data Communication High-Level Data Link
Control Procedure - Frame Structure", IS 3309, October 1984, 3rd
Edition.

[10] J. Y. Jo, Y. Kim and F. L. Merat, “Internet Traffic Distribution over
Multilink Where High Bandwidth Scalable Switch Port Aggregates
Multiple Physical Links,” Proceedings of IEEE ICC, May 2003.

0-7803-8533-0/04/$20.00 (c) 2004 IEEEIEEE Communications Society 1211

	footer1:

