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Abstract—To effectively manage the traffic distribution inside a 
network, traffic splitting is needed for load sharing over a set of 
equal-cost-multi-paths (ECMPs). In this paper, a new traffic 
splitting algorithm, called Table-based Hashing with 
Reassignments (THR), is proposed. Based on the load sharing 
statistics collected, THR selectively reassigns some active flows 
from the over-utilized paths to under-utilized paths. The 
reassignment process takes place in such a way that the packet 
out-of-order problem is minimized. As compared with the existing 
traffic splitting algorithms, THR provides close-to-optimal load 
balancing performance, less than 2% of packets arrived out-of-
order, and a very small end-to-end packet delay performance. 
Although additional traffic monitoring function is needed by 
THR, we show that the extra complexity incurred is marginal. 

Keywords-Traffic splitting; ECMPs; Packet Reordering. 

I.  INTRODUCTION 
The main objective of traffic engineering is to reduce 

congestion hotspots and improve resource utilization across the 
network by carefully managing the traffic distribution inside a 
network. In today’s Internet, IP routing is destination-based and 
forwarding paths are calculated based on shortest-path-first 
algorithm. Though IP routing is scalable, it lacks the capability 
of explicitly controlling the traffic distribution inside a 
network.  

To achieve this, two models can be followed, overlay model 
and peer model. With overlay model, a fully-meshed logical 
topology based on, e.g. MPLS LSPs [1], can be constructed 
over the network’s physical topology. Traffic can then be 
explicitly routed using logical paths. This model is known to 
suffer from the N-square problem [2].  

Using the peer model [3][4], balanced traffic distribution 
can be achieved by manipulating the link weights in the Open 
Shortest Path First (OSPF) routing protocol. Once the link 
weights are properly set, the network can operate as it does 
today: the OSPF protocol calculates the forwarding paths based 
on the shortest-path-first computation. Compared with the 
overlay model, peer model is more scalable, does not require 
any changes to the basic IP routing architecture, and can be 
readily deployed. 

For traffic engineering, the problem of finding the optimal 
paths for traffic demands is usually solved by formulating it as 
a linear programming problem [5]. The optimal solution 
usually requires splitting the traffic demand between two nodes 
over multiple paths. Besides the extra processing overheads, 
traffic splitting must be done carefully so that the packets from 
the same flow are not sent over different paths. Otherwise, 
different delays may cause packet reordering in TCP flows. 
This in turn degrades the TCP performance. Since the peer 

model relies on the basic IP routing architecture, the problems 
caused by traffic splitting tend to be more pronounced. Under 
OSPF routing protocol, if there are more than one equal-cost 
path (i.e. equal-cost-multi-paths, or ECMPs) towards a 
destination, traffic going to that destination will be distributed 
among all ECMPs for load balancing. However, the detailed 
traffic splitting mechanisms are subject to individual 
implementations.  

A number of traffic splitting algorithms have been 
proposed. The simplest approach is to split the traffic over 
ECMPs in a packet-by-packet round robin fashion [6]. We call 
it Packet-by-Packet (PBP) splitting. With PBP, the traffic load 
can be perfectly balanced among all ECMPs but serious packet 
out-of-order problem will be induced as the delays on different 
ECMPs are different. To address this problem, per-flow 
forwarding is usually adopted at the expenses of less optimal 
load balancing. Three per-flow traffic splitting algorithms have 
been proposed, Direct Hashing, Table-based Hashing [6], and 
Fast Switching [7]. Please refer to the next section for details. 

In this paper, we propose a new traffic splitting algorithm, 
called Table-based Hashing with Reassignments (THR). Using 
THR, the actual load sharing statistics among all ECMPs are 
monitored. This can be easily implemented by incrementing an 
associated counter at each ECMP upon a packet departure. For 
every pre-determined time interval (which is adjustable), the 
counter values are collected and compared to identify the most-
utilized as well as the least-utilized ECMPs. Then we can select 
a flow from the most-utilized-path and reassign it to the least-
utilized-path. The reassignment process is carefully designed so 
that the packet out-of-order events can be minimized. Inherent 
to its design, THR algorithm is capable of handling both equal 
and unequal traffic splitting. Our simulation results show that 
THR gives a near-optimal load balancing performance as that 
of Packet-by-Packet (PBP) algorithm, whereas the packet out-
of-order events induced by THR are 96.6% less than PBP. 
Because of better splitting performance, THR also gives a 
lower average packet delay performance than all other traffic 
splitting algorithms.  

This paper is organized as follows. In the next section, three 
existing flow-based traffic splitting algorithms are reviewed. In 
Section III, our feedback-based traffic splitting algorithm THR 
is introduced. In Section IV, THR is compared with other 
splitting algorithms via simulations. Finally, we conclude the 
paper in Section V. 

II. EXISTING TRAFFIC SPLITTING ALGORITHMS 
Since packet-by-packet splitting introduces serious packet 

out-of-order problem, per-flow forwarding is usually adopted 
but at the expenses of less optimal load balancing. Up to our 
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knowledge, three per-flow traffic splitting algorithms have 
been proposed, Direct Hashing, Table-based Hashing [6], and 
Fast Switching [7]. 

The first two are hash-based algorithms. A hashing value is 
obtained from a hashing function H, or, 

Hash value = H (Header invariant fields) modulo x. 
The input to the hashing function is usually the four packet 
header fields, source IP address, destination IP address, source 
port number and destination port number. In Direct Hashing 
(Fig. 1), x is the number of ECMPs k. For Table-based Hashing 
(Fig. 2), x is replaced by the number of bins b. Note that a bin 
is an intermediate pointer that points to a selected ECMP. 
Direct Hashing uses the hash value directly to assign a flow to 
an ECMP, whereas Table-based Hashing uses the hash value to 
determine an intermediate bin, which in turn points to a 
selected ECMP for the flow. As compared with the packet-by-
packet algorithm, the packet out-of-order problem becomes less 
serious. But a poorer load balancing performance is also 
expected. 
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Fig. 1 Design of Direct Hashing at a typical traffic splitting router 
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Fig. 2 Design of Table-based Hashing at a typical traffic splitting router 

Fast Switching [7] is proposed by Cisco. It has a cache 
which stores the ECMPs assigned to all recently seen flows. 
When the traffic belongs to the same flow arrives, it is always 
assigned to the same ECMP. When all memory allocated for 
the cache is used up and a new cache entry needs to be created, 
the oldest entry is deleted in favor of the new one. When a 
packet/flow arrives and no matching with the cache can be 
found, the flow is assigned to the next ECMP in a round robin 
fashion. This flow ID as well as the path assigned to it are then 
stored in the cache. 

The performance of Fast Switching is affected by its cache 
size. With small cache size, most packets cannot find a 
matching in the cache. They will always be assigned to the next 
ECMP in a round robin fashion. The performance under this 

situation is similar to packet-by-packet algorithm – the load can 
be nicely balanced but a serious packet-out-of-order problem 
will be experienced. With large cache size, most flows and 
their assigned ECMPs can be cached without being 
replaced/flushed. As a result, packets belong to the same flow 
can always be assigned to the same ECMP. The performance 
under this situation is similar to the two earlier hash-based 
algorithms – the load is not so nicely balanced but the packet-
out-of-order problem is minor. 

Besides equal traffic splitting, unequal traffic splitting 
among ECMPs is also very important. Among the four traffic 
splitting algorithms mentioned above, except Direct Hashing, 
both equal and unequal traffic splitting can be supported. Based 
on the assumption that equal traffic splitting is easier to 
implement (which we tend to disagree), three heuristic 
algorithms for emulating the unequal traffic splitting by equal 
traffic splitting algorithms are proposed [5] recently. 

III. TABLE-BASED HASHING WITH REASSIGNMENTS 

A. THR Algorithm 
Without loss of generality, Fig. 3 outlines the design of our 

proposed Table-based Hashing with Reassignments (THR) 
algorithm. The source IP address, destination IP address, source 
port number and destination port number fields of a packet are 
input to the hash function to produce a hash value, which is 
then divided by the number of bins. The remainder of the 
division points to one of the bins and this bin in turn determines 
the ECMP to which the packet should be assigned. Unlike the 
original Table-based Hashing scheme, the connections between 
the bins and ECMPs can be adjusted/reassigned according to 
traffic loads. 

ECMP 0

ECMP 1

ECMP 2

ECMP k-1

.

.

.

HashFlows

To a unique bin

Modulo b

0

1

b - 3

b - 2

b - 1

Bins Buffers

C0, L0

C1, L1

Cb-3, Lb-3

Cb-2, Lb-2

Cb-1, Lb-1

S0

S1

S2

Sk-1

ECMPs

.

.

.

ECMP 0

ECMP 1

ECMP 2

ECMP k-1

.

.

.

HashFlows

To a unique bin

Modulo b

0

1

b - 3

b - 2

b - 1

Bins Buffers

C0, L0

C1, L1

Cb-3, Lb-3

Cb-2, Lb-2

Cb-1, Lb-1

S0

S1

S2

Sk-1

ECMPs

.

.

.

 
Fig. 3 Design of THR at a typical traffic splitting router 

Packets assigned to an ECMP will wait in the 
corresponding output buffer for transmission. Without loss of 
generality, let hash bins 0, 1, ..., m-1 point to output buffer i of 
ECMP i. At output buffer i, m packet counters C0, C1, ..., Cm-1 
are maintained to record the number of packets passing 
through, one for each bin. For each counter Cx, another 
parameter Lx is used to store the last-modified time of Cx. So 
the total number of packets passing through ECMP i in a 
predefined time interval of T is CurrSi = C0 + C1 + ... + Cm-1. 
Let the moving average of the number of packets passing 
through ECMP i for each time interval of T be Si. Si can be 
found using an exponentially weighted moving average 
function as follows: 
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                             iii CurrSSS  )1( ' αα +−= ,             (1) 
where S’i is the moving average calculated in the previous 
interval T, and α is the smoothing constant ( 10 ≤≤ α ).  

The value of T determines the frequency for updating bin 
allocations. A small value gives a finer adjustment (and thus 
better load balancing performance) but a higher probability of 
packet-out-of-order. We recommend T should be comparable to 
the average round trip time for all flows the router carried. In 
Section IV, the impact of using different values of T will be 
examined by simulations. 

Assume the desired traffic splitting ratio among the k 
ECMPs is x0:x1:...:xk-1. The algorithm for THR is summarized 
in Fig. 4. 

 
Fig. 4 Algorithm for THR 

Step 1 calculates the moving average Si for every ECMP. 
Step 2 selects the most-utilized ECMP among all ECMPs. Step 
3 selects the least-utilized ECMP. Note that the buffer 
occupancy of the selected ECMP should not exceed γ (which is 
set to 0.8 in our simulations). This helps to avoid transferring 
traffic to a full or nearly-full output port buffer. If the buffer 
occupancies on all ECMPs exceed γ, no flow reassignment is 
needed.  

If a least-utilized path is identified in Step 4, Step 5 selects 
an appropriate bin pointing to the most-utilized path and 
reassigns it to the least-utilized path found. In particular, the 
bin with the maximum value of Cx + β(CurrTime – Lx) will be 
chosen, where β is a weighting factor for combining the two 
components Cx and (CurrTime – Lx) together. A small value of 
β implies that we focus more on the first component Cx. If β = 
0, we always redirect the largest traffic flow (on the most-
utilized path) to the least-utilized path. This tends to give a 
better load balancing performance. On the other hand, a large 
value of β implies that we focus more on the second component 
(CurrTime – Lx), which indicates the duration that bin x does 
not have any packets arrived. If this duration is long enough 
and the corresponding bin is selected for reassignment, then by 
the time new packets arrived at this bin (which will follow the 
new path), the previous packets should have already been on its 
way (along the old path) to the destination if not already 
arrived. Therefore, a large β has the effect of minimizing the 

packet out-of-order problem. In the next section, the value of β 
is varied for investigating its impact on the load balancing 
performance and the packet out-of-order problem. Finally, Step 
6 sets the parameters for the next update period T no matter 
whether a reassignment is done in the current update period or 
not.  

Note that if packets with variable sizes are used, counters 
C0, C1, ..., Cm–1 and CurrSi in Fig. 4 should be modified to 
function as byte counters instead of packet counters. 

B. Complexities 
From Fig. 4, we can find that the worst-case time 

complexity of the Table-based Hashing with Reassignments 
(THR) algorithm is O(b), where b is the total number of bins. 
The number of executions of the THR algorithm per unit time 
is inversely proportional to the bin allocation update interval T. 
We have recommended that the value of T should be 
comparable to the average round trip time of all the flows the 
router carried. In the next section, we will show that even this T 
value is larger than the recommended value, the performance 
degradation is minimal. 

Regarding the extra hardware required by the THR 
algorithm, (2b + k) registers are required for implementing 
counters Cx, Lx and Si, where b is the number of bins and k is 
the number of ECMPs. The arithmetic operations conducted on 
those counters are very simple. In fact, such extra complexity is 
much lower than those required by Fast Switching, in which a 
reasonably large cache size is required and searching through 
the cache is much more time consuming. In short, we believe 
that with today’s router technologies, the extra complexity of 
implementing THR algorithm at a router is marginal. 

IV. SIMULATION RESULTS 

A. Simulation Model 
Fig. 5 shows the network topology we adopted. Traffic is 

generated from two subnets, 0 and 1, each represents 300 
traffic-generating hosts. Traffic generated from subnet 1 all 
goes to node 15. There are 8 equal-cost-multi-paths (ECMPs) 
between subnet 1 and node 15, via routers 3 to 10. Traffic 
generated by subnet 0 serves as the background uni-path traffic, 
which is uniformly distributed to nodes 3 to 10. We set the 
buffer size of routers 2 to 14 to 220 packets, which is 
sufficiently large to fully utilize the available network 
bandwidths when TCP is used. The bandwidth of each link is 
44.736 Mbps (DS3). The number next to each link in Fig. 5 
represents its propagation delay in milliseconds. 

Our simulations are based on NS-2 [8] and TCP Reno is 
used. The simulation time is 30 seconds and the statistics 
collected in the initial 10 seconds are ignored. For Table-based 
Hashing (TH) and our THR, bin size is set to b = 1024. The 
adopted hash function is CRC-32 [9], which operates on the 
four packet header fields, source IP address, destination IP 
address, source port number and destination port number. For 
our THR, the smoothing constant α in Eqn. (1) is set to 0.5. For 
Fast Switching (FS), a cache size of 3000 flows (that is about 
30% of the total number of flows simulated) is used. This size 
can give a balanced performance of low probability of packet-
out-of-order and good traffic splitting performance. 

At each interval of T, 
1. Calculate the moving average Si. from Eqn.(1) for every ECMP. 

2. Find ECMP p such that 

∑∑
−

=

−

=
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0
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i
i
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i
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x
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S

S  is maximized. 

3. Find ECMP q from the set of ECMPs whose buffer occupancy is less
than a pre-defined threshold value γ such that 

∑∑
−

=

−

=

− 1

0

1

0

k

i
i

q
k

i
i

q

S

S

x

x  is 

maximized. 
4. If ECMP q is found, go to Step 5. Otherwise, go to Step 6. 
5. Among the m bins connected to ECMP p, select bin r such that Cr + 
β(CurrTime – Lr) is maximized. Reassign bin r from ECMP p to ECMP 
q. 

6. Reset all packet counters Cx to 0 and the last modified time Lx to 
CurrTime. 
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The Internet traffic is dominated [10] by a very small 
percentage of large volume flows, such as FTP. In our 
simulations, we assume 2% of the traffic flows is of FTP type 
while 98% of the traffic flows is of other types, as detailed 
below. We also assume that at each host the flow arrival 
follows a Poisson process. 
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Fig. 5 Simulated network topology 

• 2% of FTP: The amount of data for each flow, or flow 
volume, follows Pareto distribution with mean of 5000 KB 
and standard deviation of 500 KB. 

• 32% of HTTP: The flow volume follows Pareto distribution 
with mean of 10 KB and standard deviation of 1 KB. 

• 33% of Email: Pareto distribution with mean of 3 KB and 
standard deviation of 0.3 KB. 

• 33% of DB: Pareto distribution with mean of 2 KB and 
standard deviation of 0.2 KB. 

B. Equal Traffic Splitting Performance 
Refer to Fig. 5, we focus on the traffic flows destined to 

node 15, which can be split among the 8 available ECMPs. 
Assume the desired traffic splitting ratio among the 8 ECMPs 
is 1:1:1:1:1:1:1:1. Initially, we set the bin updating interval 
T=80 msec (the longest round trip time in the network), queue 
occupancy threshold γ = 0.8 and weighting factor β = 100. 

For different traffic splitting algorithms, Fig. 6 shows the 
load balancing performance on 8 ECMPs. The numbers in each 
column indicate the share (i.e. the percentage of the total load) 
carried by the individual paths, from ECMP 0 at the bottom to 
ECMP 7 at the top. The total difference between the actual share 
and the ideal share of 12.5% over all 8 paths are summarized by 
the second row “Deviation” in TABLE I. The third row 
“Percentage” shows the percentage of packets arrived at the 
receiver (node 15) out-of-order. The last row “Delay” 
corresponds to the average end-to-end packet delay. As 
expected, Packet-by-Packet (PBP) algorithm gives the perfect 
load balancing performance but at the expenses of about 43% of 
packets arrived out-of-order. On the other hand, our proposed 
THR algorithm gives a load balancing performance very close 
to PBP (< 0.4% deviation), and with less than 2% of packets 
arrived out-of-order.  

In principle, packets should experience no out-of-order 
problem under Direct Hashing (DH) and Table-based Hashing 

(TH) algorithms. But in our implementation, sequence number 
gaps (caused by network congestion) in the received packet 
stream are also counted as packet out-of-order events. This 
explains the observation of about 1% of packets arrived out-of-
order under these two algorithms. 

From TABLE I, we can also see that if the load balancing 
performance is good, the average end-to-end packet delay is 
small. As expected, THR provides the next-to-the-lowest end-
to-end delay performance. 
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Fig. 6 Traffic equal-splitting using different algorithms 

TABLE I LOAD BALANCING, PACKET OUT-OF-ORDER AND END-TO-END 
DELAY PERFORMANCE FOR EQUAL TRAFFIC SPLITTING 

Algorithms PBP DH TH FS THR 
Deviation 0% 26.2% 19.05% 20.14% 0.39% 

Percentage 43.01% 0.94% 0.97% 1.55% 1.91% 
Delay (ms) 53.4 64.2 63.0 60.1 59.7 

Fig. 7 shows the goodput at node 15 and the total goodput of 
the whole network, which is obtained by adding the goodput at 
all individual receivers. We can see that using multiple paths 
can generally provide higher goodput than using a single path 
(SP). The goodput performance of our THR is comparable to 
that of DH, TH and FS. 
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Fig. 7 Number of useful packets 

Next we change the update interval T of our THR algorithm 
to 500 msec and 1 sec for investigating its impact on load 
balancing performance. The total deviation from the desired 
share of 12.5% over all 8 ECMPs is summarized in TABLE II. 
Although the load balancing performance is poorer with larger 
update interval, compared with TABLE I, we can see that THR 
still outperforms the other three traffic splitting algorithms DH, 
TH and FS, by a large margin. 
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TABLE II EFFECT OF UPDATE INTERVAL 
T (sec) 0.08 0.5 1 

Deviation 0.39% 2.43% 4.02% 

Finally, we vary the value of β in THR to study its impact on 
both load balancing performance and packet out-of-order 
problem. TABLE III summarizes these results. As expected, as 
the value of β increases, the load balancing performance 
becomes poorer (but still much better than DH, TH and FS) and 
the packet out-of-order problem becomes less serious. 

TABLE III EFFECT OF β 

β 100 300 500 
Deviation 0.39% 0.81% 1.53% 

Out-of-order packets 1.91% 1.71% 1.57% 

C. Unequal Traffic Splitting 
Refer to Fig. 5, assume the bandwidth of all links on ECMP 

0 and ECMP 1 are doubled while the bandwidth of all links on 
ECMP 6 and ECMP 7 are halved. Let the desired traffic 
splitting ratio among the 8 ECMPs be 2:2:1:1:1:1:0:0. For 
Packet-by-Packet (PBP) and Fast Switching (FS) algorithms, 
unequal-splitting is achieved by assigning a weight of 2 to the 
first two ECMPs, a weight of 0 to the last two ECMPs and a 
weight of 1 to all other ECMPs. For Table-based Hashing 
(TH), the hash bins are allocated such that 25% of bins are 
associated to each of ECMPs 0 & 1, and 12.5% to each of 
ECMPs 2 to 5. 

For all four packet splitting algorithms, Fig. 8 shows the 
load balancing performance on the 8 ECMPs. TABLE IV 
summarizes the total deviation from the desired splitting ratio, 
the percentage of packets arrived out-of-order, and the average 
end-to-end packet delay. Again, we can see that our THR 
algorithm gives the overall best performance. 
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Fig. 8 Traffic unequal-splitting using differenct algorithms 

TABLE IV LOAD BALANCING, PACKET OUT-OF-ORDER AND END-TO-END 
DELAY PERFORMANCE FOR UNEQUAL TRAFFIC SPLITTING 
Algorithms PBP TH FS THR 
Deviation 0% 26.64% 15.92% 1.29% 

Percentage 37.31% 0.09% 0.35% 0.62% 
Delay (ms) 44.8 60.9 60.7 58.2 

V. CONCLUSIONS 
In this paper, a new traffic splitting algorithm, called Table-

based Hashing with Reassignments (THR), was proposed for 
load sharing over the set of equal-cost-multi-paths (ECMPs). As 
the traffic load in the network is time-varying, THR selectively 
reassigns some active flows from the over-utilized paths to 
under-utilized paths based on the load sharing statistics 
collected from each ECMP. The reassignment process is 
carefully designed to minimize the packet out-of-order problem. 
The effectiveness of THR was studied for equal and unequal 
traffic splitting scenarios. As compared with the existing traffic 
splitting algorithms, we found that THR provides a close-to-
optimal load balancing performance, less than 2% of packets 
arrived out-of-order, and one of the lowest average end-to-end 
packet delays. Although additional traffic monitoring function is 
needed by THR, we argued that the extra complexity incurred is 
marginal. 
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