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A Novel MAC Scheduling Algorithm for Bluetooth System 

Abstrat – Data exchange within a Bluetooth piconet is master-
driven. The channel/slot utilization thus depends on the efficiency 
of the scheduling algorithm adopted by the master. In this paper, 
a novel MAC layer scheduling algorithm, called Floating 
Threshold (FT), is proposed. Unlike existing approaches, FT 
allows the master to estimate the backlog queue status at each 
slave accurately based only on a single feedback bit and a floating 
threshold. The master can then derive an optimized packet 
transmission schedule. Using simulations, we show that FT 
outperforms existing algorithms in terms of channel utilization, 
packet delay and packet dropping probability.  
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I. INTRODUCTION 

Fueled by the desire for mobility and coupled with the demand 
for low-cost low-power connection between different 
electronic devices, Bluetooth [1], a fast frequency hopping 
Time Division Duplex (TDD) wireless system, has undergone 
rapid development in recent years. To resolve the collisions 
over wireless medium, data exchange in Bluetooth is designed 
to be master-driven. A master is a Bluetooth unit that 
initializes the setup of a piconet. Each master can 
simultaneously communicate with up to seven other units, or 
slaves. Fig. 1 shows a piconet consisting of 1 master and 5 
slaves. The configuration of master-driven TDD scheme vests 
the master with the task of scheduling; this simplifies the 
implementation of a Bluetooth system. 

The scheduling resources for the master are slots of 625µs in 
length and each corresponds to a hop frequency. Data 
transmission in Bluetooth is characterized by full duplex 
coupling: a slave is allowed to begin its transmission to the 
master only after receiving a packet from the master (or just 
being polled by the master with a null packet) in the preceding 
slot. In other words, the transmission always occurs in pairs.  

In [1], two types of RF links have been defined: Asynchronous 
Connectionless Link (ACL) and Synchronous Connection-
Oriented (SCO) Link. SCO link is applied for time-bound 
services such as voice, with TDD frames reserved at regular 
intervals. ACL links support packet-switched, point-to-point or 
point-to-multipoint data connections. In this paper, we are only 
interested in scheduling packets on ACL links. An ACL link 
can support packets with three different sizes, 1, 3, or 5 time 
slots. 

It can be seen that slot wastage occurs (on the ACL links) in 
the following situations: 
(1) When both the master and the slave do not have packets 

destined to each other, both the polling slot from master-
to-slave and the reply slot from the slave-to-master will be 
wasted. The resulting wastage is said to be 100%.  

(2) When either the master or the slave does not have packets 
destined to the other side, the wastage is 50% (assuming 
the same packet size in each direction). 

 

master

slave slave slave slave slave

 
 

Fig. 1: A piconet consisting of one master and five slaves. 

Therefore, a good MAC (Medium Access Control) scheduling 
mechanism should minimize such slot wastage. At the same 
time, it is desirable to have small packet delay, and a low 
packet dropping probability (as a result of buffer overflow).   

In this paper, we focus on designing MAC layer packet 
scheduling algorithm in a piconet. A comprehensive review of 
the existing MAC layer scheduling algorithms is conducted in 
the next section. In Sections III & IV, a novel MAC scheduling 
algorithm, called Floating Threshold (FT), is proposed. FT 
allows the master to determine (with high accuracy) the 
backlog queue status at all slaves, based only on a single 
feedback bit and a floating threshold. (Note that it is not 
possible to have the exact slave queue size based only on a 
single feedback bit.) An optimized packet transmission 
schedule can then be determined. The performance of the FT 
algorithm is evaluated via simulations in Section V. It is found 
that FT outperforms the existing algorithms in throughput, 
delay as well as packet dropping probability. Finally, we 
conclude the paper in Section VI. 
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II. EXISTING MAC SCHEDULING ALGORITHMS 

In a Bluetooth piconet, the master is vested with the task of 
scheduling. The most primitive scheduling algorithm works in 
a Round Robin (RR) manner, i.e., the slots are allocated to 
slaves in a strict cyclic order. The bandwidth is equally divided 
but the slot wastage is excessive because slots will be wasted if 
a slave with an empty queue is polled. As a result, RR 
generally performs poorly. 

A good Bluetooth MAC scheduling algorithm should be 
designed based on the current traffic status (i.e. the amount of 
backlog traffic) at both the master and all of its slaves. The 
queue status at the master for packets destined for each slave 
can be readily obtained. The problem is to collect the queue 
status from the slaves. To achieve this, two approaches are 
generally followed: history-based [5,6] and feedback-based [2-
4]. In the former approach, the master uses historical data 
collected from the slaves to predict the possible arrival of new 
packets in the subsequent time slots at the slaves. In [5,6], 
various polling schemes following this approach are examined 
and compared. 

The feedback-based approach makes use of the explicit 
feedback information carried by the packet transmitted from 
the slave to the master (i.e. upstream packets) to update the 
slave queue status stored at the master. As compared with the 
history-based approach, more accurate estimation (if not exact) 
of the slave queue size can be obtained. Such feedback 
mechanisms are adopted in [2-4]. Studies showed that 
feedback-based scheduling algorithms outperform those 
following the history-based approach, but at the expense of 
possible feedback overhead.   

To be more specific, two history-based polling schemes are 
proposed in [6], namely, Limited Exhaustive Round Robin 
(LERR) and Limited Weighted Round Robin (LWRR). LERR 
has a fixed cyclic order and the scheme is exhaustive, i.e., the 
master does not switch to the next master-slave pair until both 
the master and the slave queues are emptied. Parameter “t” is 
used to limit the number of transmissions (tokens) that can be 
performed by each pair per cycle. This in return limits the 
cycle length and avoids slave starvation, i.e., the denial of 
transmissions to/from a slave. The LWRR adopts a weighted 
round robin algorithm with weights dynamically changed 
according to the observed queue status. Each slave is assigned 
a weight equal to MP (Maximum Priority) at the beginning, 
and this weight varies within the range of 1 to MP 
subsequently. Details about the two schemes can be found in 
[6]. 

In [3], a feedback-based scheduling algorithm called Priority 
Policy (PP) is proposed. PP uses a single feedback bit to 
convey the slave queue size information to the master. This 
single bit is piggybacked on the upstream packets. Due to the 
single feedback bit, a slave can only indicate whether its 
current queue size is empty (‘0’) or backlogged (‘1’). Using PP, 

the master classifies all master-slave pairs into one of the four 
states, namely, 1-1, 1-0, 0-1 and 0-0. As an example, 1-0 
means the master has packets for the slave, whereas the slave 
does not have packets for the master. The highest transmission 
priority, denoted by p, is then given to the 1-1 pair which has 
100% slot utilization. PP is known to have the potential 
problem of slave starvation. Suppose a master-slave pair is 
classified as belonging to 0-0, the master may never poll the 
slave again (for getting slave queue size update) if other pairs 
always have packets to send.  

Another feedback-based scheduling scheme, called HOL-
Priority Policy (HOL-PP) [2], is also proposed. In HOL-PP, 
packets may be of different sizes, 0, 1, 3, or 5 time slots. 
Packet size 0 means the queue is empty. The master schedules 
based on the head of line (HOL) packet size at both the slave 
and master. Two feedback bits are required to differentiate the 
4 possible HOL packet sizes. Like [3], high system throughput 
(or, channel utilization) can be obtained.  

More recently, another type of feedback-based MAC 
scheduling algorithms aimed at optimizing TCP performance 
over Bluetooth systems is proposed in [4]. Instead of 
monitoring the MAC layer buffer size, the flow bit in the 
payload header (please refer to [1] for the details of the 
Bluetooth packet format) is adopted to monitor the L2CAP 
protocol layer buffer occupancy, where L2CAP is on top of the 
MAC layer. In [4], the flow bit is set to ‘1’ by the slave if its 
L2CAP buffer size exceeds a pre-defined threshold. Then 
based on the flow bit status at both the master and slave, the 
polling interval is calculated. Since the threshold for the 
L2CAP buffer is preset, the polling schemes will degenerate 
into Round Robin if the traffic load is below the threshold. 
Therefore, the value for the threshold should be carefully 
chosen. In [4], the optimal threshold value is obtained by trial 
and error from simulations. Good heuristics for threshold 
setting (or even adaptive threshold setting) are needed.   

Since [4] focuses on transport layer optimization, the direct 
impact of a MAC scheduling scheme on the system 
performance is not clear. In this paper, we concentrate on the 
MAC layer scheduling as in [2,3]. This can avoid distraction 
caused by, e.g. TCP congestion control on the link layer 
performance.  

III. FLOATING THRESHOLD ALGORITHM 

In this section, based on the single bit feedback mechanism, a 
novel scheduling algorithm, called Floating Threshold (FT), is 
proposed. We use the flow bit in the payload header [1] to 
carry the feedback information from each slave. As compared 
with PP [3], FT allows the master to get more accurate slave 
queue size estimation. This is achieved by maintaining a 
floating threshold on the current queue size of each slave at the 
master. Floating threshold represents the minimum queue size 
currently at a slave. Note that queue size is measured by time 
slots, e.g. a 3-slot packet will occupancy a 3-slot buffer. 
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To be more specific, for each master-slave pair, the current 
floating threshold on the slave queue size is stored at the 
master using a variable Tmaster, which is updated according to 
the value of the feedback bit generated by the slave. (We will 
introduce the threshold updating rules shortly.) At the slave 
side, the slave sets the feedback bit according to its copy of the 
floating threshold Tslave, and its instantaneous queue size. It 
should be noted that the values of Tmaster and Tslave must be 
synchronized via feedback bits. 

Without loss of generality, we assume that before the actual 
data exchange starts, Tmaster and Tslave are initialized to 0. As 
new packets destined for the master arrive at the slave queue, 
if they cannot be sent to the master in time, they will queue up 
in the slave’s buffer. Each time the slave sends a packet to the 
master, it updates its Tslave and sets the feedback bit 
accordingly. The feedback bit is piggybacked to the master to 
inform the master about the update at the slave. When the 
master receives the packet, based on the feedback bit value, 
Tmaster is updated such that the values of Tmaster and Tslave are 
synchronized.  

Let the step-size for updating the floating threshold be m slots 
and the size of the packet be s slots. The set of rules for 
floating threshold update at both master and slave is 
summarized below. In the next section, an adaptive scheme 
will be designed to dynamically adjust the value of m for better 
performance.  

Floating Threshold Updating Rules:  
1. When a slave is ready to send a s-slot packet to the master 

a) If its queue size is greater than (Tslave + m) (after the 
current transmission), send the packet with feedback 
bit = 1; update Tslave = Tslave + m. (Note that the current 
queue size remains greater than the updated Tslave.)  

b) Otherwise, send the packet with feedback bit = 0; 
update Tslave = max{Tslave - s, 0}. (Since the queue size 
will decrease by s slots after transmission, Tslave is 
updated correspondingly. Still the current queue size 
will be no smaller than the updated threshold Tslave.) 

2.    When a s-slot packet is received by the master 
c) If the piggybacked feedback bit = 1, the master 

updates Tmaster = Tmaster + m and it knows that the 
queue size at this slave is at least (Tmaster + 1) slots.  

d) Otherwise, the master knows that at the time this 
feedback bit was generated, the slave queue size is at 
least Tmaster slots; then it updates Tmaster = max{Tmaster - 
s, 0}. (This is because the slave queue size has 
decreased by s slots after transmission.) 

From the above set of updating rules, we see that the master 
estimates the slave queue size based on the feedback bit 
(which carries the information about the slave queue size when 
this bit was generated) and the historical data kept by original 
Tmaster. Although this estimation may not exactly reflect the 
current slave queue status, we indeed extend our knowledge 

about the queue size as compared with the pure binary 
feedback scheme used in [3]. This extended knowledge is 
proved to be useful by extensive simulation results in Section 5. 

Using the above set of updating rules, the floating threshold 
Tmaster (as well as Tslave) will never exceed the current queue 
size at the slave. In this regard, we are conservative because 
we just try to find a lower bound which is as close to the actual 
slave queue size as possible. We have ignored the packets that 
arrived at the salve queue after the current feedback bit was 
generated. An alternative approach is to take such possible 
packet arrivals into consideration. We have indeed investigated 
along this direction but found no obvious performance gains. 
As such, we choose not to include those results here. 

With more accurate knowledge on individual slave queue sizes, 
the master can then decide which slave (or packet) should be 
polled (or sent) next. In our FT algorithm, the scheduling 
algorithm is similar to the original PP scheme. First, all 
master-slave pairs are classified based on their slot utilization. 
If both master and slave have packets for each other, the slot 
utilization is 100%. If only one side has packet for the other, 
the slot utilization is 50%. If none of them have packet to send, 
then there is no need to consider that pair. Scheduling priority 
is given to the node pairs with 100% slot utilization. If there 
are more than one node pairs in this category, break the tie by 
choosing the node pair that has the largest sum of the master 
queue size and the estimated slave queue size Tmaster. (Note that 
for the PP algorithm [3], node pairs in the same class are 
served in a round robin fashion.) If all node-pairs with 100% 
utilization have been served, node pairs with 50% utilization 
are considered in a similar fashion.  

To avoid the starvation of low priority pairs (i.e. those labeled 
with 50% or 0 slot utilization), a forced slave update-period is 
devised to urge the master to visit all slaves at least once in 
every u slots. In other words, parameter u functions like the 
guaranteed polling interval as defined in the Bluetooth 
specification [1]. This helps the master to update its knowledge 
about each slave; otherwise the information maintained by the 
master would become obsolete if certain slaves are ignored for 
a long time. The value of u can be pre-determined or 
negotiated by the Link Manager [1] protocol during the 
connection setup phase.  

IV. ADAPTIVE STEP-SIZE DESIGN 

The performance of the Floating Threshold (FT) algorithm 
depends on the value of the step size m. If m is fixed (as we 
have assumed before), it is hard, if not impossible, to find a 
single value of m that remains optimal/good in all scenarios.  

Generally speaking, if m is small and the variation in slave 
queue size is large (e.g. due to bursty traffic), it will take a 
long time for the floating threshold at the master (Tmaster) to 
catch up with the actual queue size since each feedback can at 
most increase Tmaster by m. On the other hand, a large m tends 
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to be aggressive and this may give a coarse estimation of the 
actual queue size.  

It can be seen that FT achieves the best performance by 
dynamically adjusting its step size value according to some 
relevant factors, such as the gap/error between the current 
estimation and actual length, the possible packet arrival rate, 
etc. However, such information is not readily available to the 
master. To have a simple yet efficient way of adjusting the step 
size m, we propose to tune m in a probing fashion based on the 
current floating threshold value Tmaster.  

When Tmaster is increased at an accelerating rate, m should also 
be increased to track the actual queue size faster. On the other 
hand, when the estimated threshold value approaches the 
actual slave queue size, a finer/smaller value of m should be 
used. This way, a good estimation of the actual queue size at a 
slave can be obtained. In the following, we combine the step 
size adaptation scheme together with the floating threshold 
updating rules.  

Modified Floating Threshold Updating Rules: 
1. When a slave is ready to send a s-slot packet to the master 

a) If the last feedback bit sent = 1, 
  )1 ,2max( 1)'(log2 −−= slaveslave TTm  

b) Otherwise, T’slave = Tslave; reset m = 1. 
c) If the slave’s queue size is greater than (Tslave + m) 

(after the current transmission), send the packet with 
feedback bit = 1; update Tslave = Tslave + m.  

d) Otherwise, send the packet with feedback bit = 0; 
update Tslave = max{Tslave - s, 0}.  

2. When a s-slot packet is received by the master 
a) If the piggybacked feedback bit = 1,  

(i) If the last piggybacked feedback bit received = 0, 
T’master = Tmaster; reset m = 1. 

(ii) Else   )1 ,2max( 1)'(log2 −−= mastermaster TTm  
Tmaster = Tmaster + m; the master knows that the queue 
size at the corresponding slave is at least (Tmaster + 1) 
slots.  

b) Otherwise, m = 1; the master knows that at the time 
this feedback bit was generated, the corresponding 
slave’s queue size is at least Tmaster slots; then it 
updates Tmaster = max{Tmaster - s, 0} and T’master = 
Tmaster.  

In Step 1 above, sub-steps (a) and (b) are added for 
dynamically setting the value of m. Similarly, sub-steps 
2.a)(i)&(ii) are added at the master side for synchronizing the 
values of m with the slave. 

Next we explain the idea behind our adaptive step size design 
by focusing on the operations at the master. (The operations at 
the slave can be argued similarly.) Consider a stream of 
consecutive feedback bits with values equal to 1 that are 

generated by the slave and subsequently received by the master. 
(This implies that the slave queue size is increasing rapidly.) 

When the first feedback bit = 1 of the stream arrives, step size 
m = 1 is used. For the subsequently arrived feedback bits of 
value 1, m is adjusted according to 

  )1 ,2max( 1)'(log2 −−= mastermaster TTm . Note that Tmaster is the 
instantaneous threshold value at the master when the current 
feedback bit arrives, and T’master is the old threshold value that 
was taken just before the first feedback bit = 1 arrived. Their 
difference is the minimum increase in queue size at the slave 
during the measured period (i.e. from the moment the first 
feedback bit = 1 arrived, to the moment the current feedback 
bit = 1 arrives). The larger this difference is, the larger value of 
m should be used in order to closely track the actual slave 
queue size. Setting   1)'(log22 −−= mastermaster TTm  is roughly 
equivalent to setting m to be half of the difference between 
Tmaster and T’master.  

If the next feedback bit arrived at the master has a value of 0, 
that means the current slave queue size becomes less than 
(Tslave + m) slots. In other words, the estimated queue size is 
now very close to the actual value. So we reset m to 1 to slow 
down the speed of in creasing the floating threshold. As long 
as the subsequently arrived feedback bits are equal to 0, m 
remains at 1. 

1 2 3 4 5 6 7 80

1 2 3 4 5 6

7

8

Fig. 2: An example using adaptive step size m. 

As an example, Fig. 2 delineates the process of adapting step 
size m. The x-axis denotes the floating threshold Tmaster. When 
a feedback bit arrives, the master updates its floating threshold 
Tmaster according to the rules we defined earlier; this 
corresponds to a curved arrow transition in Fig. 2. The range 
spanned by the arrow on the axis indicates the value of m 
being used for that update. The number (in the circle) on top of 
each curved arrow indicates the order of feedback bit arrivals.  

Assume that the slave has 16 one-slot packets in its queue and 
no more packets will arrive. Let Tmaster = T’master = 0. To update 
the floating threshold at the master, a stream of six consecutive 
“1” feedback bits will arrive at the master, following the order 
from 1  to 6 . Using the adaptation rule 2.a), the sequence of 
the step size used for each update is {1, 1, 1, 1, 2, 2}, and the 
resulting Tmaster = 8. 

At the slave side, in determining the value for the next 
feedback bit to be piggybacked, the slave checks if Tslave + m is 
smaller than the current queue size. Note that Tslave = Tmaster = 8, 
and the value for m is now 4 according to Step 1.a). So Tslave + 
m = 12. At this moment there are 10 packets left in the slave 
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queue (6 packets has already been sent to the master), which is 
less than 12. The slave sends back a feedback bit 0.  

When this bit arrives at the master, the master realizes that its 
Tmaster is very close to the actual slave queue size, thus m is 
reset to 1 and Tmaster= Tmaster – 1 (as indicated by arrow 7 ). At 
the same time, T’master is updated to 7 according to Step 2.b).  

V. PERFORMANCE EVALUATION 

A. Simulation Model 

The performance of the proposed FT algorithm is evaluated 
based on the piconet shown in Fig. 1, which consists of one 
master and five slaves. (We have also tried other 
configurations and the results are consistent and thus not 
shown here.) For performance comparisons, the following 
MAC layer scheduling algorithms are implemented: 

• Floating Threshold (FT) with adaptive step size m, and 
forced slave update period u = 100 slots. (We have 
simulated other values of u and found that the performance 
of FT is generally not sensitive to u if u is set larger than, 
e.g. 50.) 

• Simple Round Robin (RR) scheduling. 
• Priority Policy (PP) [3] with fairness parameter p = 4, and 

forced slave update interval u = 100 slots. Note that the 
original PP algorithm does not have this forced slave 
update interval. We incorporate this into PP to enhance its 
performance and thus to have a fairer comparison. 

• Limited Exhaustive Round Robin (LERR) algorithm [6] 
with t, the number of transmissions that can be performed 
by each master-slave pair per scheduling cycle, set to 4. 

• Limited Weighted Round Robin (LWRR) algorithm [6] 
with MP (maximum priority) set to 4. 

The above parameter values are recommended either implicitly 
or explicitly by the original authors of the respective papers.  

Assume the packets arrive at each queue in bursts (e.g., an IP 
datagram will be segmented into a burst of L2CAP packets for 
transmission over a piconet), following a Poisson process with a 
mean of λ bursts per time slot. Let the burst size be 
geometrically distributed with a mean of 2 packets. Since there 
are 10 traffic sources/queues in the simulated network, the 
total system load (bi-directional communications) is given by 
10 x 2 x λ = 20λ packets/slot. The packet size is of 1, 3, or 5 
time slots with equal probability.  

Each point of simulation data shown in Figs 3-5 is collected by 
simulating 50000 time slots with the initial 1000-slot statistics 
ignored. 

B. Delay vs channel utilization curve. 

First we consider the case that the buffer sizes at both master 
and slave are sufficiently large, so no buffer overflow will 

occur. Fig. 3 shows the average packet delay (which is 
measured from the moment a packet arrives at a queue until it 
is successfully sent) against the channel utilization, i.e. the 
percentage of time that the channel is busy in carrying data 
packets. (One may also consider the channel utilization as the 
system throughput.)  By varying λ, we can vary the total 
system load, and thus alter the channel utilization. 

From Fig. 3, we can see that FT and PP, with the cost of 
feedback, outperform the two history-based polling schemes 
and the simple round-robin (RR). As expected, RR shows the 
worst performance because it does not consider the slave 
queue size in scheduling. For the two feedback-based 
algorithms, FT consistently outperforms PP and the 
performance gap becomes larger when the channel utilization 
(i.e. the system load) is high. This improved performance is 
due to the enhanced slave queue size estimation mechanisms 
we introduced in this paper. 

 
 

Fig. 3 Mean packet delay against channel utilization. 
 

 
 

Fig. 4 Percentage cut in delay performance when adaptive step size is 
used. 
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To justify the adoption of adaptive step size in our FT 
algorithm, we compare the performance of using adaptive step 
size with that of a fixed step size. Fig. 4 shows the percentage 
cut in average packet delay if adaptive step size is used instead 
of fixing m = 4 slots. The same traffic model and parameters as 
that in obtaining Fig. 3 are used. We can see that with adaptive 
step size, the average packet delay can be cut down from 8% to 
22%. It is interesting to note that the performance gap 
decreases as the channel utilization increases. This is expected 
because when the traffic load is light (i.e. low channel 
utilization) a finer/smaller m is desirable (thus m = 4 is too 
aggressive), while as the traffic increases (i.e. channel 
utilization is high) a large value of m is preferred for tracking 
the slave queue size.  

C. Dropping behavior 

 
 

Fig. 5: The effect of buffer size on the packet dropping probability 

Bluetooth is likely to run on small electronic devices, in which 
memory resources may be scarce, such as Personal Digital 
Assistants. Packets will be dropped as a result of buffer 
overflow. By varying the amount of available buffers, we 
study the packet dropping behavior of using different 
scheduling algorithms in Fig. 5. Without loss of generality, we 
assume all packets are of size one time slot. The buffer size 
can thus be explicitly measured as the number of packets. The 
total system traffic load is set to 1 packet/slot by having λ = 
0.025 bursts/slot; the other parameters are the same as that in 
obtaining Fig. 3.  

As expected, the FT algorithm is a clear winner and it has the 
lowest packet dropping probability for all simulated buffer 
sizes. This is because FT always gives scheduling priority to 
the master-slave pair with the longest queue size (as derived 
from the more accurate estimation process). This helps to 
minimize the chance of buffer overflow. In contrast, history-
based algorithms tend to have a coarse estimation on slave 
queue size, and thus their packet dropping probabilities are 
higher than feedback-based approaches (PP and FT).  

Note that the results we presented above are obtained using a 
symmetric traffic model, i.e. the same traffic load to all queues. 
Results on various non-symmetric traffic models have also 
been obtained. We found that the performance gain in using 
FT algorithm is even more pronounced in those cases. This is 
because for other schemes, the packet dropping probability 
increases dramatically due to the non-uniform distribution of 
the queue size. In contrast, FT is less adversely affected since 
longer queues are given more chance to send.  Due to space 
limitation, such results are not included here. 

VI. CONCLUSIONS 
In this paper, a novel scheduling algorithm, called Floating 
Threshold (FT), was proposed for data exchange within a 
Bluetooth piconet. By keeping a floating threshold for each 
master-slave pair, the master can have more accurate 
estimation of the slave queue size based on the binary 
feedback information. The resulting scheduling decision is 
then optimized. As compared with other existing schemes, FT 
was shown to exhibit better system performance in terms of 
channel utilization, packet delay, and packet dropping 
probability. With minor modifications, the proposed algorithm 
can be easily extended to other centralized full-duplex systems, 
such as wireless multiple access, input-output buffered switch 
designs, etc. 

On the other hand, designing efficient scheduling algorithms 
for Bluetooth scatternet [7] is probably more challenging. We 
are interested in extending the concept of our FT algorithm to 
support scatternet-wide scheduling. 

ACKNOWLEDGMENT 
This project is supported in part by the Innovation and 
Technology Fund, ITS/51/01, Hong Kong. 

REFERENCES 
[1] Bluetooth Special Interest Group, “Specification of the Bluetooth 

System 1.1,” http: //www.bluetooth.com/ 
[2] M. Kalia, D. Bansal and R. Shorey,  “MAC scheduling and SAR 

policies for Bluetooth: a master driven TDD pico-cellular 
wireless system,” IEEE International Workshop on Mobile 
Multimedia communications, 1999 (MoMuC '99), pp. 384 –388 

[3] M. Kalia, D. Bansal and R. Shorey, “Data scheduling and SAR 
for Bluetooth MAC,” Vehicular Technology Conference 
Proceedings, 2000, VTC 2000-Spring, Tokyo. Page(s): 716 -720 
vol.2 

[4] A. Das, A. Ghose, A. Razdan, H. Saran and R. Shorey, 
“Enhancing performance of asynchronous data traffic over the 
bluetooth wireless ad-hoc network,” IEEE INFOCOM 2001 

[5] N. Johansson, U. Korner and P. Johansson, “Performance 
Evaluation of Scheduling Algorithms for Bluetooth,” IFIP TC 
Fifth International Conference on Broadband Communications 
99, Hong Kong. 

[6] Antonio Capone, Mario Gerla and Rohit Kapoor, “Efficient 
Polling Schemes for Bluetooth picocells,” IEEE ICC2001. 

[7] C.L. Liu and K.L. Yeung, “A simple adaptive packet 
scheduling scheme for Bluetooth Scatternet,” IEEE VTC 
2003, Orlando, USA, Oct., 2003. 

GLOBECOM 2003 - 91 - 0-7803-7974-8/03/$17.00 © 2003 IEEE


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


