
Title A Novel MAC Scheduling Algorithm for Bluetooth System

Author(s) Liu, C; Yeung, KL; Li, VOK

Citation Conference Record / Ieee Global Telecommunications
Conference, 2003, v. 1, p. 86-91

Issued Date 2003

URL http://hdl.handle.net/10722/46454

Rights

©2003 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be
obtained from the IEEE.

A Novel MAC Scheduling Algorithm for Bluetooth System

Abstrat – Data exchange within a Bluetooth piconet is master-
driven. The channel/slot utilization thus depends on the efficiency
of the scheduling algorithm adopted by the master. In this paper,
a novel MAC layer scheduling algorithm, called Floating
Threshold (FT), is proposed. Unlike existing approaches, FT
allows the master to estimate the backlog queue status at each
slave accurately based only on a single feedback bit and a floating
threshold. The master can then derive an optimized packet
transmission schedule. Using simulations, we show that FT
outperforms existing algorithms in terms of channel utilization,
packet delay and packet dropping probability.

Keywords: Bluetooth, Media Access Control (MAC), Scheduling,
Feedback, Time Division Duplex (TDD), Buffer Management

I. INTRODUCTION

Fueled by the desire for mobility and coupled with the demand
for low-cost low-power connection between different
electronic devices, Bluetooth [1], a fast frequency hopping
Time Division Duplex (TDD) wireless system, has undergone
rapid development in recent years. To resolve the collisions
over wireless medium, data exchange in Bluetooth is designed
to be master-driven. A master is a Bluetooth unit that
initializes the setup of a piconet. Each master can
simultaneously communicate with up to seven other units, or
slaves. Fig. 1 shows a piconet consisting of 1 master and 5
slaves. The configuration of master-driven TDD scheme vests
the master with the task of scheduling; this simplifies the
implementation of a Bluetooth system.

The scheduling resources for the master are slots of 625µs in
length and each corresponds to a hop frequency. Data
transmission in Bluetooth is characterized by full duplex
coupling: a slave is allowed to begin its transmission to the
master only after receiving a packet from the master (or just
being polled by the master with a null packet) in the preceding
slot. In other words, the transmission always occurs in pairs.

In [1], two types of RF links have been defined: Asynchronous
Connectionless Link (ACL) and Synchronous Connection-
Oriented (SCO) Link. SCO link is applied for time-bound
services such as voice, with TDD frames reserved at regular
intervals. ACL links support packet-switched, point-to-point or
point-to-multipoint data connections. In this paper, we are only
interested in scheduling packets on ACL links. An ACL link
can support packets with three different sizes, 1, 3, or 5 time
slots.

It can be seen that slot wastage occurs (on the ACL links) in
the following situations:
(1) When both the master and the slave do not have packets

destined to each other, both the polling slot from master-
to-slave and the reply slot from the slave-to-master will be
wasted. The resulting wastage is said to be 100%.

(2) When either the master or the slave does not have packets
destined to the other side, the wastage is 50% (assuming
the same packet size in each direction).

master

slave slave slave slave slave

Fig. 1: A piconet consisting of one master and five slaves.

Therefore, a good MAC (Medium Access Control) scheduling
mechanism should minimize such slot wastage. At the same
time, it is desirable to have small packet delay, and a low
packet dropping probability (as a result of buffer overflow).

In this paper, we focus on designing MAC layer packet
scheduling algorithm in a piconet. A comprehensive review of
the existing MAC layer scheduling algorithms is conducted in
the next section. In Sections III & IV, a novel MAC scheduling
algorithm, called Floating Threshold (FT), is proposed. FT
allows the master to determine (with high accuracy) the
backlog queue status at all slaves, based only on a single
feedback bit and a floating threshold. (Note that it is not
possible to have the exact slave queue size based only on a
single feedback bit.) An optimized packet transmission
schedule can then be determined. The performance of the FT
algorithm is evaluated via simulations in Section V. It is found
that FT outperforms the existing algorithms in throughput,
delay as well as packet dropping probability. Finally, we
conclude the paper in Section VI.

Department of Electrical and Electronic Engineering
The University of Hong Kong

Hong Kong, PRC.
Tel: (852) 2857-8493 Fax: (852) 2559-8738 E-mail: {clliu, kyeung, vli}@eee.hku.hk

Changlei Liu, Kwan L. Yeung and Victor O.K. Li

GLOBECOM 2003 - 86 - 0-7803-7974-8/03/$17.00 © 2003 IEEE

II. EXISTING MAC SCHEDULING ALGORITHMS

In a Bluetooth piconet, the master is vested with the task of
scheduling. The most primitive scheduling algorithm works in
a Round Robin (RR) manner, i.e., the slots are allocated to
slaves in a strict cyclic order. The bandwidth is equally divided
but the slot wastage is excessive because slots will be wasted if
a slave with an empty queue is polled. As a result, RR
generally performs poorly.

A good Bluetooth MAC scheduling algorithm should be
designed based on the current traffic status (i.e. the amount of
backlog traffic) at both the master and all of its slaves. The
queue status at the master for packets destined for each slave
can be readily obtained. The problem is to collect the queue
status from the slaves. To achieve this, two approaches are
generally followed: history-based [5,6] and feedback-based [2-
4]. In the former approach, the master uses historical data
collected from the slaves to predict the possible arrival of new
packets in the subsequent time slots at the slaves. In [5,6],
various polling schemes following this approach are examined
and compared.

The feedback-based approach makes use of the explicit
feedback information carried by the packet transmitted from
the slave to the master (i.e. upstream packets) to update the
slave queue status stored at the master. As compared with the
history-based approach, more accurate estimation (if not exact)
of the slave queue size can be obtained. Such feedback
mechanisms are adopted in [2-4]. Studies showed that
feedback-based scheduling algorithms outperform those
following the history-based approach, but at the expense of
possible feedback overhead.

To be more specific, two history-based polling schemes are
proposed in [6], namely, Limited Exhaustive Round Robin
(LERR) and Limited Weighted Round Robin (LWRR). LERR
has a fixed cyclic order and the scheme is exhaustive, i.e., the
master does not switch to the next master-slave pair until both
the master and the slave queues are emptied. Parameter “t” is
used to limit the number of transmissions (tokens) that can be
performed by each pair per cycle. This in return limits the
cycle length and avoids slave starvation, i.e., the denial of
transmissions to/from a slave. The LWRR adopts a weighted
round robin algorithm with weights dynamically changed
according to the observed queue status. Each slave is assigned
a weight equal to MP (Maximum Priority) at the beginning,
and this weight varies within the range of 1 to MP
subsequently. Details about the two schemes can be found in
[6].

In [3], a feedback-based scheduling algorithm called Priority
Policy (PP) is proposed. PP uses a single feedback bit to
convey the slave queue size information to the master. This
single bit is piggybacked on the upstream packets. Due to the
single feedback bit, a slave can only indicate whether its
current queue size is empty (‘0’) or backlogged (‘1’). Using PP,

the master classifies all master-slave pairs into one of the four
states, namely, 1-1, 1-0, 0-1 and 0-0. As an example, 1-0
means the master has packets for the slave, whereas the slave
does not have packets for the master. The highest transmission
priority, denoted by p, is then given to the 1-1 pair which has
100% slot utilization. PP is known to have the potential
problem of slave starvation. Suppose a master-slave pair is
classified as belonging to 0-0, the master may never poll the
slave again (for getting slave queue size update) if other pairs
always have packets to send.

Another feedback-based scheduling scheme, called HOL-
Priority Policy (HOL-PP) [2], is also proposed. In HOL-PP,
packets may be of different sizes, 0, 1, 3, or 5 time slots.
Packet size 0 means the queue is empty. The master schedules
based on the head of line (HOL) packet size at both the slave
and master. Two feedback bits are required to differentiate the
4 possible HOL packet sizes. Like [3], high system throughput
(or, channel utilization) can be obtained.

More recently, another type of feedback-based MAC
scheduling algorithms aimed at optimizing TCP performance
over Bluetooth systems is proposed in [4]. Instead of
monitoring the MAC layer buffer size, the flow bit in the
payload header (please refer to [1] for the details of the
Bluetooth packet format) is adopted to monitor the L2CAP
protocol layer buffer occupancy, where L2CAP is on top of the
MAC layer. In [4], the flow bit is set to ‘1’ by the slave if its
L2CAP buffer size exceeds a pre-defined threshold. Then
based on the flow bit status at both the master and slave, the
polling interval is calculated. Since the threshold for the
L2CAP buffer is preset, the polling schemes will degenerate
into Round Robin if the traffic load is below the threshold.
Therefore, the value for the threshold should be carefully
chosen. In [4], the optimal threshold value is obtained by trial
and error from simulations. Good heuristics for threshold
setting (or even adaptive threshold setting) are needed.

Since [4] focuses on transport layer optimization, the direct
impact of a MAC scheduling scheme on the system
performance is not clear. In this paper, we concentrate on the
MAC layer scheduling as in [2,3]. This can avoid distraction
caused by, e.g. TCP congestion control on the link layer
performance.

III. FLOATING THRESHOLD ALGORITHM

In this section, based on the single bit feedback mechanism, a
novel scheduling algorithm, called Floating Threshold (FT), is
proposed. We use the flow bit in the payload header [1] to
carry the feedback information from each slave. As compared
with PP [3], FT allows the master to get more accurate slave
queue size estimation. This is achieved by maintaining a
floating threshold on the current queue size of each slave at the
master. Floating threshold represents the minimum queue size
currently at a slave. Note that queue size is measured by time
slots, e.g. a 3-slot packet will occupancy a 3-slot buffer.

GLOBECOM 2003 - 87 - 0-7803-7974-8/03/$17.00 © 2003 IEEE

To be more specific, for each master-slave pair, the current
floating threshold on the slave queue size is stored at the
master using a variable Tmaster, which is updated according to
the value of the feedback bit generated by the slave. (We will
introduce the threshold updating rules shortly.) At the slave
side, the slave sets the feedback bit according to its copy of the
floating threshold Tslave, and its instantaneous queue size. It
should be noted that the values of Tmaster and Tslave must be
synchronized via feedback bits.

Without loss of generality, we assume that before the actual
data exchange starts, Tmaster and Tslave are initialized to 0. As
new packets destined for the master arrive at the slave queue,
if they cannot be sent to the master in time, they will queue up
in the slave’s buffer. Each time the slave sends a packet to the
master, it updates its Tslave and sets the feedback bit
accordingly. The feedback bit is piggybacked to the master to
inform the master about the update at the slave. When the
master receives the packet, based on the feedback bit value,
Tmaster is updated such that the values of Tmaster and Tslave are
synchronized.

Let the step-size for updating the floating threshold be m slots
and the size of the packet be s slots. The set of rules for
floating threshold update at both master and slave is
summarized below. In the next section, an adaptive scheme
will be designed to dynamically adjust the value of m for better
performance.

Floating Threshold Updating Rules:
1. When a slave is ready to send a s-slot packet to the master

a) If its queue size is greater than (Tslave + m) (after the
current transmission), send the packet with feedback
bit = 1; update Tslave = Tslave + m. (Note that the current
queue size remains greater than the updated Tslave.)

b) Otherwise, send the packet with feedback bit = 0;
update Tslave = max{Tslave - s, 0}. (Since the queue size
will decrease by s slots after transmission, Tslave is
updated correspondingly. Still the current queue size
will be no smaller than the updated threshold Tslave.)

2. When a s-slot packet is received by the master
c) If the piggybacked feedback bit = 1, the master

updates Tmaster = Tmaster + m and it knows that the
queue size at this slave is at least (Tmaster + 1) slots.

d) Otherwise, the master knows that at the time this
feedback bit was generated, the slave queue size is at
least Tmaster slots; then it updates Tmaster = max{Tmaster -
s, 0}. (This is because the slave queue size has
decreased by s slots after transmission.)

From the above set of updating rules, we see that the master
estimates the slave queue size based on the feedback bit
(which carries the information about the slave queue size when
this bit was generated) and the historical data kept by original
Tmaster. Although this estimation may not exactly reflect the
current slave queue status, we indeed extend our knowledge

about the queue size as compared with the pure binary
feedback scheme used in [3]. This extended knowledge is
proved to be useful by extensive simulation results in Section 5.

Using the above set of updating rules, the floating threshold
Tmaster (as well as Tslave) will never exceed the current queue
size at the slave. In this regard, we are conservative because
we just try to find a lower bound which is as close to the actual
slave queue size as possible. We have ignored the packets that
arrived at the salve queue after the current feedback bit was
generated. An alternative approach is to take such possible
packet arrivals into consideration. We have indeed investigated
along this direction but found no obvious performance gains.
As such, we choose not to include those results here.

With more accurate knowledge on individual slave queue sizes,
the master can then decide which slave (or packet) should be
polled (or sent) next. In our FT algorithm, the scheduling
algorithm is similar to the original PP scheme. First, all
master-slave pairs are classified based on their slot utilization.
If both master and slave have packets for each other, the slot
utilization is 100%. If only one side has packet for the other,
the slot utilization is 50%. If none of them have packet to send,
then there is no need to consider that pair. Scheduling priority
is given to the node pairs with 100% slot utilization. If there
are more than one node pairs in this category, break the tie by
choosing the node pair that has the largest sum of the master
queue size and the estimated slave queue size Tmaster. (Note that
for the PP algorithm [3], node pairs in the same class are
served in a round robin fashion.) If all node-pairs with 100%
utilization have been served, node pairs with 50% utilization
are considered in a similar fashion.

To avoid the starvation of low priority pairs (i.e. those labeled
with 50% or 0 slot utilization), a forced slave update-period is
devised to urge the master to visit all slaves at least once in
every u slots. In other words, parameter u functions like the
guaranteed polling interval as defined in the Bluetooth
specification [1]. This helps the master to update its knowledge
about each slave; otherwise the information maintained by the
master would become obsolete if certain slaves are ignored for
a long time. The value of u can be pre-determined or
negotiated by the Link Manager [1] protocol during the
connection setup phase.

IV. ADAPTIVE STEP-SIZE DESIGN

The performance of the Floating Threshold (FT) algorithm
depends on the value of the step size m. If m is fixed (as we
have assumed before), it is hard, if not impossible, to find a
single value of m that remains optimal/good in all scenarios.

Generally speaking, if m is small and the variation in slave
queue size is large (e.g. due to bursty traffic), it will take a
long time for the floating threshold at the master (Tmaster) to
catch up with the actual queue size since each feedback can at
most increase Tmaster by m. On the other hand, a large m tends

GLOBECOM 2003 - 88 - 0-7803-7974-8/03/$17.00 © 2003 IEEE

to be aggressive and this may give a coarse estimation of the
actual queue size.

It can be seen that FT achieves the best performance by
dynamically adjusting its step size value according to some
relevant factors, such as the gap/error between the current
estimation and actual length, the possible packet arrival rate,
etc. However, such information is not readily available to the
master. To have a simple yet efficient way of adjusting the step
size m, we propose to tune m in a probing fashion based on the
current floating threshold value Tmaster.

When Tmaster is increased at an accelerating rate, m should also
be increased to track the actual queue size faster. On the other
hand, when the estimated threshold value approaches the
actual slave queue size, a finer/smaller value of m should be
used. This way, a good estimation of the actual queue size at a
slave can be obtained. In the following, we combine the step
size adaptation scheme together with the floating threshold
updating rules.

Modified Floating Threshold Updating Rules:
1. When a slave is ready to send a s-slot packet to the master

a) If the last feedback bit sent = 1,
 )1 ,2max(1)'(log2 −−= slaveslave TTm

b) Otherwise, T’slave = Tslave; reset m = 1.
c) If the slave’s queue size is greater than (Tslave + m)

(after the current transmission), send the packet with
feedback bit = 1; update Tslave = Tslave + m.

d) Otherwise, send the packet with feedback bit = 0;
update Tslave = max{Tslave - s, 0}.

2. When a s-slot packet is received by the master
a) If the piggybacked feedback bit = 1,

(i) If the last piggybacked feedback bit received = 0,
T’master = Tmaster; reset m = 1.

(ii) Else  )1 ,2max(1)'(log2 −−= mastermaster TTm
Tmaster = Tmaster + m; the master knows that the queue
size at the corresponding slave is at least (Tmaster + 1)
slots.

b) Otherwise, m = 1; the master knows that at the time
this feedback bit was generated, the corresponding
slave’s queue size is at least Tmaster slots; then it
updates Tmaster = max{Tmaster - s, 0} and T’master =
Tmaster.

In Step 1 above, sub-steps (a) and (b) are added for
dynamically setting the value of m. Similarly, sub-steps
2.a)(i)&(ii) are added at the master side for synchronizing the
values of m with the slave.

Next we explain the idea behind our adaptive step size design
by focusing on the operations at the master. (The operations at
the slave can be argued similarly.) Consider a stream of
consecutive feedback bits with values equal to 1 that are

generated by the slave and subsequently received by the master.
(This implies that the slave queue size is increasing rapidly.)

When the first feedback bit = 1 of the stream arrives, step size
m = 1 is used. For the subsequently arrived feedback bits of
value 1, m is adjusted according to

 )1 ,2max(1)'(log2 −−= mastermaster TTm . Note that Tmaster is the
instantaneous threshold value at the master when the current
feedback bit arrives, and T’master is the old threshold value that
was taken just before the first feedback bit = 1 arrived. Their
difference is the minimum increase in queue size at the slave
during the measured period (i.e. from the moment the first
feedback bit = 1 arrived, to the moment the current feedback
bit = 1 arrives). The larger this difference is, the larger value of
m should be used in order to closely track the actual slave
queue size. Setting   1)'(log22 −−= mastermaster TTm is roughly
equivalent to setting m to be half of the difference between
Tmaster and T’master.

If the next feedback bit arrived at the master has a value of 0,
that means the current slave queue size becomes less than
(Tslave + m) slots. In other words, the estimated queue size is
now very close to the actual value. So we reset m to 1 to slow
down the speed of in creasing the floating threshold. As long
as the subsequently arrived feedback bits are equal to 0, m
remains at 1.

1 2 3 4 5 6 7 80

1 2 3 4 5 6

7

8

Fig. 2: An example using adaptive step size m.

As an example, Fig. 2 delineates the process of adapting step
size m. The x-axis denotes the floating threshold Tmaster. When
a feedback bit arrives, the master updates its floating threshold
Tmaster according to the rules we defined earlier; this
corresponds to a curved arrow transition in Fig. 2. The range
spanned by the arrow on the axis indicates the value of m
being used for that update. The number (in the circle) on top of
each curved arrow indicates the order of feedback bit arrivals.

Assume that the slave has 16 one-slot packets in its queue and
no more packets will arrive. Let Tmaster = T’master = 0. To update
the floating threshold at the master, a stream of six consecutive
“1” feedback bits will arrive at the master, following the order
from 1 to 6 . Using the adaptation rule 2.a), the sequence of
the step size used for each update is {1, 1, 1, 1, 2, 2}, and the
resulting Tmaster = 8.

At the slave side, in determining the value for the next
feedback bit to be piggybacked, the slave checks if Tslave + m is
smaller than the current queue size. Note that Tslave = Tmaster = 8,
and the value for m is now 4 according to Step 1.a). So Tslave +
m = 12. At this moment there are 10 packets left in the slave

GLOBECOM 2003 - 89 - 0-7803-7974-8/03/$17.00 © 2003 IEEE

queue (6 packets has already been sent to the master), which is
less than 12. The slave sends back a feedback bit 0.

When this bit arrives at the master, the master realizes that its
Tmaster is very close to the actual slave queue size, thus m is
reset to 1 and Tmaster= Tmaster – 1 (as indicated by arrow 7). At
the same time, T’master is updated to 7 according to Step 2.b).

V. PERFORMANCE EVALUATION

A. Simulation Model

The performance of the proposed FT algorithm is evaluated
based on the piconet shown in Fig. 1, which consists of one
master and five slaves. (We have also tried other
configurations and the results are consistent and thus not
shown here.) For performance comparisons, the following
MAC layer scheduling algorithms are implemented:

• Floating Threshold (FT) with adaptive step size m, and
forced slave update period u = 100 slots. (We have
simulated other values of u and found that the performance
of FT is generally not sensitive to u if u is set larger than,
e.g. 50.)

• Simple Round Robin (RR) scheduling.
• Priority Policy (PP) [3] with fairness parameter p = 4, and

forced slave update interval u = 100 slots. Note that the
original PP algorithm does not have this forced slave
update interval. We incorporate this into PP to enhance its
performance and thus to have a fairer comparison.

• Limited Exhaustive Round Robin (LERR) algorithm [6]
with t, the number of transmissions that can be performed
by each master-slave pair per scheduling cycle, set to 4.

• Limited Weighted Round Robin (LWRR) algorithm [6]
with MP (maximum priority) set to 4.

The above parameter values are recommended either implicitly
or explicitly by the original authors of the respective papers.

Assume the packets arrive at each queue in bursts (e.g., an IP
datagram will be segmented into a burst of L2CAP packets for
transmission over a piconet), following a Poisson process with a
mean of λ bursts per time slot. Let the burst size be
geometrically distributed with a mean of 2 packets. Since there
are 10 traffic sources/queues in the simulated network, the
total system load (bi-directional communications) is given by
10 x 2 x λ = 20λ packets/slot. The packet size is of 1, 3, or 5
time slots with equal probability.

Each point of simulation data shown in Figs 3-5 is collected by
simulating 50000 time slots with the initial 1000-slot statistics
ignored.

B. Delay vs channel utilization curve.

First we consider the case that the buffer sizes at both master
and slave are sufficiently large, so no buffer overflow will

occur. Fig. 3 shows the average packet delay (which is
measured from the moment a packet arrives at a queue until it
is successfully sent) against the channel utilization, i.e. the
percentage of time that the channel is busy in carrying data
packets. (One may also consider the channel utilization as the
system throughput.) By varying λ, we can vary the total
system load, and thus alter the channel utilization.

From Fig. 3, we can see that FT and PP, with the cost of
feedback, outperform the two history-based polling schemes
and the simple round-robin (RR). As expected, RR shows the
worst performance because it does not consider the slave
queue size in scheduling. For the two feedback-based
algorithms, FT consistently outperforms PP and the
performance gap becomes larger when the channel utilization
(i.e. the system load) is high. This improved performance is
due to the enhanced slave queue size estimation mechanisms
we introduced in this paper.

Fig. 3 Mean packet delay against channel utilization.

Fig. 4 Percentage cut in delay performance when adaptive step size is
used.

GLOBECOM 2003 - 90 - 0-7803-7974-8/03/$17.00 © 2003 IEEE

To justify the adoption of adaptive step size in our FT
algorithm, we compare the performance of using adaptive step
size with that of a fixed step size. Fig. 4 shows the percentage
cut in average packet delay if adaptive step size is used instead
of fixing m = 4 slots. The same traffic model and parameters as
that in obtaining Fig. 3 are used. We can see that with adaptive
step size, the average packet delay can be cut down from 8% to
22%. It is interesting to note that the performance gap
decreases as the channel utilization increases. This is expected
because when the traffic load is light (i.e. low channel
utilization) a finer/smaller m is desirable (thus m = 4 is too
aggressive), while as the traffic increases (i.e. channel
utilization is high) a large value of m is preferred for tracking
the slave queue size.

C. Dropping behavior

Fig. 5: The effect of buffer size on the packet dropping probability

Bluetooth is likely to run on small electronic devices, in which
memory resources may be scarce, such as Personal Digital
Assistants. Packets will be dropped as a result of buffer
overflow. By varying the amount of available buffers, we
study the packet dropping behavior of using different
scheduling algorithms in Fig. 5. Without loss of generality, we
assume all packets are of size one time slot. The buffer size
can thus be explicitly measured as the number of packets. The
total system traffic load is set to 1 packet/slot by having λ =
0.025 bursts/slot; the other parameters are the same as that in
obtaining Fig. 3.

As expected, the FT algorithm is a clear winner and it has the
lowest packet dropping probability for all simulated buffer
sizes. This is because FT always gives scheduling priority to
the master-slave pair with the longest queue size (as derived
from the more accurate estimation process). This helps to
minimize the chance of buffer overflow. In contrast, history-
based algorithms tend to have a coarse estimation on slave
queue size, and thus their packet dropping probabilities are
higher than feedback-based approaches (PP and FT).

Note that the results we presented above are obtained using a
symmetric traffic model, i.e. the same traffic load to all queues.
Results on various non-symmetric traffic models have also
been obtained. We found that the performance gain in using
FT algorithm is even more pronounced in those cases. This is
because for other schemes, the packet dropping probability
increases dramatically due to the non-uniform distribution of
the queue size. In contrast, FT is less adversely affected since
longer queues are given more chance to send. Due to space
limitation, such results are not included here.

VI. CONCLUSIONS
In this paper, a novel scheduling algorithm, called Floating
Threshold (FT), was proposed for data exchange within a
Bluetooth piconet. By keeping a floating threshold for each
master-slave pair, the master can have more accurate
estimation of the slave queue size based on the binary
feedback information. The resulting scheduling decision is
then optimized. As compared with other existing schemes, FT
was shown to exhibit better system performance in terms of
channel utilization, packet delay, and packet dropping
probability. With minor modifications, the proposed algorithm
can be easily extended to other centralized full-duplex systems,
such as wireless multiple access, input-output buffered switch
designs, etc.

On the other hand, designing efficient scheduling algorithms
for Bluetooth scatternet [7] is probably more challenging. We
are interested in extending the concept of our FT algorithm to
support scatternet-wide scheduling.

ACKNOWLEDGMENT
This project is supported in part by the Innovation and
Technology Fund, ITS/51/01, Hong Kong.

REFERENCES
[1] Bluetooth Special Interest Group, “Specification of the Bluetooth

System 1.1,” http: //www.bluetooth.com/
[2] M. Kalia, D. Bansal and R. Shorey, “MAC scheduling and SAR

policies for Bluetooth: a master driven TDD pico-cellular
wireless system,” IEEE International Workshop on Mobile
Multimedia communications, 1999 (MoMuC '99), pp. 384 –388

[3] M. Kalia, D. Bansal and R. Shorey, “Data scheduling and SAR
for Bluetooth MAC,” Vehicular Technology Conference
Proceedings, 2000, VTC 2000-Spring, Tokyo. Page(s): 716 -720
vol.2

[4] A. Das, A. Ghose, A. Razdan, H. Saran and R. Shorey,
“Enhancing performance of asynchronous data traffic over the
bluetooth wireless ad-hoc network,” IEEE INFOCOM 2001

[5] N. Johansson, U. Korner and P. Johansson, “Performance
Evaluation of Scheduling Algorithms for Bluetooth,” IFIP TC
Fifth International Conference on Broadband Communications
99, Hong Kong.

[6] Antonio Capone, Mario Gerla and Rohit Kapoor, “Efficient
Polling Schemes for Bluetooth picocells,” IEEE ICC2001.

[7] C.L. Liu and K.L. Yeung, “A simple adaptive packet
scheduling scheme for Bluetooth Scatternet,” IEEE VTC
2003, Orlando, USA, Oct., 2003.

GLOBECOM 2003 - 91 - 0-7803-7974-8/03/$17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

