
Title A simple adaptive MAC scheduling scheme for bluetooth
scatternet

Author(s) Liu, C; Yeung, KL

Citation Ieee Vehicular Technology Conference, 2003, v. 58 n. 4, p. 2615-
2619

Issued Date 2003

URL http://hdl.handle.net/10722/46453

Rights Creative Commons: Attribution 3.0 Hong Kong License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37885234?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Simple Adaptive MAC Scheduling Scheme for Bluetooth Scatternet
Changlei Liu and Kwan L. Yeung

Department of Electrical and Electronic Engineering
The University of Hong Kong

Hong Kong, PRC
Tel: (852) 2857-8493 Fax: (852) 2559-8738 E-mail: {clliu, kyeung}@eee.hku.hk

Abstract — A simple adaptive MAC scheduling algorithm, called
Gateway Oriented Scatternet Scheduling (GOSS), is proposed for data
exchange in a Bluetooth scatternet. Unlike the existing scheme MDRP
(Maximum Distance Rendezvous Point) that has a global superframe
schedule shared by all gateways, the schedule used by each gateway is
individually determined. Equal partition of the superframe schedule at a
gateway to each connected piconet can thus be guaranteed, which
enables a more robust performance than MDRP. In addition, GOSS
allows a variable sized superframe at each gateway. To maximize its
performance, the frame size can be dynamically adjusted according to
the scatternet topology and traffic load in every predefined adaptation
interval. Simulation results show that even a static GOSS prevails over
MDRP. If the adaptation technique is used, further performance
enhancement can be found.

I. INTRODUCTION

Served as the baseline of IEEE 802.15 PAN (Personal Area
Network) standard, Bluetooth [1] is promising to become the first
commercial ad hoc network. Although it is initially designed for
cable replacement, the desire for mobility coupled with the demand
for ad hoc connectivity gives rise to the concept of scatternet, which
consists of a collection of piconets. A piconet has a star-like topology
with one Bluetooth device functions as a master and up to seven
other devices function as its slaves. Different piconets can be
connected to form a scatternet, via some common node, known as
gateway. A gateway can be a common slave in all connected
piconets, or it can be a master in one piconet and a slave in the rest
(denoted as a master/slave gateway). Fig. 1 shows an example of
Bluetooth scatternet. It consists of 5 piconets interconnected by two
(common slave-typed) gateways, nodes 0 and 1. The construction,
manipulation, and optimization of scatternets are very interesting
problems but beyond the scope of this paper.

Data exchange within a piconet is master-driven. The channel/slot
utilization depends on the efficiency of the packet scheduling
algorithm adopted by the master. The scheduling resources are slots
of 625µs in length and each corresponds to a pseudo-random
hopping frequency. To maximize the piconet performance, various
intra-piconet scheduling algorithms have been designed, please refer
to [2,6] and the references therein for details.

On the other hand, data exchange in a scatternet is the coordination
result of both intra-piconet scheduling and inter-piconet scheduling
[3,5]. Inter-piconet scheduling determines the schedule that a
gateway should follow in relaying packets among different directly
connected/neighboring piconets. A gateway can be present in at most
one connected piconet at a time due to the multiple channel
frequency hopping characteristic of the Bluetooth. So a gateway
tends to become a traffic hotspot and congestion can be easily
developed there.

We use scatternet scheduling to denote the combined effort
of intra-piconet scheduling and inter-piconet scheduling. The
key issue in designing scatternet scheduling algorithm is to determine

the gateway’s rendezvous points (RPs) in all directly connected
piconets. A rendezvous point is a well-defined time point at
which the gateway will switch to a certain connected piconet.
In Fig. 1, gateway 0 needs to schedule its RPs in the three connected
piconets, controlled by master nodes 2, 3 and 6 respectively. The
amount of time required to visit all connected piconets (at least) once
forms a superframe schedule. (Fig. 2 shows several superframe
designs for the scatternet in Fig. 1.)

10

9

11

12

16

057

8

0

20

3 40 0

0

Fig. 1: An example scatternet.

1rp 2rp 3rp 1rp 2rp 3rp3rp

1rp 2rp 3rp 1rp 2rp 3rp

1S 2S 3S

2rp 3rp 1rp 2rp 3rp 1rp 2rp

1S 2S 3S

2S 3S 1S 2S 3S 1S 2S

2S 3S 1S 2S 3S 1S 2S

RP assignment at Gateway 0 for two superframes

RP assignment at Gateway 1: method 1

RP assignment at Gateway 1: method 2
Fig. 2: Superframes obtained using MDRP for the scatternet in Fig.1. (Si: the gateway’s

sojourn time in piconet i. rpi: the time at which a gateway visits piconet i.)

II. EXISTING WORK

In [3], P. Johansson et al proposed a static scatternet scheduling
algorithm called Maximum Distance Rendezvous Point (MDRP).
MDRP uses the notion of a periodic superframe that is known to all
nodes involved in the scatternet. To establish a new RP (rendezvous
point) between a gateway (that already has i established RPs with
other piconets/masters) and a master (that already has j established
RPs with other gateways), the master has to map these i+j established
RPs onto a common superframe and choose the new RP as the
middle point of the largest interval between any two successive RPs
in the common superframe.

MDRP is a simple and efficient scheme, but it cannot adapt to the
changes in traffic load as its gateway schedule (i.e. its superframe
structure) is static. Besides, the amount of time (in each superframe)
that a gateway stays with each connected piconet is in general not the
same. This is due to MDRP’s progressive manner in schedule

0-7803-7954-3/03/$17.00 ©2003 IEEE. 2615

calculation - an inherent weakness in its design. Consider the
example shown in Fig. 2, where the superframes are obtained using
MDRP for the scatternet in Fig. 1. Note that there are various ways to
assign RPs in MDRP depending on its configuration and the order of
RP assignment [3] (also refer to Section IV. C). It can be proved that,
with regard to Fig. 1, none of the possible schemes in MDRP can
achieve equal splitting of the superframe. From the results of two
common RP assignment schemes for Gateway 1 in Fig. 2, we can
see that Gateway 1 spends 1/2 of the superframe time in one piconet
and just 1/4 in the other two piconets. The incurred adverse effect due
to unequal sojourn time splitting will be evaluated via simulations in
Section IV.

As the traffic load varies, a static superframe design cannot
efficiently utilize the available bandwidth. In [4], special fields in the
packet payload are defined to piggyback queue length information
between the communication peers; based on this feedback
information, the RPs in a superframe can be tuned. However, the
additional payload modification requirement makes it impractical for
specification-compliant implementation. In [5], instead of calculating
the strict local communication schedules, the rendezvous point is
defined as the sniff slot [1] at which the inter-piconet communication
may start. Lacking mutual schedule coordination, slots will be
wasted if the gateway-master pair does not sniff (i.e. visiting a
rendezvous point) at the same time. To alleviate this problem, an
assumption has to be made that each device is able to quickly
determine whether the peer device is active in the same piconet or not.
This acts against the operation of sniff mode in Bluetooth Spec. [1],
which requires a device to sniff for at least a certain pre-defined
number of time slots. Further, work in [3,4] assumes the gateway can
only be a common slave; this restricts their applicability in some
scenarios where a master/slave gateway is preferable.

III. GATEWAY ORIENTED SCATTERNET SCHEDULING
(GOSS) ALGORITHM

 In this section, a simple scatternet-scheduling algorithm, called
GOSS (gateway-oriented scatternet scheduling), is proposed. GOSS
operates at the gateway. Unlike MDRP, establishing new RPs for a
gateway does not need to consider the already established RPs. The
only information needed is the number of piconets that a gateway
should be directly connected to (so RPs with them should be
established simultaneously). Initially, the superframe of a gateway,
with a given initial size, is equally1 divided among all directly
connected piconets. As data exchange takes place, traffic statistics
can be collected to fine-tune the initial superframe design (such that
the gateway will stay longer in the piconet with more traffic).

1rp 2rp 3rp 1rp 2rp 3rp

2rp 3rp 1rp 2rp 3rp 1rp 2rp

1S 2S 3S 1S 2S 3S

2S 3S 1S 2S 3S 1S 2S

RP assignment at Gateway 0 for two superframes

RP assignment at Gateway 1

 Fig. 3: RP assignment for scatternet in Fig. 1 using GOSS

1 This is applicable to the gateway being a common slave, while for the
master/slave gateway a different partition strategy may be needed. Due to
space limitation, the details can be found in [7].

A. Static GOSS
 Fig. 3 shows the initial superframes designed for the scatternet in
Fig. 1 using GOSS algorithm. Note that the initial RP assignment in
GOSS is gateway-oriented and operates in a real static manner,
whereas MDRP has to work progressively even in a totally static
scatternet, i.e., when no nodes join/leave. Compared with MDRP, we
can show that RP assignment in GOSS is simpler, yet more efficient
and flexible.

(1) Supporting arbitrary topology in GOSS
GOSS algorithm can support arbitrary topology, with no limitation

on the role of the gateway posed, i.e., the gateway can be a common
slave gateway or a master/slave gateway. For any scatternet topology
that satisfies the condition that no more than two gateways directly
connected with each other (e.g. the scatternet shown in Fig. 5), we
can prove [7] that there always exists a RP assignment such that
when a gateway enters a new piconet, its new “master” would remain
active throughout its stay period.

(2) Adapting the superframe design to topology

12

14 3

7

8

020

5

6

11

13

14

10

9

0

0

0

Fig. 4: a scatternet with two gateways of variable degrees.

 In MDRP, the size of the superframe used by all the gateways is
the same. We call it a common superframe scheme. In GOSS, since
each gateway determines its own superframe independently, this
flexibility endows us with a new strategy to calculate the superframe
size based on the degree of the corresponding gateway, i.e. the
number of neighboring piconets the gateway directly connected to.
Fig. 4 shows a scatternet connected by two gateways (nodes 0 & 1),
with degrees 2 and 4 respectively. By fixing the stay time at each
piconet to be the same, the superframe size grows as the degree of a
gateway. We call this degree-based superframe scheme.
 The choice of common superframe or degree-based superframe is
traffic dependent. In general, we prefer the degree-based superframe
arising from the following observation and thinking. Being a gateway
connecting to multiple piconets, it functions more like a relay node
rather than a traffic source or sink. As a result, most of time the
gateway bordering with multiple piconets will fetch data from one
master and relay to another. This visualized granularity of operation
prefers equal amount of gateway sojourn time in each neighboring
piconet. Nevertheless, further adapting the superframe design to the
traffic fluctuations can give additional performance improvement.
We shall address this towards the end of this section.

(3) Adapting the superframe design to traffic demand
 In GOSS, we also take the following practical constraints into
considerations:
• Switching overhead: A gateway cannot immediately

synchronize with the master in the piconet it newly joined.

0-7803-7954-3/03/$17.00 ©2003 IEEE. 2616

This is because a master can only initiate a polling at even
time slots, the gateway has to wait until the next even slot
arrives. The time required for the gateway to synchronize
its own clock with the new master is upper-bounded by
two time slots (625 µs each). Hence frequent switching
among connected piconets is not desirable.

• Bandwidth wasted due to switching: Bluetooth supports
three packet sizes, 1, 3, or 5 time slots. Due to Bluetooth’s
duplex transmission, the lower bound of the stay period in
each piconet should be 6 time slots, which corresponds to
the case that a 5-slot packet in one direction, and a 1-slot
packet/ACK in another. When a gateway is to be switched
to the next piconet, the current head of line packet,
associated with the current piconet, would probably be
delayed until the next RP since it may not be able to
complete its transmission in time. The smaller superframe
size is, the larger percentage of possible bandwidth
wastage would be.

S/S
11

2

3

4 5

S/M

S/M

S/M

S/S

M M

M M

Fig. 5: A complex scatternet topology combining various basic components.

From the description above, we can see that instead of choosing
the superframe as small as possible, we should strike a balance
among the concomitant advantages using smaller superframe, the
possible switching overhead, bandwidth wastage, etc. In Section IV.
B, we use simulations to study the effect of varying traffic load on the
scatternet scheduling performance with different superframe sizes.

B. Adaptive GOSS
We also propose a simple adaptation scheme which can

dynamically adjust the superframe size based on the time-varying
traffic load. Assume the gateway has n neighboring piconets. The
stay period in each piconet Si varies according to the link utilization
as shown in Fig. 6. Here we use the link utilization as the indicator of
the amount of traffic currently burdening the gateway. Si is initially
set to and remained at l until the corresponding link utilization
exceeds α; after which Si increases linearly m time slots each step.
On the other hand, if the link utilization falls belowα, Si decreases at
the same rate of m time slots per step, until l is reached. Note that the
stay period Si is upper-bounded by u and lower-bounded by l, where l
and u are user defined.

If the link utilization becomes 0 when Si = l, Si would directly drop
to 6. This allow us to utilize the gateway as efficiently as possible, by
taking advantages of the fact that some neighboring piconets have no
packets to send or receive, and at the same time to reserve the
capability to detect any newly arrived backlogged packets as early as
possible (so Si does not drop to 0 here).

α

l
6

u

Link utilization

Stay period Si

Fig. 6: adapting stay period based on link utilization.

Another important issue is how frequent should each gateway
adjusts its frame size. Continual adaptation may enable the gateway
follow the traffic change closely, but too frequent adjustments may
burden the gateway with heavy signaling overheads (due to
negotiation of the new sniff parameter). Worse still, it may cause
fluctuation of the superframe size, as the link utilization fluctuates.

IV. PERFORMANCE EVALUATION
A. Simulation model

In this section, we compare the performance of GOSS with
MDRP and give some guidelines in choosing the parameters for
GOSS. For fair comparison, the same intra-piconet scheduling
algorithm, Round Robin [6], is used in both MDRP and our GOSS.
Like MDRP, each master endues priority to the gateway as each
gateway only spends a fraction of time in one piconet. The gateway is
exhaustively polled in the sense that as long as it has packets to send
or receive the master persists polling it. Note that in MDRP only one
gateway can be active at a time. To save the efforts/delay of global
synchronization among gateways’ schedules, GOSS allows multiple
gateways to participate in a piconet simultaneously by alternating
their transmission in a round robin manner.

Four different representative scatternet topologies are simulated to
demonstrate various aspects of GOSS. To be more specific, the
scatternet in Fig. 7 is used in Section IV.B for obtaining some
guidelines in choosing superframe size. The scatternet in Fig. 1 is
used in Section IV.C for studying the adverse effect due to unequal
sojourn time splitting. The scatternet in Fig. 4 represents the scenario
of having gateways of variable degrees. It is examined in Section IV.
D. Finally in Section IV.E, we test our proposed traffic adaptation
techniques based on the scatternet in Fig. 5, a complex all-inclusive
topology.
 Assume packets arrive at each queue in bursts2 following a
Poisson process with λ packet bursts/ms. Let the burst size be
geometrically distributed with a mean of 4 packets. By varying λ, we
can vary the total system load, and thus alter the system throughput.
The buffer size at both master and slave is set large enough to
preclude buffer overflow. Each point of simulation data is collected
by simulating 50000 time slots with the initial 1000-slot statistics
ignored.

The following performance metrics are used in our performance
evaluations: 1) Average packet end-to-end delay (including both the

2 For example, an IP datagram will be segmented into a burst of L2CAP
packets for transmission over scatternet. Random segmentation among the
packet size of 1, 3, 5 time slots are used in our experiment.

0-7803-7954-3/03/$17.00 ©2003 IEEE. 2617

queuing delay at each hop and the transmission delay). 2) System
throughput (the total number of packets successfully delivered per
millisecond). 3) Switching overhead (percentage of the bandwidth
wasted due to switching).

B. Choosing static superframe for GOSS

1

4

9

8

6

7

0
2 3

5

Fig. 7: scatternet consisting of three piconets

Fig. 8 studies the effect of varying superframe size in GOSS based
on Fig. 7, a simple scatternet topology with one gateway shared by
three piconets. We consider 12 unidirectional traffic flows, with the
following (source, destination) pairs: (4,6), (4,7), (5,6), (5,7), (6,4),
(6,5), (7,4), (7,5), (8,6), (8,7), (9,4), and (9,5). The same traffic rate λ
is applied at each source node. Among all the choices considered, the
superframe sizes of 45 and 150 perform the best in case of light and
heavy traffic loads respectively. The singularity can be observed for
the curves with frame sizes of 24 and 30, whose performance
deteriorates dramatically regardless of the traffic load. The reason can
be deduced from their serious bandwidth wastage and switching
overhead in using too small frame sizes.

Fig. 8: performance comparison of different superframe sizes in GOSS

 The switching overhead has been considered in our
implementation. It can be approximated by the simple formula
1*gateway_degree/(superframe_size+1*gateway_degree), as each
time the gateway switches, on average one time slot (worst case two
time slots) will be wasted for synchronization. For example, in Fig. 7
the degree of the gateway is 3, if the superframe size is 30, the
switching overhead is about 9%; while for a superframe size of 60, it
decreases to 4.7%.

C. Comparing static GOSS with MDRP
 Based on the topology of Fig. 1, Figs. 9 & 10 compare the static

GOSS with two RP assignment schemes using MDRP (depicted in
Fig. 2). For fair comparison, the superframe size is fixed to 120 for
both MDRP and GOSS. Fig. 9 is obtained with equal bidirectional
traffic flows between node pairs (8,9), (7,10), and (11,12), while Fig.
10 considers three unidirectional traffic flows between the same set
of node pairs. Referred to Fig. 2, MDRP derives its gateway schedule
in the following progressive manner. First, Gateway 0 calculates its
own schedule by assigning its stay periods with masters 2, 4, and 6
exactly 1/3 of its superframe size. Then depending on the order of
establishing the switching points for Gateway 1, two different
assignment schemes are possible. If Gateway 1 establishes its
schedule with masters 4 and 5 first, then its stay period with master 6
will be 1/4 of the superframe size, which corresponds to method 2 in
Fig. 2 (denoted as MDRP2); otherwise, its stay period with master 6
will be 1/2 of the superframe size, which corresponds to method 1 in
Fig. 2 (denoted as MDRP1). From Figs. 9 & 10, we can see that
GOSS outperforms both versions of MDRP. Besides, we observe a
large performance gap between MDRP1 and MDRP2. As such some
guidelines or heuristics are needed in MDRP algorithm for selecting
among multiple RP assignment choices. But for our GOSS, it
inherently avoids such complexities.

Fig. 9: performance comparison of GOSS and MDRP (bidirectional traffic)

Fig. 10: performance comparison of GOSS and MDRP (unidirectional traffic)

D. Degree based superframe VS. common superframe
 Based on the scatternet in Fig. 4, Figs. 11 & 12 study the
degree-based superframe size design versus the common superframe
size design. Assume a gateway should stay with each connected
piconet for 40 time slots. Using the degree-based scheme, the

0-7803-7954-3/03/$17.00 ©2003 IEEE. 2618

superframe sizes of Gateway 0 and Gateway 1 are 80 (=40x2) and
160 (=40x4) respectively. With common superframe size design,
both gateways will use the same frame size of 160.

Fig. 11: degree-based superframe against common superframe (bidirectional traffic)

Fig. 12: degree-based superframe against common superframe (unidirectional traffic)

 Fig. 11 is obtained with equal bidirectional traffic flows between
node pairs (8,9), (7,10), (11,12), and (13,14), whereas Fig. 12 is based
on 4 unidirectional traffic flows between the same set of node pairs. It
happens that for the scatternet shown in Fig. 4, both MDRP and
GOSS give the same RP assignment. Therefore all the performance
improvement shown in Figs. 11 & 12 is brought by using the
degree-based superframe size design.

E. Adapting superframe to the traffic
 Fig. 13 compares the performance of adaptive GOSS (with l=15,
u=50) and static GOSS (with two different stay periods: 15 & 50
time slots in each connected piconet) based on the scatternet shown
in Fig. 5. The adaptation technique used here follows the linear curve
in Fig. 6, the step size for sojourn time adjustment is 5 time slots.
Parameter α is set to 0.6 with the adapting frequency of every 2
superframes. Note that the link utilization is monitored constantly by
maintaining two counters, one for used time slots and one for idle
time slots. The incurred signaling overhead would be around
1/(2*superframe_size), since at least one slot is needed each time the
gateway conveys the new sniff parameters towards the corresponding
master. Four bidirectional traffic flows along the shortest path

between node pairs (1,2), (1,3), (3,4), and (3,5) are simulated.
 As expected, from Fig. 13 the adaptive scheme is a clear winner
irrespective of traffic load. Besides, unlike MDRP which is sensitive
to the initial RP assignment at each gateway, GOSS algorithm can
remove the undesirable “synchronization” possibly posed by the
initial configuration with the periodic adjustment of the superframe
design. This leads to the substantial gains in system performance in
Fig. 13.

Fig. 13: adaptive GOSS versus static GOSS

V. CONCLUSIONS
 A simple adaptive MAC scheduling algorithm, called GOSS, is
proposed for Bluetooth scatternet. To avoid the progressive
calculation of the switch schedule in a static environment, GOSS is
designed to be gateway-oriented in order to ensure equal partition of
the superframe at each gateway. At the same time, extension can be
easily made to support arbitrary scatternet topology carrying dynamic
traffic loads, where nodes can join/leave at any time. Simulation
results showed that even a static GOSS prevails over the existing
scheme. If the adaptation technique is used, further performance
enhancement can be obtained.

REFERENCES
[1] Bluetooth Special Interest Group, “Specification of the Bluetooth

System 1.1,” http: //www.bluetooth.com/
[2] A. Das, A. Ghose, A. Razdan, H. Saran and R. Shorey, “Enhancing

performance of asynchronous data traffic over the Bluetooth wireless
ad-hoc network,” IEEE INFOCOM 2001, Anchorage, Alaska, April
2001

[3] P. Johansson, R. Kapoor, M. Kazantzidis, M.. Gerla “Rendezvous
scheduling in bluetooth scatternets,” IEEE International Conference on
Communications, ICC 2002, Volume 1, pp. 318 –324

[4] Wensheng Zhang and Guohong Cao “A flexible scatternet-wide
scheduling algorithm for Bluetooth networks,” 21st IEEE International
Conference on Performance, Computing, and Communications, 2002,
pp. 291 –298.

[5] S. Baatz,. M. Frank, C. Kuhl, P. Martini, C. Scholz, “Bluetooth
scatternets: An enhanced adaptive scheduling scheme,” INFOCOM
2002.

[6] Changlei Liu, Kwan L. Yeung and Victor O.K. Li, “A Novel MAC
Scheduling Algorithm for Bluetooth System,” GLOBECOM 2003, in
press.

[7] Changlei Liu, “Bluetooth Network Design,” MPhil. thesis, the
University of Hong Kong, 2003

0-7803-7954-3/03/$17.00 ©2003 IEEE. 2619

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

