
Title A unified architecture of MD5 and RIPEMD-160 hash algorithms

Author(s) Ng, CW; Ng, TS; Yip, KW

Citation

The 2004 IEEE International Symposium on Cirquits and
Systems, Vancouver, BC., 23-26 May 2004. In IEEE International
Symposium on Circuits and Systems Proceedings, 2004, v. 2, p.
II-889-II-892

Issued Date 2004

URL http://hdl.handle.net/10722/46445

Rights Creative Commons: Attribution 3.0 Hong Kong License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37885226?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A UNIFIED ARCHITECTURE OF MD5 AND RIPEMD-160 HASH
ALGORITHMS

Chiu-Wah Ng, Tung-Sang Ng and Kun-Wah Yip

Department of Electrical & Electronic Engineering, The University of Hong Kong
Pokfulam Road, Hong Kong

Email: {cwng, tsng, kwyip}@eee.hku.hk

ABSTRACT

Hash algorithms are important components in many cryp-
tographic applications and security protocol suites. In this
paper, a unified architecture for MD5 and RIPEMD-160
hash algorithms is developed. These two algorithms are
different in speed and security level. Therefore, a unified
hardware design allows applications to switch from one
algorithm to another based on different requirements. The
architecture has been implemented using Altera’s
EPF10K50SBC356-1, providing a throughput over
200Mbits/s for MD5 and 80Mbits/s for RIPEMD-160
when operated at 26.66MHz with a resource utilization of
1964LC.

I. INTRODUCTION

 A hash function computes a fixed length output called
the message digest from an input message of various
lengths. The MD5 message digest algorithm [1], devel-
oped by Ron Rivest at MIT, accepts a message input of
various lengths and produces a 128-bit hash code. It has
been one of the most widely-used hash algorithms. How-
ever, it has been indicated in [2] that there is a security
threat in the algorithm. Furthermore, a 128-bit hash output
may not offer sufficient security protection in the near fu-
ture. To provide higher security protection, RIPEMD-160
has been proposed by Dobbertin, Bosselaers and Preneel
[2]. RIPEMD-160 accepts the same input format as that of
MD5, and produces a 160-bit output.
 It is easy to find that the structures of the two algo-
rithms are quite similar. It follows that they can be com-
bined together to give one hardware design that can per-
form the two hash functions. This approach has the fol-
lowing advantages. Firstly, the unified design is a re-
source-efficient implementation when different hash algo-
rithms are needed in applications. Applications can switch
to either algorithm based on different requirements. Sec-
ond, since MD5 is still the most widely-used hash algo-
rithm, upgrading the current implementation in the future
to RIPEMD-160 is much easier with a unified hardware
architecture.
 Motivated by these observations, in this paper we de-
velop a unified architecture for MD5 and RIPEMD-160.
Comparison with other unified architectures indicates that

the proposed architecture is area-efficient.

II. REVIEW OF HASH ALGORITHMS

 MD5 and RIPEMD-160 share the same flow of opera-
tion. First, the input message is padded and divided into
data blocks of length 512 bits. Each data block is treated
as 16 32-bit words. The algorithms iteratively processes
each data block. For the first data block, an initial value is
used to compute an intermediate result. The intermediate
result, called the chaining variable, is then updated accord-
ing to the input data block and the previous result. After
all iterations are done, the final chaining variable is the
hash value.

A. MD5

 Figure 1 shows the basic operation of MD5 [3]. The
algorithm consists of 4 main rounds with each round
applying the basic operation 16 times. In the figure,

(, ,)F B C D is a nonlinear bit-wise function of 3 inputs.

There are 4 different functions for the 4 rounds. The index
i represents each step, and []X i represents one message
word. The orders of the 16 words for processing are dif-
ferent for different rounds. In the figure, []K i is a 32-bit
constant chosen from a fixed table containing 64 constants
stated in the specification [1] and []S i is a 5-bit input that
controls the left rotation of the input sum. After a total of
64 basic operations, the chaining variable is updated by
directly adding the 4 variables A , B , C and D with the
current content in the chaining variable.

B. RIPEMD-160

 Figure 2 shows the basic operation of RIPEMD-160.
RIPEMD-160 consists of 5 main rounds with each round
applying the basic operation 16 times. There are two par-
allel lines in each step, and five different non-linear func-
tions (, ,)F B C D corresponding to the 5 rounds. In the

figure, []X i is the input word, []K i is one of the ten 32-
bit constants in the algorithm, []S i corresponds to the 4-
bit control for the left rotation operation, and Rol10 denotes
a 10-bit left cyclic shift operation. After a total of 80 basic

operations, the chaining variable is updated by adding the
left five variables A , B , C , D , E , the five right vari-
ables A′ , B′ , C′ , D′ , E′ , and the current content in the
chaining variable.

III. UNIFIED ARCHITECTURE DESIGN, AND ITS
FGPA IMPLEMENTATION

 It is apparent from Section 2 that MD5 and RIPEMD-
160 share many common parts, but there are also certain
differences, as listed below.

1. The input order for the word []X i and the number of
shifts []S i are different.

2. There are 64 constants for []K i in MD5 but there are
only 10 constants in RIPEMD-160.

3. RIPEMD-160 has an extra variable E (E′) for the
160-bit output.

4. The nonlinear functions F of the two algorithms are
different.

5. The MD5 requires a 5-bit cyclic shifter while
RIPEMD-160 needs a 4-bit one.

6. There is an extra cyclic shift operation (Rol10) in
RIPEMD-160.

In order to unify the two algorithms for FPGA implementa-
tion, we modify the basic hardware structure of MD5 (Fig-
ure 1) with the following modifications and additions.

1. Two separate look-up tables (LUTs) are used to store
the constants and numbers of shifts.

2. All the input orders are stored in a LUT to index the
message words in different steps.

3. The 128-bit chaining variable is expanded to 160
bits.

4. A 10-bit cyclic shifter, which is required in RIPEMD-
160, is added.

5. Two additional nonlinear functions are added. [Four
and five nonlinear functions are required for MD5
and RIPEMD-160, respectively. Out of these nine
functions, only six are distinct.]

6. Multiplexers are added.

The resultant unified architecture is shown in Figure 3.
 The design has been modeled using VHDL and im-
plemented in FPGA. The target device is an Altera
EPF10K50SBC356-1. The aim is to obtain a resource-
efficient implementation. Therefore, only one of the two
lines of RIPEMD-160 is implemented in the FPGA, result-
ing in a saving of nearly half of the logic elements. This
arrangement is used as a trade-off between area and speed.
Compact hardware implementation can be obtained by the
following approach.
 Modern FPGAs have numerous memory resources

besides logic elements. The hash algorithms take 512-bits
data as the input. A dual-port RAM in the FPGA can be
used to store this large amount of data to allow both exter-
nal and internal access of data. Memory elements config-
ured as ROM are used to store the constants, numbers of
shifts and word-input orders. For constants lookup, a
ROM with 6-bit input address and 32-bit output is used for
the MD5 algorithm as it specifies that 64 32-bits words and
a ROM with 4-bit input address is required for storing the
10 constants of RIPEMD-160. For the shift-number
lookup, since there are 160 steps in RIPEMD-160, a ROM
with 8-bit address lines must be used. These constants fill
up the lower 196 words of the ROM, thus leaving the up-
per 64 words for the variable shift in MD5. This arrange-
ment allows simple decoding logic to select the appropriate
constants for the 2 algorithms. In order to accommodate
the larger shift specified in the MD5 algorithm, a ROM
with 5-bit output is used. For the message selection se-
quence, the same approach is used and a ROM with 8-bit
input address and 4-bit output is used. As LUTs are used
in the aforementioned manner, a counter can be used to
index the appropriate values during each step. It simplifies
the control logic design. A compact implementation thus
results. Table 1 summarizes the memory resource utiliza-
tion.
 Since memory lookup is slow and in this case the mes-
sage words are accessed by first accessing the message
selection table and then the dual-port RAM, the execution
time is increased. To speed up, the execution of the basic
operation is pipelined into two stages. First, an operand
fetch is performed. The appropriate constants are looked
up in memory. Then an execution phase for the actual op-
eration is performed. Figure 4 shows an example of the
execution of MD5.
 With additional circuits for initialization and output
data processing, the final hardware design is shown in Fig-
ure 5.

IV. PERFORMANCE EVALUATION AND
COMPARISON

 The design has been synthesized, placed and routed on
Altera’s EPF10K50SBC356-1 using Altera’s Max+PlusII
10.0. The maximum frequency is 26.66 MHz. The num-
ber of logic cells used is 1964 (68%) and that of memory
bits is 5376 (13%). The throughput of the hash algorithms
can be calculated as follows:

Throughput (Mbits/s) = 512 x freq (MHz) / no. of clk cy-
cles.

The throughput performance is shown in Table 2. Several
implementations of hash algorithms can be found in the
literature. However, each of them uses different FPGA
devices and hence a comparison of the performance is dif-
ficult. As a rough comparison, Table 3 and Table 4 sum-

Table 1. Memory utilization of the proposed design.
MD5 constants 64 x 32 = 2048 bits
RIPEMD-160 constants 16 x 32 = 512 bits
Shift amount 256 x 5 = 1280 bits
Message selection 256 x 4 = 1024 bits
Dual port ram 512 bits
 Totals: 5376 bits

Table 2. Performance of the proposed design.
 MD5 RIPEMD-160
Clock cycles 66 162
Throughput 206Mbits/s 84Mbits/s

marize the results. In [4], a universal hardware module is
designed for the MD4 family, including MD5, RIPEMD-
160, SHA-1 and SHA-256. Although this module can
combine 4 different algorithms, it requires multiple clock
cycles to execute a step. In the design presented herein,
each step can be executed in a single clock cycle. In addi-
tion, the module of [4] requires significantly more re-
sources (1004 CLBs) when compared with the proposed
design. In [5], only MD5 is implemented. We can com-
pare the performance of our design with the performance
results reported in [5]. In [6], the implementation com-
bines MD5, SHA-1 and HAS-160 and thus requires sig-
nificant resources. It is apparent from Table 4 that the
unified architecture requires only slightly more resources
than the single MD5 implementation but with a compara-
ble performance.

V. CONCLUSION

 In this paper, a unified architecture for MD5 and
RIPEMD-160 has been designed and implemented in
FPGA. It has been shown that the implementation is re-
source-efficient and preserves the single clock-cycle struc-
ture. With the present FPGA implementation, the hard-
ware design is suitable for applications that require low to
medium throughput such as Ethernet networks.

REFERENCES

[1] R. Rivest, “The MD5 Message-Digest Algorithm,” RFC
1321, Apr. 1992.

[2] H. Dobbertin, A. Bosselaers and B. Preneel, “RIPEMD-160:
A Strengthened Version of RIPEMD, Fast Software Encryp-
tion,” LNCS 1039, pp. 71-92, Springer-Verlag, 1996.

[3] W. Stallings, Cryptography and Network Security, 2nd ed.,
Now York: Prentice-Hall, 1997.

[4] S. Dominikus, “A hardware implementation of MD4-family
hash algorithms,” Proc. 9th Int. Conf. on Electronics, Cir-
cuits and Systems, vol. 3, pp. 1143-1146, 2002.

[5] J. Deepakumara, H. M. Heys and R. Venkatesan, “FPGA
implementation of MD5 hash algorithm,” Proc. 2001 Cana-
dian Conf. on Electrical and Computer Engineering, vol. 2,
pp. 919-924, 2001.

[6] Y. K. Kang, D. W. Kim, T. W. Kwon and J. R. Choi, “An
efficient implementation of hash function processor for
IPSEC,” Proc. 2002 IEEE Asia-Pacific Conf. on ASIC, pp.
93-96, 6-8 Aug. 2002.

Table 3. Performance comparison of different designs.
This design [4] [5] [6] Algo.

Cyc. Thru. Cyc. Thru. Cyc. Thru. Cyc. Thru.
MD5 66 206 206 107 65 165 65 142
RIPEMD-160 162 84 337 65 N/A N/A N/A N/A

Table 4. Comparison of resource utilization.
 This design [4] [5] [6]

FPGA Vendor Altera Xilinx Xilinx Altera
Resource util. 1964 LC 1004 CLB 880 slices 10573 LE

A B C D

F+

+

+

+<<

+

A B C D

X[i]

K[i]

S[i]

A B C D

F+

+

+

+<<

+

A B C D

X[i]

K[i]

S[i]

E

E

Rol10

A' B' C' D'

F+

+

+

+<<

+

A' B' C' D'

X[i]

K[i]

S[i]

E

E'

Rol10

Figure 1. Basic MD5 operation. Figure 2. Basic RIPEMD-160 operation.

A B C D

F+

+

+

+<<

+

X[i]

K[i]

S[i]

rol
E

Figure 3. Basic operation of the unified architecture.

Fetch 0 Fetch 1

Execution 0

Fetch 2

Execution 1

Fetch 80

Execut ion 79 Execut ion 80

Figure 4. Execution of the MD5 algorithm: an example.

A B C D E H0 H1 H2 H3 H4

F

rol

+

+

+

K[i] ROM 1

K[i] ROM 2

X RAM

Index ROM

Data in

Barrel
Shifter

+

S[i] ROM

Adders

IV

Figure 5. Hardware design of the unified architecture.

	footer1:

